Advertisement

Mycoremediation Mechanisms for Heavy Metal Resistance/Tolerance in Plants

  • Poonam C. Singh
  • Sonal Srivastava
  • Deepali Shukla
  • Vidisha Bist
  • Pratibha Tripathi
  • Vandana Anand
  • Salil Kumar Arkvanshi
  • Jasvinder Kaur
  • Suchi Srivastava
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Environmental pollution is an ever-increasing problem being faced by the world in the present era. Soil pollution is increasing, owing to dumping of all kinds of wastes, mining and using of agrochemicals and other anthropogenic activities. These pollutants include many recalcitrant organic compounds, e-wastes, isotopic wastes and heavy metals. Heavy metals are essentially polluting agricultural fields and thus affect productivity and quality of the produce. Accumulation of these toxic metals in plants leads to their subsequent transfer and biomagnification in the food chain. Therefore, their toxicity is an area of concern for ecological, evolutionary, nutritional and environmental reasons. Several strategies are being employed for remediation of agricultural soils, mycoremediation being one of them. Mycoremediation is an eco-friendly ‘green-clean’ technology that has tremendous potential to be utilized in the cleaning up of heavy metals and organic pollutants. Association of plant and fungi can detoxify toxic metals, translocate and accumulate them in the above-ground biomass, which has to be then harvested for metal recovery. Despite tremendous potential for the application of mycoremediation in the cleaning up of contaminated soil, sediment and water, it has not been commercialized and used extensively on a large scale. The present chapter discusses the strategies and applicability of mycoremediation mechanisms for heavy metal resistance/tolerance in plants.

Keywords

Heavy metal Toxicity Mycoremediation Phytochelatins Glutathione Metallothioneins 

References

  1. Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Tech 3:74–102Google Scholar
  2. Abioye OP (2011) Biological remediation of hydrocarbon and heavy metals contaminated soil. In: Pascucci S (ed) Soil contamination. InTech.  https://doi.org/10.5772/24938
  3. Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313PubMedCrossRefGoogle Scholar
  4. Adams SV, Quraishi SM, Shafer MM, Passarelli MN, Freney EP, Chlebowski RT, Luo J, Meliker JR, Mu L, Neuhouser ML, Newcomb PA (2014) Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women’s Health Initiative. Environ Health Perspec 122:594CrossRefGoogle Scholar
  5. Adeyemi AO (2009) Bioaccumulation of arsenic by fungi. Am J Environ Sci 5:364–370CrossRefGoogle Scholar
  6. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ahmad MSA, Ashraf M (2012) Essential roles and hazardous effects of nickel in plants. Rev Environ Contam Toxicol 214:125–167Google Scholar
  8. Ahmad I, Zafar S, Ahmad F (2005) Heavy metal biosorption potential of Aspergillus and Rhizopus sp. isolated from wastewater treated soil. J Appl Sci Environ Manag 9:123–126Google Scholar
  9. Akhtar K, Akhtar MW, Khalid AM (2008) Removal and recovery of zirconium from its aqueous solution by Candida tropicalis. J Haz Mater 156:108–117CrossRefGoogle Scholar
  10. Akpaja EO, Nwogu NA, Odibo EA (2012) Effect of some heavy metals on the growth and development of Pleurotus tuber-regium. Mycosphere 3:57–60CrossRefGoogle Scholar
  11. Akpoveta OV, Osakwe SA, Okoh BE, Otuya BO (2010) Physicochemical characteristics and levels of some heavy metals in soils around metal scrap dumps in some parts of Delta State, Nigeria. J App Sci Env Manag 14:57–70Google Scholar
  12. Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2015) Symbiotic association between Salix purpurea L, Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol 36:407–420PubMedCrossRefGoogle Scholar
  13. Alpat S, Alpat SK, Çadirci BH, Özbayrak Ö, Yasa İ (2010) Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni (II) biosorption from aqueous solution by Circinella sp. Electron J Biotechnol 13:4–5Google Scholar
  14. Anaemene IA (2012) The use of Candida sp. in the biosorption of heavy metals from industrial effluent. Eur J Exp Biol 2:484–488Google Scholar
  15. Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manag 84:93–99PubMedCrossRefGoogle Scholar
  16. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257PubMedCrossRefGoogle Scholar
  17. Atagana HI (2011) Bioremediation of co-contamination of crude oil and heavy metals in soil by phytoremediation using Chromolaena odorata (L) King & HE Robinson. Water Air Soil Pollut 215:261–271CrossRefGoogle Scholar
  18. Aust SD, Bumpus JA, Tien M (1990) Methods for the degradation of environmentally persistent organic compounds using shite rots fungi. Utah State University Foundation. U.S. Patent 4 891:320Google Scholar
  19. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213CrossRefGoogle Scholar
  20. Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242PubMedPubMedCentralCrossRefGoogle Scholar
  21. Banfalvi G (2011) Heavy metals, trace elements and their cellular effects. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Dordrecht, pp 3–28. https://doi.org/10.1007/978-94-007-0428-2_1CrossRefGoogle Scholar
  22. Beladi M, Kashani A, Habibi D, Paknejad F, Golshan M (2011) Uptake and effects of lead and copper on three plant species in contaminated soils: role of phytochelatin. Afr J Agric Res 6:3483–3492Google Scholar
  23. Bernard A (2008) Cadmium and its adverse effects on human health. Indian J Med Res 128:557–564PubMedGoogle Scholar
  24. Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280CrossRefGoogle Scholar
  25. Binsadiq ARH (2015) Fungal absorption and tolerance of heavy metals. Ind Wastewater J Agris Sci Technol 5:77–80Google Scholar
  26. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21PubMedPubMedCentralCrossRefGoogle Scholar
  27. Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Myco Res 104:1366–1371CrossRefGoogle Scholar
  28. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms–getting genomics going. Curr Opin Plant Biol 9:180–188PubMedCrossRefGoogle Scholar
  29. Bricker TJ, Pichtel J, Brown HJ, Simmons M (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health 36:1597–1610CrossRefGoogle Scholar
  30. Busetti F, Badoer S, Cuomo M, Rubino B, Traverso P (2005) Occurrence and removal of potentially toxic metals and heavy metals in the wastewater treatment plant of Fusina (Venice, Italy). Ind Eng Chem Res 44:9264–9272CrossRefGoogle Scholar
  31. Cai Y, Ma LQ (2003) Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants. Biogeochem Environ Imp Trace Elem 8:95–114Google Scholar
  32. Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773PubMedCrossRefGoogle Scholar
  33. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347PubMedCrossRefGoogle Scholar
  34. Chandrakar V, Verma P, Jamaluddin (2012) Removal of Cu and Zn by fungi in municipal sewage water. Int J Adv Biotechnol Res 2:787–790Google Scholar
  35. Chao YY, Hong CY, Chen CY, Kao CH (2011) The importance of glutathione in defence against cadmium-induced toxicity of rice seedlings. Crop Environ Bioinforma 8:217–228Google Scholar
  36. Chen SC, Sun GX, Rosen BP, Zhang SY, Deng Y, Zhu BK, Rensing C, Zhu YG (2017) Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci Rep 7:7741.  https://doi.org/10.1038/s41598-017-08313-2 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. App Environ Soil Sci 2014.  https://doi.org/10.1155/2014/752708
  38. Choppala G, Saifullah Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391CrossRefGoogle Scholar
  39. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  41. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Haz Mat 146:270–277CrossRefGoogle Scholar
  42. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764CrossRefGoogle Scholar
  43. Cvjetko P, Zovko M, Balen B (2014) Proteomics of heavy metal toxicity in plants. Arh Hig Rada Toksikol 65:1–7PubMedCrossRefGoogle Scholar
  44. Daghino S, Martino E, Perotto S (2016) Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza 26:263–274PubMedCrossRefGoogle Scholar
  45. Damodaran D, Suresh G, Mohan R (2011) Bioremediation of soil by removing heavy metals using Saccharomyces cerevisiae. In: 2nd international conference on environmental science and technology. SingaporeGoogle Scholar
  46. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals–an overview. Indian J Biotechnol 7:159–169Google Scholar
  47. Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. App Microbial Biotechnol 100:2967–2984PubMedCrossRefGoogle Scholar
  48. Demars BG, Boerner RE (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189CrossRefGoogle Scholar
  49. Diels L, De Smet M, Hooyberghs L, Corbisier P (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12:149–158PubMedCrossRefGoogle Scholar
  50. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25PubMedCrossRefGoogle Scholar
  51. Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S, Chauhan PS, Nautiyal CS (2016) Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488. Plant Signal Behav 11:e1113363PubMedPubMedCentralCrossRefGoogle Scholar
  52. Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476PubMedCrossRefGoogle Scholar
  53. Dugal S, Gangawane M (2012) Metal tolerance and potential of Penicillium sp. for use in mycoremediation. J Chem Pharm Res 4:2362Google Scholar
  54. El-Morsy ESM (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189CrossRefGoogle Scholar
  55. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015. http://doi.org/10.1155/2015/756120
  56. Errasquın EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143CrossRefGoogle Scholar
  57. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217.  https://doi.org/10.1038/srep12217 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fazli MM, Soleimani N, Mehrasbi M, Darabian S, Mohammadi J, Ramazani A (2015) Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng 13:19.  https://doi.org/10.1186/s40201-015-0176-0 CrossRefGoogle Scholar
  60. Feng R, Wang X, Wei C, Tu S (2015) The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation 17:348–354PubMedCrossRefGoogle Scholar
  61. Fidalgo F, Azenha M, Silva AF, Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2:70–80CrossRefGoogle Scholar
  62. Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotech 37:399–403CrossRefGoogle Scholar
  63. Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004) Biodegradation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133PubMedCrossRefGoogle Scholar
  64. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Biol 56:41–71CrossRefGoogle Scholar
  65. Franchin C, Fossati T, Pasquini E, Lingua G, Castiglione S, Torrigiani P, Biondi S (2007) High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba). Physiol Plant 130:77–90CrossRefGoogle Scholar
  66. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi sp. nickel hyperaccumulators. Plant Cell Online 16:2176–2191CrossRefGoogle Scholar
  67. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  68. Gadd GM, Sayer JA (2000) Influence of fungi on the environmental mobility of metals and metalloids. Environ Microbe-Metal Interact 237–256. https://doi.org/10.1128/9781555818098.ch11
  69. Gao J, Sun L, Yang X, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8:e64643PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332.  https://doi.org/10.3389/fmicb.2016.00332 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393PubMedCrossRefGoogle Scholar
  72. González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146PubMedCrossRefGoogle Scholar
  73. Grillo-Puertas M, Schurig-Briccio LA, Rodríguez-Montelongo L, Rintoul MR, Rapisarda VA (2014) Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli. BMC Microbiol 14:72PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M (2014) Metallothionein–immunohistochemical cancer biomarker: a meta-analysis. PLoS One 9:e85346PubMedPubMedCentralCrossRefGoogle Scholar
  75. Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381CrossRefGoogle Scholar
  76. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71CrossRefGoogle Scholar
  77. Gupta R, Ahuja P, Khan S, Saxena RK, Mohapatra H (2000) Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions. Curr Sci 78:967–973Google Scholar
  78. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J App Microbiol 100:219–232CrossRefGoogle Scholar
  79. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  80. Hamba Y, Tamiru M (2016) Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian J Nat App Sci 5:48–58Google Scholar
  81. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  82. He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus canescens. Physiol Plant 143:50–63PubMedCrossRefGoogle Scholar
  83. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267PubMedCrossRefGoogle Scholar
  84. Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466 Google Scholar
  85. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30PubMedCrossRefGoogle Scholar
  87. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875.  https://doi.org/10.1155/2012/872875 CrossRefGoogle Scholar
  88. Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51:5675–5684PubMedCrossRefGoogle Scholar
  89. Huang T, Peng Q, Yu L, Li D (2017) The detoxification of heavy metals in the phosphate tailing-contaminated soil through sequential microbial pretreatment and electrokinetic remediation. Soil Sediment Contam 26:1–15CrossRefGoogle Scholar
  90. Ianis M, Tsekova K, Vasileva S (2006) Copper biosorption by Penicillium cyclopium: equilibrium and modelling study. Biotechnol Biotechnol Equip 20:195–201CrossRefGoogle Scholar
  91. Ikehata K, Buchanan ID, Pickard MA, Smith DW (2005) Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment. Bioresour Technol 96:1758–1770PubMedCrossRefGoogle Scholar
  92. Jaishankar M, Mathew BB, Shah MS, Krishna Murthy TP, Sangeetha Gowda KR (2014) Biosorption of few heavy metal ions using agricultural wastes. J Environ Pol Hum Heal 2:1–6Google Scholar
  93. Jarosz-Wilkolazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547PubMedCrossRefGoogle Scholar
  94. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182PubMedPubMedCentralCrossRefGoogle Scholar
  95. Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69:1775–1787PubMedCrossRefGoogle Scholar
  96. Jennrich P (2013) The influence of arsenic, lead, and mercury on the development of cardiovascular diseases. ISRN Hypertens 2012.  https://doi.org/10.5402/2013/234034
  97. John R, Ahmad P, Gadgil K, Sharma S (2012) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76Google Scholar
  98. Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819PubMedCrossRefGoogle Scholar
  99. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer-Verlag, Berlin, pp 31–64CrossRefGoogle Scholar
  101. Kamaludeen SP, Megharaj M, Juhasz AL, Sethunathan N, Naidu R (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol 178:93–164PubMedGoogle Scholar
  102. Kapahi M, Sachdeva S (2017) Mycoremediation potential of Pleurotus species for heavy metals: a review. Biores Bioprocess 4:32. https://doi.org/10.1186/s40643-017-0162-8
  103. Karlinski L, Rudawska M, Kieliszewska-Rokicka B, Leski T (2010) Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20:315–324PubMedCrossRefGoogle Scholar
  104. Kasai N, Ikushiro SI, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono-and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 86:773–780PubMedCrossRefGoogle Scholar
  105. Kintlová M, Blavet N, Cegan R, Hobza R (2017) Transcriptome of barley under three different heavy metal stress reaction. Genomics Data 13:15–17PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93CrossRefGoogle Scholar
  107. Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  108. Li T, Tao Q, Liang C, Shohag MJI, Yang X, Sparks DL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255PubMedCrossRefGoogle Scholar
  109. Li T, Tao Q, Shohag MJI, Yang X, Sparks DL, Liang Y (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389:387–399CrossRefGoogle Scholar
  110. Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 1:530–540CrossRefGoogle Scholar
  111. Lloyd JR (2002) Bioremediation of metals; the application of micro-organisms that make and break minerals. Interactions 29:67–69Google Scholar
  112. Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manag Assoc 51:809–847PubMedCrossRefGoogle Scholar
  113. Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552PubMedCrossRefGoogle Scholar
  114. Luo JM, Xiao XI (2010) Biosorption of cadmium (II) from aqueous solutions by industrial fungus Rhizopus cohnii. Transactions of nonferrous metals society of China 20:1104–1111CrossRefGoogle Scholar
  115. Lynch JM, Moffat AJ (2005) Bioremediation–prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221CrossRefGoogle Scholar
  116. Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99CrossRefGoogle Scholar
  117. Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350PubMedPubMedCentralCrossRefGoogle Scholar
  118. Marchal M, Briandet R, Koechler S, Kammerer B, Bertin PN (2010) Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology 156:2336–2342PubMedCrossRefGoogle Scholar
  119. Mason RP (2012) The methylation of metals and metalloids in aquatic systems. In: Methylation from DNA, RNA and histones to diseases and treatment. InTech.  https://doi.org/10.5772/51774
  120. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8.  http://doi.org/10.3389/fpls.2017.00172
  121. Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JLR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411–e03416PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226PubMedCrossRefGoogle Scholar
  124. Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37PubMedCrossRefGoogle Scholar
  125. Mohsenzadeh F, Shahrokhi F (2014) Biological removing of Cadmium from contaminated media by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102PubMedPubMedCentralCrossRefGoogle Scholar
  126. Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325PubMedCrossRefGoogle Scholar
  128. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448PubMedCrossRefGoogle Scholar
  129. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  130. Nedkovska M, Atanassov AI (1998) Metallothionein genes and expression for heavy metal resistance. Biotechnol Biotechnol Equip 12:11–16CrossRefGoogle Scholar
  131. Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368CrossRefGoogle Scholar
  132. Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148PubMedPubMedCentralCrossRefGoogle Scholar
  133. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis 9:1–32CrossRefGoogle Scholar
  134. Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145PubMedCrossRefGoogle Scholar
  135. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity.J Bot. 2012:1–8. http://doi.org/10.1155/2012/375843CrossRefGoogle Scholar
  136. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944PubMedCrossRefGoogle Scholar
  137. Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86PubMedCrossRefGoogle Scholar
  138. Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:2Google Scholar
  139. Pal TK, Bhattacharyya S, Basumajumdar A (2010) Improvement of bioaccumulation of cadmium by Aspergillus niger as a function of complex nutrient source. J Indian Chem Soc 87:391–394Google Scholar
  140. Peña-Montenegro TD, Dussán J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b. Stand Genomic Sci 9:42PubMedPubMedCentralCrossRefGoogle Scholar
  141. Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89PubMedCrossRefGoogle Scholar
  142. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548PubMedCrossRefGoogle Scholar
  143. Pishchik VN, Vorob’ev NI, Provorov NA, Khomyakov YV (2016) Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology 85:257–271CrossRefGoogle Scholar
  144. Prabhavathi V, Rajam MV (2007) Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts. Plant Sci 173:50–54CrossRefGoogle Scholar
  145. Prasad R, Sharma M, Kamal S, Rai MK, Rawat AKS, Pushpangdan P, Varma A (2008a) Interaction of Piriformospora indica with medicinal plants. In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 655–678CrossRefGoogle Scholar
  146. Prasad R, Bagde US, Pushpangdan P, Varma A (2008b) Bacopa monniera L.: pharmacological aspects and case study involving Piriformospora indica. Int J Integr Biol 3:100–110Google Scholar
  147. Prasad MN, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23PubMedCrossRefGoogle Scholar
  148. Prasad R, Kamal S, Sharma PK, Oelmueller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024PubMedCrossRefGoogle Scholar
  149. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  150. Rahman MS, Sathasivam KV (2015) Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. BioMed Res Int.  https://doi.org/10.1155/2015/126298
  151. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944PubMedGoogle Scholar
  152. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefGoogle Scholar
  153. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413PubMedCrossRefGoogle Scholar
  154. Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae inoculated pea roots. New Phytol 157:555–567CrossRefGoogle Scholar
  155. Rieble S, Joshi DK, Gold MH (1994) Purification and characterization of a 1, 2, 4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J Bacteriol 176:4838–4844PubMedPubMedCentralCrossRefGoogle Scholar
  156. Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51PubMedCrossRefGoogle Scholar
  157. Rout GR, Samantaray S, Das P (2000) In vitro rooting of Psoraleacorylifolia Linn: peroxidase activity as a marker. Plant Growth Regul 30:215–219CrossRefGoogle Scholar
  158. Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2:164–177CrossRefGoogle Scholar
  159. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066PubMedPubMedCentralCrossRefGoogle Scholar
  160. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83PubMedCrossRefGoogle Scholar
  161. Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650CrossRefGoogle Scholar
  162. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457PubMedCrossRefGoogle Scholar
  163. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedGoogle Scholar
  164. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58PubMedCrossRefGoogle Scholar
  165. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753PubMedCrossRefGoogle Scholar
  166. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  167. Shoaib A, Naureen A, Tanveer F, Aslam N (2012) Removal of Ni (II) ions from substrate using filamentous fungi. Int J Agric Biol 14:151–153Google Scholar
  168. Shtiza A, Swennen R, Tashko A (2008) Chromium speciation and existing natural attenuation conditions in lagoonal and pond sediments in the former chemical plant of Porto-Romano (Albania). Environ Geol 53:1107–1128CrossRefGoogle Scholar
  169. Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S, Chaikaew P (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–393CrossRefGoogle Scholar
  170. Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12:353–366CrossRefGoogle Scholar
  171. Singh D, Sharma N (2017) Effect of chromium on seed germination and seedling growth of green garm (Phaseols Aureus L) and chickpea (Cicer Arietinum L). Int J App Nat Sci 6:37–46Google Scholar
  172. Singh AL, Jat RS, Chaudhari V, Bariya H, Sharma SJ (2010) Toxicities and tolerance of mineral elements boron, cobalt, molybdenum and nickel in crop plants. Plant nutrition and abiotic stress tolerance II. Plant Stress 4:31–56Google Scholar
  173. Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi, RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290PubMedCrossRefGoogle Scholar
  174. Siokwu S, Anyanwn CU (2012) Tolerance for heavy metals by filamentous fungi isolated from a sewage oxidation pond. Afr J Microbiol Res 6:2038–2043CrossRefGoogle Scholar
  175. Sobolev D, Begonia M (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456PubMedPubMedCentralCrossRefGoogle Scholar
  176. Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419PubMedPubMedCentralCrossRefGoogle Scholar
  177. Sresty TVS, Rao KM (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeon pea. Environ Exp Bot 41:3–13CrossRefGoogle Scholar
  178. Srivastava S, Sharma YK (2013) Impact of arsenic toxicity on black gram and its amelioration using phosphate. ISRN Toxicol.  https://doi.org/10.1155/2013/340925
  179. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442PubMedCrossRefGoogle Scholar
  180. Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587.  https://doi.org/10.3389/fpls.2016.00587 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters: a review. Biorem J 12:70–87CrossRefGoogle Scholar
  182. Su SM, Zeng XB, Li LF, Duan R, Bai LY, Li AG, Wang J, Jiang S (2012) Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. J Hazard Mater 243:364–367PubMedCrossRefGoogle Scholar
  183. Tam PC (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187CrossRefGoogle Scholar
  184. Thippeswamy B, Shivakumar CK, Krishnappa M (2012) Bioaccumulation potential of Aspergillus niger and Aspergillus flavus for removal of heavy metals from paper mill effluent. J Environ Biol 33:1063PubMedGoogle Scholar
  185. Tian S, Xie R, Wang H, Hu Y, Hou D, Liao X, Brown PH, Yang H, Lin X, Labavitch JM, Lu L (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68:2387–2398PubMedCrossRefPubMedCentralGoogle Scholar
  186. Ting ASY, Choong CC (2009) Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu (II)) from aqueous solutions. World J Microbiol Biotechnol 25:1431–1437CrossRefGoogle Scholar
  187. Tripathi P, Singh PC, Mishra A, Tripathi RD, Nautiyal CS (2015) Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.) Ecotoxicol Environ Saf 117:72–80PubMedCrossRefGoogle Scholar
  188. Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A, Tripathi RD (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145PubMedCrossRefGoogle Scholar
  189. Turkekul I, Elmastas M, Tüzen M (2004) Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem 84:389–392CrossRefGoogle Scholar
  190. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293PubMedCrossRefGoogle Scholar
  191. Urík M, Čerňanský S, Ševc J, Šimonovičová A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut 186:337–342CrossRefGoogle Scholar
  192. Van Nguyen N, Kim YJ, Oh KT, Jung WJ, Park RD (2008) Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9. Curr Microbiol 56:28–32PubMedCrossRefGoogle Scholar
  193. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  194. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655CrossRefGoogle Scholar
  195. Verma S, Verma PK, Meher AK, Dwivedi S, Bansiwal AK, Pande V, Srivastava PK, Verma PC, Tripathi RD, Chakrabarty D (2016) A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics 8:344–353PubMedCrossRefGoogle Scholar
  196. Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wierzba S (2017) Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica. Pol J Chem 19:1–10CrossRefGoogle Scholar
  199. World Health Organization Fact Sheet (2017) Lead poisoning and health. http://www.who.int/mediacentre/factsheets/fs379/en/
  200. Wuerfel O, Thomas F, Schulte MS, Hensel R, Diaz-Bone RA (2012) Mechanism of multi-metal (loid) methylation and hydride generation by methylcobalamin and cob (I) alamin: a side reaction of methanogenesis. Appl Organomet Chem 26:94–101CrossRefGoogle Scholar
  201. Xu X, Yao W, Xiao D, Heinz TF (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350CrossRefGoogle Scholar
  202. Xu P, Leng Y, Zeng G, Huang D, Lai C, Zhao M, Wei Z, Li N, Huang C, Zhang C, Li F (2015) Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99:435–443PubMedCrossRefGoogle Scholar
  203. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  204. Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496PubMedCrossRefGoogle Scholar
  205. Yu MH, Tsunoda H, Tsunoda M (2011) Environmental toxicology: biological and health effects of pollutants. CRC Press, Boca RatonGoogle Scholar
  206. Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783PubMedCrossRefGoogle Scholar
  207. Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol 86:1–17PubMedCrossRefGoogle Scholar
  208. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561PubMedCrossRefGoogle Scholar
  209. Zeng X, Su S, Jiang X, Li L, Bai L, Zhang Y (2010) Capability of pentavalent arsenic bioaccumulation and biovolatilization of three fungal strains under laboratory conditions. Clean–Soil Air Water 38:238–241CrossRefGoogle Scholar
  210. Zeng X, Su S, Feng Q, Wang X, Zhang Y, Zhang L, Jiang S, Li A, Li L, Wang Y, Wu C (2015) Arsenic speciation transformation and arsenite influx and efflux across the cell membrane of fungi investigated using HPLC–HG–AFS and in-situ XANES. Chemosphere 119:1163–1168PubMedCrossRefGoogle Scholar
  211. Zhang Z, Yu Q, Du H, Ai W, Yao X, Mendoza-Cózatl DG, Qiu B (2016) Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family). FEBS Lett 590:1757–1764PubMedCrossRefGoogle Scholar
  212. Zhang X, Yang H, Cui Z (2017) Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. Toxicol Res 6:442–447CrossRefGoogle Scholar
  213. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582PubMedCrossRefGoogle Scholar
  214. Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199PubMedCrossRefGoogle Scholar
  215. Zolgharnein J, Adhami Z, Shahmoradi A, Mousavi SN, Sangi MR (2010) Multivariate optimization of Cd (II) biosorption onto Ulmus tree leaves from aqueous waste. Toxicol Environ Chem 92:1461–1470CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Poonam C. Singh
    • 1
  • Sonal Srivastava
    • 1
  • Deepali Shukla
    • 1
  • Vidisha Bist
    • 1
  • Pratibha Tripathi
    • 1
  • Vandana Anand
    • 1
  • Salil Kumar Arkvanshi
    • 1
  • Jasvinder Kaur
    • 1
  • Suchi Srivastava
    • 1
  1. 1.Division of Plant Microbe InteractionsCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations