Reshaping the Context-Free Model: Linguistic and Algorithmic Aspects

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

The CF formal grammar model was twin-born and raised, 1956–1963 [Caa, CS, BGS, BPS].

References

  1. [ABB]
    Autebert, J.M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 111–174. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5_3. Chap. 3CrossRefGoogle Scholar
  2. [BGS]
    Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorical and phrase structure grammars. Bull. Res. Coun. Isr. 9F, 1–16 (1960)MATHGoogle Scholar
  3. [BPS]
    Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Zeitsch. Phonetick Spracgwiss. Kommunikationsforshcung 14, 143–172 (1961)MathSciNetMATHGoogle Scholar
  4. [C]
    Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory IT–2, 113–124 (1956)CrossRefMATHGoogle Scholar
  5. [CS]
    Chomsky, N., Schüizenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, S. (eds.) Computer Programming and Formal Systems, pp. 116–121. North-Holland, Amsterdam (1970)Google Scholar
  6. [F]
    Frank, R.: Phrase Structure Composition and Syntatic Dependencies. MIT Press, Cambridge (2002)MATHGoogle Scholar
  7. [G]
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw Hill, New York (1966)MATHGoogle Scholar
  8. [GR1]
    Greibach, S.: A new normal for theorem for context-free phrase structure grammars. J. Assoc. Comput. Math. 12, 42–52 (1965)MathSciNetCrossRefMATHGoogle Scholar
  9. [GR2]
    Greibach, S.: The hardest context-free language. SIAM J. Comput. 3, 304–310 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. [GJ]
    Grune, D., Jacobs, C.J.H.: Parsing as intersection. In: Grune, D., Jacobs, C.J.H. (eds.) Parsing Techniques: A Practical Guide. MCS, pp. 425–442. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-68954-8_13 CrossRefGoogle Scholar
  11. [HU]
    Hopcroft, J., Ullman, J.: Formal Languages and Their Relation to Automata. Addison-Wesley, Boston (1969)MATHGoogle Scholar
  12. [HK]
    Hotz, G., Kretschmer, T.: The power of Greiback norm form. Electron. Infor. Kybernet. 25, 507–512 (1989)MATHGoogle Scholar
  13. [JP]
    Jones, N.C., Pevzner, P.A.: Introduction to Bioinformatics Algorithnms. MIT Press, Cambridge (2004)Google Scholar
  14. [K]
    Kallmeyer, L.: Parsing Beyond Context Free Grammars. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14846-0 CrossRefMATHGoogle Scholar
  15. [S1]
    Shamir, E.: A representation theorm for algebraic and context-free power series in noncommuting variables. Inf. Comput. 11, 239–254 (1967)MATHGoogle Scholar
  16. [S2]
    Shamir, E.: Some inherently ambiguous context-free languages. Inf. Control 18, 355–363 (1971)MathSciNetCrossRefMATHGoogle Scholar
  17. [S3]
    Shamir, E.: Pumping, shrinking and pronouns: from context free to indexed grammars. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 516–522. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37064-9_45 CrossRefGoogle Scholar
  18. [S4]
    Shamir, E.: Decomposition and parsing of non-expansive context-free grammars (2017, manuscript)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations