Application of Myconanotechnology in the Sustainable Management of Crop Production System

  • Deepanwita Deka
  • Jintu Rabha
  • Dhruva Kumar Jha
Part of the Fungal Biology book series (FUNGBIO)


Nanoscience deals with the manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at a larger scale. Nanotechnology has since long been successfully used in fields like medicine, environmental science, agriculture, etc. Though nanotechnology has been applied in production, processing, storing, packaging and transport of agricultural products, its application in crop protection and production is a less-researched area. Nanoparticles are synthesized using chemical and physical methods; this, however, involves the use of toxic chemicals besides high-energy requirement for their production. Scientists, therefore, are trying to synthesize metallic nanoparticles using living organisms such as bacteria, fungi and plants to avoid toxicity. The production of nanoparticles through biological methods is cheap, reliable, safe, easy to handle and nontoxic. A diverse range of fungi have been used for the production of nanoparticles using different metals. In recent years, nanofungicides, nanopesticides and nanoherbicides are extensively being used in agriculture. Nanoparticle-mediated gene transfer would be useful for generating resistance in crops against pathogens and pests. This chapter gives an overview of production of myconanoparticles using different fungal species and its potential applications in agriculture for enhancing crop production by improving growth and protection against different diseases. It will also include amelioration of toxicity of chemical pesticides, insecticides, herbicides and chemical nanoparticles on plant ecosystem. The knowledge of environment-friendly myconanotechnology can play an important role in the field of agriculture for sufficient production of food for the overgrowing population of the world.


Myconanotechnology Environment friendly Nanofungicides Nanopesticides Nanoherbicides Plant protection Phytopathogen 


  1. Abd-Elsalam KA (2012) Nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:107CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B 28:313–318CrossRefGoogle Scholar
  3. Ahmad Z, Ahmad Z, Pandey R, Sharma S, Khuller GK (2005) Alginate nanoparticles as antituberculosis drug carriers, formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176Google Scholar
  4. Ahmed I, Batal E, Nora M, Kenawy E, Yassin AS, Magdy A et al (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39CrossRefGoogle Scholar
  5. Alghuthaymi MA, Almoammar H, Rai M, Galiev ES, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allard T, Menguy N, Salomon J, Calligaro T, Weber T, Calas G et al (2004) Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochim Cosmochim Acta 68(14):3079–3094CrossRefGoogle Scholar
  7. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. CrossRefPubMedGoogle Scholar
  8. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Azmath P, Baker S, Rakshith D, Satish S (2016) Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24:140–146PubMedCrossRefGoogle Scholar
  10. Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819PubMedCrossRefGoogle Scholar
  11. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92PubMedCrossRefGoogle Scholar
  12. Balinova A, Mladenova R, Shtereva D (2007) Solid-phase extraction on sorbents of different retention mechanisms followed by determination by gas chromatography-e-mass spectrometric and gas chromatography-electron capture detection of pesticide residues in crops. J Chromatogr A 1150:136–144PubMedCrossRefGoogle Scholar
  13. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  14. Bao H, Hao N, Yang Y, Zhao D (2003) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:491–498Google Scholar
  15. Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N et al (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380CrossRefGoogle Scholar
  16. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  17. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B: Biointerfaces 47:160–164PubMedCrossRefGoogle Scholar
  18. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141PubMedCrossRefGoogle Scholar
  19. Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun S (2010) Bioreduction of trivalent aurum to nanocrystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545PubMedCrossRefGoogle Scholar
  20. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefGoogle Scholar
  21. Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:12CrossRefGoogle Scholar
  22. Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2(1):21–36Google Scholar
  23. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  24. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155CrossRefGoogle Scholar
  25. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62PubMedCrossRefGoogle Scholar
  26. Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396PubMedCrossRefGoogle Scholar
  27. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60(3):299–327PubMedCrossRefGoogle Scholar
  28. Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer Nanoribbon. Proceedings of the 218th ECS meeting, 10–15 October 2010, Las Vegas, Nevada. pp 2278–2278Google Scholar
  29. Chaudhari SP, Damahe A, Kumbhar P (2016) Silver nanoparticles – a review with focus on green synthesis. Int J Pharma Res Rev 5(3):14–28Google Scholar
  30. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  31. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108PubMedCrossRefGoogle Scholar
  32. Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A (2010) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc 127(6):154–157CrossRefGoogle Scholar
  33. Das S, Ng WK, Tan RB (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47(1):139–151PubMedCrossRefGoogle Scholar
  34. Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14:3455–3463PubMedCrossRefGoogle Scholar
  35. Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 51:543–547PubMedGoogle Scholar
  36. Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Sci Rep 1(12):1–5Google Scholar
  37. Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50PubMedCrossRefGoogle Scholar
  38. Du X, He J (2011) Hierarchically mesoporous silica nanoparticles: extraction, amino-functionalization, and their multipurpose potentials. Langmuir 27(6):2972–2979PubMedCrossRefGoogle Scholar
  39. Duran N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues FA et al (2010) Ecosystem protection by effluent bioremediation, silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12:285–292CrossRefGoogle Scholar
  40. Dyk JSV, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307PubMedCrossRefGoogle Scholar
  41. Elchiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10CrossRefGoogle Scholar
  42. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748CrossRefGoogle Scholar
  43. ETC group (2004) ETC Group releases Down on the Farm: The impact of nanoscale technologies on food and agriculture, ETC Group News Release, Scholar
  44. Falletta E, Bonini M, Fratini E, Nostro LA, Pesavento G, Becheri A (2008) Clusters of poly (acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C 112:11758–11766CrossRefGoogle Scholar
  45. Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surf B: Biointerfaces 74:304–308PubMedCrossRefGoogle Scholar
  46. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  47. Filipenko EA, Filipenko ML, Deineko EV, Shumnyi VK (2007) Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytol Genet 41:199–203CrossRefGoogle Scholar
  48. Gade A, Gaikwad S, Duran N, Rai M (2013) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493PubMedCrossRefGoogle Scholar
  49. Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK et al (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982Google Scholar
  50. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386PubMedCrossRefGoogle Scholar
  51. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1007PubMedCrossRefGoogle Scholar
  52. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  53. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedCrossRefGoogle Scholar
  54. Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027PubMedCrossRefGoogle Scholar
  55. Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N (2015) Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharma Sci 10:138–145CrossRefGoogle Scholar
  56. Gruere GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198CrossRefGoogle Scholar
  57. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-imidacloprid pesticide. Biochem Physiol 92:83–91Google Scholar
  58. Haq MU, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol Int J 5(1):1–8Google Scholar
  59. Honary S, Barabadi H, Fathabad EG, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12(1):7–11Google Scholar
  60. Husseiny SM, Salah TA, Anter HA, Suef B (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni Seuf Univ J Appl Sci 4:225–231Google Scholar
  61. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  62. Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani, a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  63. Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K et al (2013) Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz, Rio de Janeiro, pp 1–9Google Scholar
  64. Jain N, Bhargava A, Majumdar S, Tarafdarb JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641PubMedCrossRefGoogle Scholar
  65. Jain N, Bhargava A, Tarafdar JC, Singh SK, Panwar J (2013) A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbial Biotechnol 97(2):859–869CrossRefGoogle Scholar
  66. Jha Z, Behar N, Sharma SN, Chandel G, Sharma D, Pandey M (2011) Nanotechnology: prospects of agricultural advancement. Nano Vision 1:88–100Google Scholar
  67. Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112CrossRefGoogle Scholar
  68. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  69. Joo H, Cheng IE (2006) Nanotechnology for environmental remediation. Springer, New York, USAGoogle Scholar
  70. Joshi P, Bonde S, Gaikwad S, Gade A, Abd-Elsalam KA, Rai M (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J Bionanosci 7:1–5CrossRefGoogle Scholar
  71. Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211CrossRefGoogle Scholar
  72. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kasprowicz MJ, Kozio M, Gorczyca A (2010) The effect of silver nanoparticles on hytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253PubMedCrossRefGoogle Scholar
  74. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 7:133–137CrossRefGoogle Scholar
  75. Khan RH, Yasmeen K, Kishor K (2014) Biological synthesis and characterization of silver nanoparticles from Fusarium oxysporum. Der Pharm Sin 5(5):112–117Google Scholar
  76. Khaydarov RR, Khaydarov RA, Evgrafova S, Estrin Y (2011) Using silver nanoparticles as an antimicrobial agent. NATO Sci Peace Security Ser A169–177Google Scholar
  77. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefGoogle Scholar
  78. Khosravi A, Shojaosadati SA (2009) Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol 6:973–983CrossRefGoogle Scholar
  79. Khot LR, Sankaran S, Maja JM, Ehsani R (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  80. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484PubMedGoogle Scholar
  81. Korbekandia H, Asharia Z, Iravanib S, Abbasic S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12(3):289–298Google Scholar
  82. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  83. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99CrossRefGoogle Scholar
  84. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  85. Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Biol 2:124CrossRefGoogle Scholar
  86. Kumar RR, Priyadharsani PK, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanopart Res 14:860–868CrossRefGoogle Scholar
  87. Lee JY, Choi W, Han JH, Strano MS (2010) Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320–1324PubMedCrossRefGoogle Scholar
  88. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246PubMedCrossRefGoogle Scholar
  89. Li G, He D, Qian Y, Guan B, Gao S, Cui Y et al (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476PubMedCrossRefGoogle Scholar
  90. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 20:1–8Google Scholar
  91. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7PubMedCrossRefGoogle Scholar
  92. Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and effecient release of bifenthrin. Pest Manag Sci 64:808–812PubMedCrossRefGoogle Scholar
  93. Longoria EC, Nestor ARV, Borja MA (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48CrossRefGoogle Scholar
  94. Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. J Am Chem Soc 132(35):12170–12171PubMedCrossRefGoogle Scholar
  95. Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. In: Merlan E, Raftery D (eds) Tracking rural change: community, policy and technology in Austalia. ANU Press, Abilene, pp 151–171Google Scholar
  96. Ma AM, Martınez ESM, Arroyo LO, Portillo GC, Espındola ES (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. J Nanopart Res 13:2525–2532Google Scholar
  97. Maliszewska I, Juraszek A, Bielska K (2013) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004CrossRefGoogle Scholar
  98. Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T et al (2008) Formation of metallic copper nanoparticles at the soil-root Interface. Environ Sci Technol 42:1766–1772PubMedCrossRefGoogle Scholar
  99. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492PubMedCrossRefGoogle Scholar
  100. Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49Google Scholar
  101. McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F et al (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556CrossRefGoogle Scholar
  102. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380CrossRefGoogle Scholar
  103. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Minerals Met Mater Soc 62:45–48CrossRefGoogle Scholar
  104. Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11(1):243–248PubMedCrossRefGoogle Scholar
  105. Mohammadian A, Shojaosadati, Rezaee MH (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14:323–326Google Scholar
  106. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles, technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  107. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  108. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40(19):3585–3588PubMedCrossRefGoogle Scholar
  109. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:075–103Google Scholar
  110. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Naqvi AA (2010) A production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776PubMedCrossRefGoogle Scholar
  111. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi KD (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–156CrossRefGoogle Scholar
  112. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068PubMedCrossRefGoogle Scholar
  113. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  114. Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iran J Biotechnol 8:56–61Google Scholar
  115. Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanopart Res 13:3129–3137CrossRefGoogle Scholar
  116. Ninganagouda S, Rathod V, Singh D (2014) Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. Int Lett Nat Sci 10:49–57CrossRefGoogle Scholar
  117. Nithya R, Ragunathan R (2004) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Biostruct 4:623–629Google Scholar
  118. Nohani E, Alimakan E (2015) The effect of nanoparticles on geotechnical properties of clay. Int J Life Sci 9(4):25–27Google Scholar
  119. Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. Lucrari Stiintifice Ser Agron 52:212–217Google Scholar
  120. Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and AgSiO2 nanoparticles by irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surf A Physicochem Eng Asp 275:228–233CrossRefGoogle Scholar
  121. Owaid MN, Raman J, Lakshmanan H, Al-Saeedi SSS, Sabaratnam V, Abed IA (2015) Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater Lett 153:186–190CrossRefGoogle Scholar
  122. Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374CrossRefGoogle Scholar
  123. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  124. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases plant. Pathol J 22(3):295–302Google Scholar
  125. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy, 73(2):374–381CrossRefGoogle Scholar
  126. Pimprikar PS. Pimprikar PS1, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B: Biointerfaces, 74(1), 309 CrossRefPubMedGoogle Scholar
  127. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  128. Prasad R (2017) Mycoremediation and environmental sustainability. Springer Nature, Singapore Pte Ltd, SingaporeCrossRefGoogle Scholar
  129. Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752CrossRefGoogle Scholar
  130. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  131. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. CrossRefGoogle Scholar
  132. Prasad R, Bhattacharyya A, Nguyen Q (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. CrossRefPubMedPubMedCentralGoogle Scholar
  133. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefGoogle Scholar
  134. Rajput S, Werezuk R, Lange RM, McDermott MT (2016) Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir 32:8688–8697PubMedCrossRefGoogle Scholar
  135. Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 93:310Google Scholar
  136. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefGoogle Scholar
  137. Ruffolo SA, Russa MFL, Malagodi M, Oliviero RC, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834CrossRefGoogle Scholar
  138. Sadrieh N (2005) FDA considerations for regulation of nanomaterial containing products. PhD thesis. Office of Pharmaceutical Science, CDER, FDAGoogle Scholar
  139. Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci 26:219–224Google Scholar
  140. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683PubMedCrossRefGoogle Scholar
  141. Sanghi R, Sanghi R, Verma PA (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891CrossRefGoogle Scholar
  142. Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B Biointerfaces 77:214–218PubMedCrossRefGoogle Scholar
  143. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Dordrecht, Netherlands, pp 1–32Google Scholar
  144. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  145. Sastry RK, Rashmi HB, Rao NH, Ilyas SM (2010) Integrating nanotechnology (NT) into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Chang 77:639–648CrossRefGoogle Scholar
  146. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:012–035Google Scholar
  147. Scott N, Chen H (2003) Nanoscale science and engineering for agriculture and food systems. National Planning Workshop. Washington, DC 18–19Google Scholar
  148. Scott N, Chen H (2012) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 8:340–343. CrossRefGoogle Scholar
  149. Sen K, Sinha P, Lahiri S (2011) Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochem Eng J 55:1–6CrossRefGoogle Scholar
  150. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1):143–148CrossRefGoogle Scholar
  151. Shahi SK, Shahi SK, Patra M (2003) Biotechnological aspect for the synthesis of bioactive nanoparticle and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509Google Scholar
  152. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  153. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  154. Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92Google Scholar
  155. Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Chrysogenum. Int J Nanosci Nanotechnol 7(2):102–105Google Scholar
  156. Shelar GB, Chavan AM (2014) Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int J Biomed Adv Res 05(07):348–351Google Scholar
  157. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519(3):1156–1159CrossRefGoogle Scholar
  158. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl.
  159. Singha A, Singha NB, Hussaina I, Singha H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Intern J Pharma Sci Invent 4(8):25–40Google Scholar
  160. Stan HJ, Linkerhagner M (1996) Pesticide residue analysis in foodstuffs applying capillary gas chromatography with atomic emission detection state-of-the-art use of modified multimethod S19 of the Deutsche for schungsgemeinschaft and automated large-volume injection with programmed-temperature vaporization and solvent venting. J Chromatogr A 750:369–390PubMedCrossRefGoogle Scholar
  161. Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharm Tech Res 6(5):1718–1723Google Scholar
  162. Sujatha S, Tamilselvi S, Subha K, Panneerselvam A (2013) Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int J Curr Microbiol App Sci 2(12):605–614Google Scholar
  163. Suman, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  164. Tarafdar M, Gupta A, Turel O (2013) The dark side of information technology use. Inf Syst 23:269–275CrossRefGoogle Scholar
  165. Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 1–5. Article ID 515091. Google Scholar
  166. Torney F, Trewyn BG, Lin SY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  167. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences J 1(1):65–79CrossRefGoogle Scholar
  168. Vala AK (2014) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34(1):194–197CrossRefGoogle Scholar
  169. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40PubMedCrossRefGoogle Scholar
  170. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59PubMedCrossRefGoogle Scholar
  171. Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2010) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B 83:291–298CrossRefGoogle Scholar
  172. Wang Z, Wei F, Liu SY, Xu Q, Huang AJY, Dong XY et al (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80(3):1277–1281PubMedCrossRefGoogle Scholar
  173. Waychunas A, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7(4):409–433CrossRefGoogle Scholar
  174. Wilson A, Nguyen H, Adrian ST, Milev GS, Kannangara K, Volk GQH, Lu M (2008) Nanomaterials in soils. Geoderma 146(2):291–302CrossRefGoogle Scholar
  175. Woo KS, Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764Google Scholar
  176. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  177. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852CrossRefGoogle Scholar
  178. Yehia RS, Sheikh HA (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803PubMedCrossRefGoogle Scholar
  179. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147CrossRefGoogle Scholar
  180. Yu B, Zeng J, Gong L, Zhang M, Zhang L, Xi C (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674PubMedCrossRefGoogle Scholar
  181. Zaragoza MLZ, Silva EM, Cortez EG, Tostado EC, Guerrero DQ (2011) Optimization of nano capsules preparation, by the emulsification-diffusion method for food application. LWT Food Sci Technol 44:1362–1368CrossRefGoogle Scholar
  182. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  183. Zeng J, Zheng Y, Rycenga M, Tao J, Li ZY, Zhang Q, Zhu Y, Xia Y (2010) Controlling the shapes of silver nanocrystals with different capping agents. J Am. Chem Soc 132(25):8552–8553PubMedCrossRefGoogle Scholar
  184. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 105:83–91CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deepanwita Deka
    • 1
  • Jintu Rabha
    • 1
  • Dhruva Kumar Jha
    • 1
  1. 1.Microbial Ecology Laboratory, Department of BotanyGauhati UniversityGuwahatiIndia

Personalised recommendations