Advertisement

Coarse-Grained Molecular Dynamics of the Natively-Unfolded Domain of the NPC

  • A. Ghavami
  • E. van der Giessen
  • P. R. Onck
  • L. M. Veenhoff
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 33)

Abstract

Transport through the nuclear pore complex (NPC) is mediated through natively unfolded FG-Nups. In this study, we address several questions regarding the role of FG-Nups by means of a one-bead-per-amino acid (1 BPA) molecular dynamics model. We show that inside the NPC the FG-Nups collectively form a high-density, doughnut-like distribution, which is rich in FG repeats. This specific doughnut shape is encoded in the amino acid sequence of the FG-Nups. We compare our simulations with permeability experiments and find a strong correlation between passive transport through the NPC and the average density of the FG-Nups at the central core region of the pore. Furthermore, we use umbrella sampling to obtain the potential of mean force (PMF) distribution for model kap–cargo complexes along the central axis of the pore. We find that the energy barrier for passive transport is size dependent, with inert cargo molecules larger than 5 nm in diameter effectively being excluded from transport. PMF curves of the Kap–cargo complexes show that the presence of several hydrophobic binding spots on the surface of large cargo complexes can lower the energy barrier below kBT for an optimal spacing of 1.4 nm, which is close to reported experimental values. Finally, we capture our simulations in a simple transport model which describes the energy barrier of the NPC as a function of diameter and hydrophobicity of the Kap–cargo complex, highlighting the sensitive balance between cargo being trapped, expelled, and transported.

References

  1. Abraham DJ, Leo AJ (1987) Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients. Proteins Struct Funct Bioinf 2(2):130–152CrossRefGoogle Scholar
  2. Ader C, Frey S, Maas W, Schmidt H, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci 107(14):6281–6285CrossRefPubMedGoogle Scholar
  3. Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait B et al (2007a) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701CrossRefPubMedGoogle Scholar
  4. Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait B et al (2007b) Determining the architectures of macromolecular assemblies. Nature 450(7170):683–694CrossRefPubMedGoogle Scholar
  5. Atkinson CE, Mattheyses AL, Kampmann M, Simon SM (2013) Conserved spatial organization of FG domains in the nuclear pore complex. Biophys J 104(1):37–50CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beck M, Lučić V, Förster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162):611–615CrossRefPubMedGoogle Scholar
  7. Colwell LJ, Brenner MP, Ribbeck K (2010) Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput Biol 6(4):e1000747CrossRefPubMedPubMedCentralGoogle Scholar
  8. Denning D, Patel S, Uversky V, Fink A, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci 100(5):2450–2455CrossRefPubMedGoogle Scholar
  9. Egorov S (2012) Insertion of nanoparticles into polymer brush under variable solvent conditions. J Chem Phys 137(13):134905CrossRefPubMedGoogle Scholar
  10. Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6:7532CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53(1):595–623CrossRefPubMedGoogle Scholar
  12. Ermilov V, Lazutin A, Halperin A (2010) Colloids in brushes: the insertion free energy via Monte Carlo simulation with umbrella sampling. Macromolecules 43(7):3511–3520CrossRefGoogle Scholar
  13. Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523CrossRefPubMedGoogle Scholar
  14. Frey S, Richter R, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314(5800):815–817CrossRefPubMedGoogle Scholar
  15. Ghavami A, van der Giessen E, Onck PR (2012) Coarse-grained potentials for local interactions in unfolded proteins. J Chem Theory Comput 9(1):432–440CrossRefPubMedGoogle Scholar
  16. Ghavami A, Veenhoff LM, van der Giessen E, Onck PR (2014) Probing the disordered domain of the nuclear pore complex through coarse-grained molecular dynamics simulations. Biophys J 107(6):1393–1402CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ghavami A, van der Giessen E, Onck PR (2016) Energetics of transport through the nuclear pore complex. PLoS One 11(2):e0148876CrossRefPubMedPubMedCentralGoogle Scholar
  18. Halperin A, Kroger M, Zhulina EB (2011) Colloid-brush interactions: the effect of solvent quality. Macromolecules 44(9):3622–3638CrossRefGoogle Scholar
  19. Hingerty BE, Ritchie RH, Ferrell TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24(3):427–439CrossRefGoogle Scholar
  20. Isgro T, Schulten K (2007) Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure 15(8):977–991CrossRefPubMedGoogle Scholar
  21. Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762CrossRefPubMedPubMedCentralGoogle Scholar
  22. Karshikoff A (2006) Non-covalent interactions in proteins. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  23. Keminer O, Peters R (1999) Permeability of single nuclear pores. Biophys J 77(1):217–228CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kralt A, Carretta M, Mari M, Reggiori F, Steen A, Poolman B, Veenhoff LM (2015) Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16(2):135–147CrossRefPubMedGoogle Scholar
  25. Krishnan V, Lau E, Yamada J, Denning D, Patel S, Colvin M, Rexach M (2008) Intramolecular cohesion of coils mediated by phenylalanine–glycine motifs in the natively unfolded domain of a nucleoporin. PLoS Comput Biol 4(8):e1000145CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lim R, Huang N, Koser J, Deng J, Lau K, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci 103(25):9512–9517CrossRefPubMedGoogle Scholar
  27. Lim R, Fahrenkrog B, Koser J, Schwarz-Herion K, Deng J, Aebi U (2007) Nanomechanical basis of selective gating by the nuclear pore complex. Science 318(5850):640–643CrossRefPubMedGoogle Scholar
  28. Lim RY, Huang B, Kapinos LE (2015) How to operate a nuclear pore complex by Kap-centric control. Nucleus 6(5):366–372CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ma J, Goryaynov A, Yang W (2016) Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat Struct Mol Biol 23(3):239–247CrossRefPubMedPubMedCentralGoogle Scholar
  30. Merlitz H, Wu CX, Sommer JU (2012) Inclusion free energy of nanoparticles in polymer brushes. Macromolecules 45(20):8494–8501CrossRefGoogle Scholar
  31. Miao L, Schulten K (2009) Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17(3):449–459CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miao L, Schulten K (2010) Probing a structural model of the nuclear pore complex channel through molecular dynamics. Biophys J 98(8):1658–1667CrossRefPubMedPubMedCentralGoogle Scholar
  33. Milchev A, Dimitrov DI, Binder K (2008) Excess free energy of nanoparticles in a polymer brush. Polymer 49(17):3611–3618CrossRefGoogle Scholar
  34. Mincer J, Simon S (2011) Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc Natl Acad Sci USA 108(31):E351–E358CrossRefPubMedGoogle Scholar
  35. Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28(17):2541–2553CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad M (2011a) Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys J 100(6):1410–1419CrossRefPubMedPubMedCentralGoogle Scholar
  37. Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad M (2011b) Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput Biol 7(6):e1002049CrossRefPubMedPubMedCentralGoogle Scholar
  38. Musser SM, Grünwald D (2016) Deciphering the structure and function of nuclear pores using single-molecule fluorescence approaches. J Mol Biol 428(10):2091–2119CrossRefPubMedPubMedCentralGoogle Scholar
  39. Naim B, Zbaida D, Dagan S, Kapon R, Reich Z (2009) Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J 28(18):2697–2705CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oberleithner H, Schuricht B, Wünsch S, Schneider S, Püschel B (1993) Role of H+ ions in volume and voltage of epithelial cell nuclei. Pflügers Archive 423(1–2):88–96CrossRefGoogle Scholar
  41. Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelope permeability. Nature 254(5496):109CrossRefPubMedGoogle Scholar
  42. Patel S, Belmont B, Sante J, Rexach M (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129(1):83–96CrossRefPubMedGoogle Scholar
  43. Peters R (2005) Translocation through the nuclear pore complex: selectivity and speed by reduction‐of‐dimensionality. Traffic 6(5):421–427CrossRefPubMedGoogle Scholar
  44. Peters R (2009) Translocation through the nuclear pore: Kaps pave the way. BioEssays 31:466–477CrossRefPubMedGoogle Scholar
  45. Popken P, Ghavami A, Onck PR, Poolman B, Veenhoff LM (2015) Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol Biol Cell 26(7):1386–1394CrossRefPubMedPubMedCentralGoogle Scholar
  46. Roseman MA (1988) Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol 200(3):513–522CrossRefPubMedGoogle Scholar
  47. Rout M, Aitchison J, Suprapto A, Hjertaas K, Zhao Y, Chait B (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–652CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rout M, Aitchison J, Magnasco M, Chait B (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13(12):622–628CrossRefPubMedGoogle Scholar
  49. Sakiyama Y, Mazur A, Kapinos LE, Lim RY (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11(8):719–723CrossRefPubMedGoogle Scholar
  50. Tagliazucchi M, Peleg O, Kröger M, Rabin Y, Szleifer I (2013) Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc Natl Acad Sci 110(9):3363–3368CrossRefPubMedGoogle Scholar
  51. Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP (2016) Simple rules for passive diffusion through the nuclear pore complex. J Cell Biol 215:57–76CrossRefPubMedPubMedCentralGoogle Scholar
  52. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199CrossRefGoogle Scholar
  53. Vovk A, Gu C, Opferman MG, Kapinos LE, Lim RY, Coalson RD, Jasnow D, Zilman A (2016) Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the nuclear pore complex. eLife 5:e10785CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yamada J, Phillips J, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan V, Newsam S et al (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9:2205–2224CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1(2):223–234CrossRefPubMedGoogle Scholar
  56. Yang W, Gelles J, Musser S (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci 101(35):12887–12892CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. Ghavami
    • 1
  • E. van der Giessen
    • 1
  • P. R. Onck
    • 1
  • L. M. Veenhoff
    • 2
  1. 1.Micromechanics Lab, Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  2. 2.Cellular Biochemistry Lab, European Research Institute for the Biology of Ageing (ERIBA)University Medical Centre GroningenGroningenThe Netherlands

Personalised recommendations