Advertisement

Using Scat Detection Dogs to Monitor Environmental Contaminants in Sentinel Species and Freshwater Ecosystems

  • Ngaio L. Richards
  • Gregg Tomy
  • Chad A. Kinney
  • Frankline C. Nwanguma
  • Braden Godwin
  • Deborah A. (Smith) Woollett
Chapter

Abstract

Many contaminants are introduced into freshwater ecosystems worldwide. Preliminary investigations that focus on apex predator/sentinel species like otter and mink can inform more targeted follow-up studies. The feces of these elusive animals can be collected non-invasively for analysis of contaminants and complimentary genetics. Conservation detection dogs were used to locate otter and mink feces along five rivers in Montana for analysis of heavy metals, anthropogenic organic contaminants (AOCs) including pharmaceuticals and personal care products (PPCPs), polybrominated (PBDE) flame retardants, and genetics. With highest find rates of 6 and 20 fecal matter finds per km for otter and mink, respectively, and detection of all three focal contaminants in some fecal samples, this proved an excellent application of dogs. Recommendations for follow-up investigations are also provided.

Keywords

Dog Detection Monitoring Water quality Otter Mink Sentinel species Indicator species Contaminant Heavy metal Flame retardant PBDE Anthropogenic organic contaminant (AOC) Pharmaceutical Freshwater River quality DNA Genetics 

Notes

Acknowledgements

Special thanks to Megan Parker, Director of Research for Working Dogs for Conservation, and to Pepin, for their contribution to the field survey component of this study. Much appreciation is extended to Kristy Pilgrim at the National Genomics Center for Wildlife and Fish Conservation in Missoula, Montana, for diligently performing the genetics analyses, enthusiastically sharing her knowledge and providing invaluable feedback to earlier versions of this chapter. Likewise, Heiko Langner, formerly in the Department of Geosciences at the University of Montana, is thanked for regularly lending his advice and expertise to the heavy metals component of this work. The creativity, hard work, and good humor of Matt Young, also at the Department of Geosciences (water sample processing), and of Thor Halldorson in the Department of Chemistry at the University of Manitoba (for his part in the PBDE sample analyses), is gratefully acknowledged. Thanks to Alan Ramsay, Marirose Kuhlman, and Ray Vinkey for giving their time to participate in the surveyor performance comparison trials.

The work described in this chapter was made possible through the generous support of the Kenney Brothers Foundation (Wick Fund), the Cinnabar Foundation (Montana’s Conservation Fund), the Arthur L. ‘Bud’ and Elaine V. Johnson Foundation, and the Animal Welfare Institute, via a Christine Stevens Wildlife Award. N. Richards and D. (Smith) Woollett extend their sincere thanks to these funders for their generosity and backing.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Polybrominated diphenyl ethers factsheet. US Department of Health and Human Services. Available at: https://www.atsdr.cdc.gov/tfacts68-pbde.pdf. Accessed 8 Jan 2018.
  2. Anderson, H. M., McCafferty, D. J., Saccheri, I. J., & McCluskie, A. E. (2006). Non-invasive genetic sampling of the Eurasian otter (Lutra lutra) using hairs. Hystrix Italian Journal of Mammalogy, 17, 65–77.Google Scholar
  3. Basu, N., Scheuhammer, A. M., Bursian, S. J., Elliott, J., Rouvinen-Watt, K., & Chan, H. M. (2007). Mink as a sentinel species in environmental health. Environmental Research, 103, 130–144.CrossRefGoogle Scholar
  4. Beckmann, J. P., Waits, L. P., Hurt, A., Whitelaw, A., & Bergen, S. (2015). Using detection dogs and RSPF models to assess habitat suitability for bears in greater Yellowstone. Western North American Naturalist, 75, 396–405.CrossRefGoogle Scholar
  5. Belansky, P. (Sprava Narodnych Parkov, Varin (Slovak Republic)) Juraskova, A., Kantikova, M. (Statny Veterinarny Ustav, Dolny Kubin (Slovak Republic)) Cadmium, mercury and lead contents in the otter excrements in the Studeny potok and Orava streams [Slovak Republic]. (1998). Slovenský veterinársky časopis.Google Scholar
  6. Ben-David, M., Bowyer, R. T., & Faro, J. B. (1996). Niche separation by mink and river otters: Coexistence in a marine environment. Oikos, 75, 41–48.Google Scholar
  7. Ben-David, M., Blundell, G. M., Kern, J. W., Maier, J. A. K., Brown, E. D., & Jewett, S. C. (2005). Communication in river otters: Creation of variable resource sheds for terrestrial communities. Ecology, 86, 1331–1345.CrossRefGoogle Scholar
  8. Bernot, M. J., Smith, L., & Frey, J. (2013). Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs). Science of the Total Environment, 445–446, 219–230.CrossRefGoogle Scholar
  9. Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? Environmental Health Perspectives, 112, 9–27.CrossRefGoogle Scholar
  10. Bowman, J., & Schulte-Hostedde, A. I. (2009). The mink is not a reliable sentinel species. Environmental Research, 109, 937–939.CrossRefGoogle Scholar
  11. Burkhardt, M. R., ReVello, R. C., Smith, S. G., & Zaugg, S. D. (2005). Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for industrial and anthropogenic waste-indicator compounds in sediment. Analytica Chimica Acta, 534, 89–100.  https://doi.org/10.1016/j.aca.2004.11.023.
  12. Center for Environmental Research and Children’s Health – CERCH. (2012). Flame retardants: Polybrominated diphenyl ethers – PBDEs. CERCH Factsheet.Google Scholar
  13. Chanin, P. (2003). Monitoring the Otter Lutra. Conserving Natura 2000 Rivers Monitoring Series No. 10, English Nature, Peterborough.Google Scholar
  14. Dallas, J. F., & Piertney, S. B. (1998). Microsatellite primers for the Eurasian otter. Molecular Ecology, 7, 1247–1263.CrossRefGoogle Scholar
  15. Dallas, J. F., Coxon, K. E., Sykes, T., Chanin, P. R. F., Marshall, F., Carss, D. N., Bacon, P. J., Piertney, S. B., & Racey, P. A. (2003). Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra. Molecular Ecology, 12, 275–282.CrossRefGoogle Scholar
  16. Davis, C., & Strobeck, C. (1998). Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Molecular Ecology, 7, 1776–1778.CrossRefGoogle Scholar
  17. Davis, E. F., Klosterhaus, S. L., & Stapleton, H. M. (2012). Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. Environment International, 40, 1–7.  https://doi.org/10.1016/j.envint.2011.11.008. Epub 2011 Dec 27.CrossRefGoogle Scholar
  18. Delibes, M., Cabezas, S., Jiménez, B., & González, M. J. (2009). Animal decisions and conservation: The recolonization of a severely polluted river by the Eurasian otter. Animal Conservation, 12, 400–407.CrossRefGoogle Scholar
  19. DePue, J. E., & Ben-David, M. (2007). Hair sampling techniques for river otters. Journal of Wildlife Management, 71, 671–674.CrossRefGoogle Scholar
  20. Eggert, L. S., Eggert, J. A., & Woodruff, D. S. (2003). Estimating population sizes for elusive animals: The forest elephants of Kakum National Park, Ghana. Molecular Ecology, 12, 1389–1402.CrossRefGoogle Scholar
  21. Farrell, L. E., Roman, J., & Sunquist, M. E. (2000). Dietary separation of sympatric carnivores identified by molecular analysis of scats. Molecular Ecology, 9, 1583–1590.CrossRefGoogle Scholar
  22. Flaherty, C. (1996). Montana’s water: The good, the bad and the beautiful. Available at: www.montana.edu/cpa/news/wwwpb-archives/reso/water.html. Accessed 6 Apr 2017.
  23. Fleming, M. A., Ostrander, E. A., & Cook, J. A. (1999). Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Molecular Ecology, 8, 1352–1354.CrossRefGoogle Scholar
  24. Foresman, K. (2012). Mammals of Montana (2nd ed.). Missoula: Mountain Press Publishing Company.Google Scholar
  25. Fuller, A. K., Sutherland, C. S., Royle, J. A., & Hare, M. P. (2016). Estimating population density and connectivity of American mink using spatial capture-recapture. Ecological Applications, 26, 1125–1135.CrossRefGoogle Scholar
  26. Gandhi, N., Gewurtz, S. B., Drouillard, K. G., Kolic, T., MacPherson, K., Reiner, E. J., & Bhavsar, S. P. (2017). Polybrominated diphenyl ethers (PBDEs) in Great Lakes fish: Levels, patterns, trends and implications for human exposure. Science of the Total Environment, 15, 907–916.  https://doi.org/10.1016/j.scitotenv.2016.10.043. Epub 2016 Nov 16.CrossRefGoogle Scholar
  27. Garcia, P., Ayres, C., & Mateos, I. (2009). Seasonal changes in American mink (Neovison vison) signs related to Eurasian otter (Lutra lutra) presence. Mammalia, 73, 253–256.CrossRefGoogle Scholar
  28. Gautam, P., Carsella, J. S., & Kinney, C. A. (2014). Presence and transport of the antimicrobials triclocarban and triclosan in a wastewater-dominated stream and freshwater environment. Water Research, 48, 247–256.CrossRefGoogle Scholar
  29. Godwin, B. L., Albeke, S. E., Bergman, H. L., Walters, A., & Ben-David, M. (2015). Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming. Science of the Total Environment, 532, 780–790.  https://doi.org/10.1016/j.scitotenv.2015.06.058. Epub 2015 Jun 28.CrossRefGoogle Scholar
  30. Guertin, D. A., Ben-David, M., Harestad, A. M., & Elliott, J. E. (2012). Fecal genotyping reveals demographic variation in river otters inhabiting a contaminated environment. Journal of Wildlife Management, 76, 1540–1550.CrossRefGoogle Scholar
  31. Gupta, V., & Bakre, P. (2013). Heavy metals contamination in mammalian wildlife of Talchaper Blackbuck Sanctuary vs Dhavadoli Protected Area of western Rajasthan, India. International Journal of Scientific & Technology Research, 2, 86–91.Google Scholar
  32. Gutleb, A. C. (1994). Heavy metals, OCPs and PCBs in spraints of the otter from Slovenia. IUCN Otter Specialist Group Bulletin, 10, 31–34.Google Scholar
  33. Gutleb, A. C., Schenck, C., & Staib, E. (1997). Giant otter (Pteronura brasiliensis) at risk? Total mercury and methyl mercury levels in fish and otter scats, Peru. Ambio, 26, 511–514.Google Scholar
  34. Hajkova, P., Zemonova, B., Bryja, J., Hajek, B., Roche, K., Tkadlec, E., & Zima, J. (2006). Factors affecting success of PCR amplifications of microsatellite loci from otter faeces. Molecular Ecology Notes, 6, 559–562.CrossRefGoogle Scholar
  35. Halbrook, R. S., Jenkins, J. H., Bush, P. B., & Seabolt, N. D. (1994). Sublethal concentrations of mercury in river otters: Monitoring environmental contamination. Archives of Environmental Contamination & Toxicology, 27, 306–310.CrossRefGoogle Scholar
  36. Hale, R. C., La Guardia, M. J., Harvey, E., Chen, D., Mainor, T. M., Luellen, D. R., & Hundal, L. S. (2012). Polybrominated diphenyl ethers in U.S. sewage sludges and biosolids: Temporal and geographical trends and uptake by corn following land application. Environmental Science & Technology, 46, 2055–2063.  https://doi.org/10.1021/es203149g. Epub 2012 Feb.CrossRefGoogle Scholar
  37. Han, S. Y., Son, S. W., Ando, M., & Sasaki, H. (1998). Heavy metals and PCBs in Eurasian otters (Lutra lutra) in South Korea. Proceedings of the VIIth International Otter Colloquium, 103–109. Available at: http://www.otterspecialistgroup.org/Bulletin/Volume19A/Trebon-II.pdf. Accessed 8 Jan 2018.
  38. Harding, L. E., Harris, M. L., & Elliott, J. E. (1998). Heavy and trace metals in wild mink (Mustela vison) and river otter (Lontra canadensis) captured on rivers receiving metals discharges. Bulletin of Environmental Contamination and Toxicology, 61, 600–607.CrossRefGoogle Scholar
  39. Hedmark, E., Flagstad, Ó., Segerström, P., Persson, J., Landa, A., & Ellegren, H. (2004). DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conservation Genetics, 5, 405–410.CrossRefGoogle Scholar
  40. Henny, C.J., and Elliott, J.E. (2007). Chapter 18: Toxicology. In D.M. Bird, & K. L. Bildstein, Eds., Raptor Research and Management Techniques (pp. 329–350). Washington, DC: Raptor Research Foundation.Google Scholar
  41. James, C. A., Miller-Schulze, J. P., Ultican, S., Gipe, A. D., & Baker, J. E. (2016). Evaluating contaminants of emerging concern as tracers of wastewater from septic systems. Water Research, 101, 241–251.CrossRefGoogle Scholar
  42. Jansman, H., Chanin, P., & Dallas, J. F. (2001). Monitoring otter populations by DNA typing of spraints. IUCN Otter Specialist Group Bulletin, 18, 11–16.Google Scholar
  43. Josef, C. F., Adriano, L. R., De França, E. J., Arantes de Carvalho, G. G., & Ferreira, J. R. (2008). Determination of Hg and diet identification in otter (Lontra longicaudis) feces. Environmental Pollution, 152, 592–596.CrossRefGoogle Scholar
  44. Kinney, C., Furlong, E., Zaugg, S., Burkhardt, M., & Werner, S. (2006). Survey of organic wastewater contaminants in biosolids destined for land application. Environmental Science & Technology, 40, 7207–7215.CrossRefGoogle Scholar
  45. Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., & Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the Natural Academy of Science, USA, 86, 6196–6200.CrossRefGoogle Scholar
  46. Koelewijn, H. P., Perez-Haro, M., Jansman, H., Boerwinkel, M. C., Bovenschen, J., Lammertsma, D. R., Niewold, F. J., & Kuiters, A. T. (2010). The reintroduction of the Eurasian otter (Lutra lutra) into the Netherlands: Hidden life revealed by non-invasive genetic monitoring. Conservation Genetics, 11, 601–614.CrossRefGoogle Scholar
  47. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  48. Langner, H. W., Greene, E., Domenech, R., & Staats, M. F. (2012). Mercury and other mining-related contaminants in ospreys along the upper Clark Fork River, Montana, USA. Archives of Environmental Contamination & Toxicology, 62, 681–695.CrossRefGoogle Scholar
  49. Letcher, R. J., Lu, Z., Chu, S., Haffner, G. D., Drouillard, K., Marvin, H. C., & Ciborowski, J. H. (2015). Hexabromocyclododecane flame retardant isomers in sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America. Bulletin of Environmental Contamination and Toxicology, 95, 31–36.CrossRefGoogle Scholar
  50. MacKay, P., Smith, D. A., Long, R. A., & Parker, M. (2008). In R. A. Long, P. Mackay, W. Zielinski, & J. Ray (Eds.), Chapter 7: Noninvasive survey methods for carnivores. Scat detection dogs (pp. 183–222). Washington, DC: Island Press.Google Scholar
  51. Marucco, F., Boitani, L., Pletscher, D. H., & Schwartz, M. K. (2011). Bridging the gaps between non-invasive genetic sampling and population parameter estimation. Journal of Wildlife Research, 57, 1–13.CrossRefGoogle Scholar
  52. Mason, C. F., & MacDonald, S. M. (1986). Levels of cadmium, mercury and lead in otter and mink faeces from the United Kingdom. Science of the Total Environment, 53, 139–146.CrossRefGoogle Scholar
  53. Mason, C. F., & MacDonald, S. M. (1994). PCBs and organochlorine pesticide residues in otters (Lutra lutra) and in otter spraints from SW England and their likely impact on populations. Science of the Total Environment, 144, 305–312.CrossRefGoogle Scholar
  54. Mason, C. F., & Ratford, J. R. (1994). PCB congeners in tissues of European otters (Lutra lutra). Environmental Contamination & Toxicology, 53, 548–554.CrossRefGoogle Scholar
  55. McKelvey, K. S., & Schwartz, M. K. (2005). Dropout: A program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Molecular Ecology Notes, 5, 716–718.CrossRefGoogle Scholar
  56. Melero, Y., Palazón, S., Gosàlbez, J., Martelo, J., & Bonesi, L. (2013). Is the standard Eurasian otter Lutra lutra survey strategy suitable for surveying the American mink Neovison vison? Acta Theriologica, 58, 169–177.CrossRefGoogle Scholar
  57. Melquist, W. E., & Dronkert, A. E. (1987). River otter. In M. Novak, J. A. Baker, M. E. Obbard, & B. Malloch (Eds.), Wild furbearer management and conservation in North America (pp. 625–641). North Bay: Ontario Trappers Association.Google Scholar
  58. Montana Department of Environmental Quality (MDEQ). (n.d.). Yellowstone River district. Available at: http://deq.mt.gov/Land/AbandonedMines/linkdocs/193tech. Accessed 8 Jan 2018.
  59. Moore, J. N., & Langner, H. W. (2012). Can a river heal itself? Natural attenuation of metal contamination in river sediment. Environmental Science & Technology, 46, 2616–2623.CrossRefGoogle Scholar
  60. Moraes, L. M. B., Ferreira, C. L., Adriano, L. R., Silva, R. M. C., Nascimento Filho, V. F., & Ferreira, J. R. (2005). Use of X-ray fluorescence energy dispersive technique in the lead determination and other metals in excrements of otters (Lontra longicaudis). Associacao Brasileira de Energia Nuclear, Rio de Janeiro, RJ (Brazil); [4886 p.]; ISBN 85-99141-01-5; Worldcat; 2005; [6 p.]; INAC 2005: International nuclear Atlantic conference. Nuclear energy reducing global warming; 14. Brazilian national meeting on reactor physics and thermal hydraulics; 7. Brazilian national meeting on nuclear applications; Santos, SP (Brazil).Google Scholar
  61. Mowry, R. A., Gompper, M. E., Beringer, J., & Eggert, L. S. (2011). River otter population size estimation using noninvasive latrine surveys. Journal of Wildlife Management, 75, 1625–1636.CrossRefGoogle Scholar
  62. Murphy, M. A., Waits, L. P., & Kendall, K. C. (2003). The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos). Molecular Ecology, 12, 2261–2265.CrossRefGoogle Scholar
  63. National Park Service (NPS). (2017, November 17). Timeline of human history in Yellowstone. Available at: www.nps.gov/yell/learn/historyculture/timeline.htm. Accessed 8 Jan 2018.
  64. Newton, D. E. (2012). Northern River Otter population assessment and connectivity in Western Montana. MSc. Thesis. Paper 4186. Available at: http://scholarworks.umt.edu/etd/4186. Accessed 7 Jan 2018.
  65. O’Neill, D., Turner, P. D., O’Meara, D. B., Chadwick, E. A., Coffey, L., & O’Reilly, C. (2013). Development of novel real-time TaqMan(®) PCR assays for the species and sex identification of otter (Lutra lutra) and their application to noninvasive genetic monitoring. Molecular Ecology Resources, 13, 877–883.  https://doi.org/10.1111/1755-0998.12141.
  66. Pierson, J., Luikart, G., & Schwartz, M. (2015). Chapter 15: The application of genetic indicators in wild populations: Potential and pitfalls for genetic monitoring. In D. B. Lindenmaye, J. C. Pierson, & P. Barton (Eds.), Indicators and surrogates of biodiversity and environmental change (pp. 149–159). Boca Raton: CRC Press, CSIRO Press.Google Scholar
  67. Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture. The Journal of Wildlife Management, 46, 752–757.CrossRefGoogle Scholar
  68. Pountney, A., Stevens, J. R., Sykes T., & Tyler, C. (2009). Population genetics and PBDE analysis of English and Welsh otters. Environment Agency Report No. SC040024/SR1. Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291009/scho0909bqzc-e-e.pdf. Accessed 8 June 2017.
  69. Prigioni, C., Remonti, L., Balestrieri, A., Sgrosso, S., Priore, G., Mucci, N., & Randi, E. (2006). Estimation of European otter (Lutra lutra) population size by fecal DNA typing in southern Italy. Journal of Mammalogy, 87, 855–885.CrossRefGoogle Scholar
  70. Pycke, B. F. C., Roll, I. B., Brownawell, B. J., Kinney, C. A., Furlong, E. T., Kolpin, D. W., & Halden, R. U. (2014). Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States. Environmental Science and Technology, 48, 7881–7890.CrossRefGoogle Scholar
  71. Ramos-Rosas, N. N., Valdespino, C., García-Hernández, J., Gallo-Reynoso, J. P., & Olguín, E. J. (2013). Heavy metals in the habitat and throughout the food chain of the Neotropical otter, Lontra longicaudis, in protected Mexican wetlands. Environmental Monitoring and Assessment, 85, 1163–1173.Google Scholar
  72. Richards, N. L., Hall, S. W., Harrison, N. M., Gautam, L., Scott, K. S., Dowling, G., Zorilla, I., & Fajardo, I. (2014). Merging wildlife and environmental monitoring approaches with forensic principles: Application of unconventional and non-invasive sampling in eco-pharmacovigilance. Journal of Forensic Research. Available at: https://www.omicsonline.org/open-access/merging-wildlife-and-environmental-monitoring-approaches-with-forensic-principles-application-of-unconventional-and-noninvasive-sampling-in-eco-pharmacovigilance-2157-7145.1000228.php?aid=26623. Accessed 8 Jan 2018.
  73. Sage, M., Fourel, I., Coeurdassier, M., Barrat, J., Berny, P., & Giraudoux, P. (2010). Determination of bromadiolone residues in fox faeces by LC/ESI-MS in relationship with toxicological data and clinical signs after repeated exposure. Environmental Research, 110, 664–674.CrossRefGoogle Scholar
  74. Schreder, E. D., & La Guardia, M. J. (2014). Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment. Environmental Science & Technology, 48, 11575–11583.CrossRefGoogle Scholar
  75. Schwartz, M. K., Luikart, G., & Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25–33.CrossRefGoogle Scholar
  76. Shields, G. F., & Kocher, T. D. (1991). Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evolution, 45, 218–221.CrossRefGoogle Scholar
  77. Sonne, C., Leifsson, P. S., Dietz, R., Born, E. W., Letcher, R. J., Hyldstrup, L., Riget, F. F., Kirkegaard, M., & Muir, D. C. (2006). Xenoendocrin pollutants may reduce size of sexual organs in east Greenland polar bears (Ursus maritimus). Environmental Science & Technology, 40, 5668–5674.CrossRefGoogle Scholar
  78. Taggart, M., Richards, N. L., & Kinney, C. (2015). Impacts of pharmaceuticals on the terrestrial environment. In R. Hester (Ed), Pharmaceuticals in the environment. Issues in Environmental Science & Technology (pp. 216–254). Cambridge: Royal Society of Chemistry.Google Scholar
  79. Testa, J. W., Holleman, D. F., Bowyer, R. T., & Faro, J. B. (1994). Estimating populations of marine river otters in Prince William Sound, Alaska, using radiotracer implants. Journal of Mammalogy, 75, 1021–1032.CrossRefGoogle Scholar
  80. US Department of Agriculture (USDA), Forest Service, Fire and Aviation Management. (2015). Implementation guide for aerial application of fire retardant. Fire and Aviation Management, Washington, DC. Available at: https://www.fs.fed.us/fire/retardant/afr_handbook.pdf. Accessed 8 Jan 2018.
  81. Venkatesan, A. K., & Halden, R. U. (2014). Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms. Water Research, 15, 133–142.  https://doi.org/10.1016/j.watres.2014.02.021. Epub 2014 Feb 17.CrossRefGoogle Scholar
  82. Vincent, I. R., Farid, A., & Otieno, C. J. (2003). Variation of thirteen microsatellite markers in American mink (Mustela vison). Canadian Journal of Animal Science, 83, 597–599.CrossRefGoogle Scholar
  83. Waits, L., & Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collections. Journal of Wildlife Management, 69(4), 1419–1433.CrossRefGoogle Scholar
  84. Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640.CrossRefGoogle Scholar
  85. Woollett, D., Hurt, A., & Richards, N. L. (2014). The current and future role of free-ranging detection dogs. In M. Gompper (Ed.), Free-ranging dogs and wildlife conservation (pp. 239–264). Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:osobl/9780199663217.003.0010.CrossRefGoogle Scholar
  86. Xia, K., Bhandari, A., Das, K., & Pillar, G. (2005). Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. Journal of Environmental Quality, 34, 91–104.CrossRefGoogle Scholar
  87. Zhang, S., Bursian, S., Martin, P. A., Chan, H. M., & Martin, J. W. (2008). Dietary accumulation, disposition, and metabolism of technical pentabrominated diphenyl ether (de-71) in pregnant mink (Mustela vison) and their offspring. Environmental Toxicology & Chemistry, 27, 1184–1193.  https://doi.org/10.1897/07-487.1.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ngaio L. Richards
    • 1
  • Gregg Tomy
    • 2
  • Chad A. Kinney
    • 3
  • Frankline C. Nwanguma
    • 3
  • Braden Godwin
    • 4
  • Deborah A. (Smith) Woollett
    • 1
  1. 1.BozemanUSA
  2. 2.Department of ChemistryUniversity of ManitobaWinnipegCanada
  3. 3.Chemistry DepartmentColorado State University - PuebloPuebloUSA
  4. 4.Wildlife Genomics and Disease Ecology LabUniversity of WyomingLaramieUSA

Personalised recommendations