On the Synchronization of Planar Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

Planar automata seems to be representative of the synchronizing behavior of deterministic finite state automata. We conjecture that Černy’s conjecture holds true, if and only if, it holds true for planar automata. We provide new (and old) evidence concerning the conjectured Č erny-universality of planar automata.

Notes

Acknowledgement

The second author would like to thank the support provided by Universidad Nacional de Colombia through the project Hermes 8943 (32083).

References

  1. 1.
    Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15155-2_7 CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R.: Searching subsequences. Theor. Comput. Sci. 78(2), 363–376 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09698-8_6 Google Scholar
  4. 4.
    Book, R., Chandra, A.: Inherently nonplanar automata. Acta Inf. 6, 89–94 (1976)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Černy, J.: Poznámka k homogénnym experimentom s konecnymi automatmi. Mat. fyz. cas SAV 14, 208–215 (1964)Google Scholar
  6. 6.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006).  https://doi.org/10.1007/3-540-29953-X MATHGoogle Scholar
  8. 8.
    Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243–255. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48057-1_19 CrossRefGoogle Scholar
  9. 9.
    Guillemot, S.: Parameterized complexity and approximability of the longest compatible sequence problem. Discret. Optim. 8(1), 50–60 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Montoya, J., Nolasco, C.: On the synchronization of small sets of states. Appl. Math. Sci. 11(44), 2151–2173 (2017)Google Scholar
  11. 11.
    Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15155-2_50 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations