Advertisement

mRNA Export and Its Dysregulation in Disease

  • Katherine Borden
  • Biljana Culkovic-Kraljacic
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 33)

Abstract

The nucleocytoplasmic export of transcripts is a major effector of protein expression. mRNA export is no longer considered a simple conduit linking transcription and translation. Indeed, there are multiple mRNA export pathways which enable export of different subsets of transcripts enabling alterations to the proteomic programme in the absence of altered transcription. These pathways are both regulated by and able to modulate signal transduction. Dysregulation of mRNA export occurs in a myriad of pathologies. In this chapter, different aspects of these pathways are discussed including the basic mechanisms underlying mRNA export, the principles that permit selection of groups of transcripts, the dysregulation in different diseases and strategies to target these pathways in patients.

References

  1. Aibara S, Katahira J, Valkov E, Stewart M (2015) The principal mRNA nuclear export factor NXF1: NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res 43:1883–1893PubMedPubMedCentralCrossRefGoogle Scholar
  2. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, Caplan S, Leber B, Roy DC, Miller WH Jr, Borden KL (2009) Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 114:257–260PubMedCrossRefPubMedCentralGoogle Scholar
  3. Assouline S, Culjkovic-Kraljacic B, Bergeron J, Caplan S, Cocolakis E, Lambert C, Lau CJ, Zahreddine HA, Miller WH Jr, Borden KL (2015) A phase I trial of ribavirin and low-dose cytarabine for the treatment of relapsed and refractory acute myeloid leukemia with elevated eIF4E. Haematologica 100:e7–e9PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6:136–158PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bai B, Moore HM, Laiho M (2013) CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis. Nucleus 4:315–325PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ben-Efraim I, Gerace L (2001) Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J Cell Biol 152:411–417PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24:2373–2384PubMedPubMedCentralCrossRefGoogle Scholar
  9. Black BE, Holaska JM, Levesque L, Ossareh-Nazari B, Gwizdek C, Dargemont C, Paschal BM (2001) NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. J Cell Biol 152:141–155PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blevins MB, Smith AM, Phillips EM, Powers MA (2003) Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. J Biol Chem 278:20979–20988PubMedCrossRefGoogle Scholar
  11. Boer J, Bonten-Surtel J, Grosveld G (1998) Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol 18:1236–1247PubMedPubMedCentralCrossRefGoogle Scholar
  12. Capelson M, Hetzer MW (2009) The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10:697–705PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carmody SR, Wente SR (2009) mRNA nuclear export at a glance. J Cell Sci 122:1933–1937PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carmody SR, Tran EJ, Apponi LH, Corbett AH, Wente SR (2010) The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Mol Cell Biol 30:5168–5179PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15:657–667PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chang CT, Hautbergue GM, Walsh MJ, Viphakone N, van Dijk TB, Philipsen S, Wilson SA (2013) Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 32:473–486PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS, Teng SC, Wu KJ (2005) Overexpression of NBS1 contributes to transformation through the activation of phosphatidylinositol 3-kinase/Akt. J Biol Chem 280:32505–32511PubMedCrossRefGoogle Scholar
  18. Chen C, Garzon R, Gutierrez M, Jacoby MA, Brown P, Flinn I, Stone RM, Savoie ML, Baz R, Gabrail NY, Wang M, Martin P, Siegel D, Mau-Sorensen M, Andreef M, Marshall T, Saint-Martin JR, Carlson R, Shacham S, Kauffman M, Kuruvilla J (2015) Safety, efficacy, and determination of the recommended phase 2 dose for the oral selective inhibitor of nuclear export (SINE) selinexor (KPT-330). Blood 126:258Google Scholar
  19. Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R (2006) Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127:1389–1400PubMedCrossRefGoogle Scholar
  20. Chi B, Wang Q, Wu G, Tan M, Wang L, Shi M, Chang X, Cheng H (2013) Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res 41:1294–1306PubMedCrossRefGoogle Scholar
  21. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541PubMedCrossRefGoogle Scholar
  22. Chinnam M, Wang Y, Zhang X, Gold DL, Khoury T, Nikitin AY, Foster BA, Li Y, Bshara W, Morrison CD, Payne Ondracek RD, Mohler JL, Goodrich DW (2014) The Thoc1 ribonucleoprotein and prostate cancer progression. J Natl Cancer Inst 106.  https://doi.org/10.1093/jnci/dju306
  23. Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL (2001) PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J 20:4547–4559PubMedPubMedCentralCrossRefGoogle Scholar
  24. Conforti F, Wang Y, Rodriguez JA, Alberobello AT, Zhang YW, Giaccone G (2015) Molecular pathways: anticancer activity by inhibition of nucleocytoplasmic shuttling. Clin Cancer Res 21:4508–4513PubMedCrossRefGoogle Scholar
  25. Coyle JH, Bor YC, Rekosh D, Hammarskjold ML (2011) The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA 17:1344–1356PubMedPubMedCentralCrossRefGoogle Scholar
  26. Culjkovic B, Borden KL (2009) Understanding and targeting the eukaryotic translation initiation factor eIF4E in head and neck cancer. J Oncol 2009:Article ID 981679CrossRefGoogle Scholar
  27. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2005) eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′ UTR. J Cell Biol 169:245–256PubMedPubMedCentralCrossRefGoogle Scholar
  28. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL (2006) eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175:415–426PubMedPubMedCentralCrossRefGoogle Scholar
  29. Culjkovic B, Tan K, Orolicki S, Amri A, Meloche S, Borden KL (2008) The eIF4E RNA regulon promotes the Akt signaling pathway. J Cell Biol 181:51–63PubMedPubMedCentralCrossRefGoogle Scholar
  30. Culjkovic-Kraljacic B, Borden KL (2013) Aiding and abetting cancer: mRNA export and the nuclear pore. Trends Cell Biol 23:328–335PubMedPubMedCentralCrossRefGoogle Scholar
  31. Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KLB (2012) The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep 2:207–215PubMedPubMedCentralCrossRefGoogle Scholar
  32. Culjkovic-Kraljacic B, Fernando TM, Marullo R, Calvo-Vidal N, Verma A, Yang S, Tabbo F, Gaudiano M, Zahreddine H, Goldstein RL, Patel J, Taldone T, Chiosis G, Ladetto M, Ghione P, Machiorlatti R, Elemento O, Inghirami G, Melnick A, Borden KL, Cerchietti L (2016) Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood 127:858–868PubMedPubMedCentralCrossRefGoogle Scholar
  33. Custodio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M (2004) In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10:622–633PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell 133:103–115PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199PubMedCrossRefGoogle Scholar
  36. Dominguez-Sanchez MS, Saez C, Japon MA, Aguilera A, Luna R (2011) Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer 11:77PubMedPubMedCentralCrossRefGoogle Scholar
  37. Emterling A, Skoglund J, Arbman G, Schneider J, Evertsson S, Carstensen J, Zhang H, Sun XF (2003) Clinicopathological significance of Nup88 expression in patients with colorectal cancer. Oncology 64:361–369PubMedCrossRefGoogle Scholar
  38. Ernst RK, Bray M, Rekosh D, Hammarskjold ML (1997) A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol 17:135–144PubMedPubMedCentralCrossRefGoogle Scholar
  39. Faria AM, Levay A, Wang Y, Kamphorst AO, Rosa ML, Nussenzveig DR, Balkan W, Chook YM, Levy DE, Fontoura BM (2006) The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions. Immunity 24:295–304PubMedCrossRefPubMedCentralGoogle Scholar
  40. Farny NG, Hurt JA, Silver PA (2008) Definition of global and transcript-specific mRNA export pathways in metazoans. Genes Dev 22:66–78PubMedPubMedCentralCrossRefGoogle Scholar
  41. Feng Y, Wente SR, Majerus PW (2001) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci USA 98:875–879PubMedCrossRefPubMedCentralGoogle Scholar
  42. Floer M, Blobel G (1999) Putative reaction intermediates in Crm1-mediated nuclear protein export. J Biol Chem 274:16279–16286PubMedCrossRefPubMedCentralGoogle Scholar
  43. Folkmann AW, Noble KN, Cole CN, Wente SR (2011) Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus 2:540–548PubMedPubMedCentralCrossRefGoogle Scholar
  44. Folkmann AW, Collier SE, Zhan X, Aditi MDO, Wente SR (2013) Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell 155:582–593PubMedCrossRefPubMedCentralGoogle Scholar
  45. Folkmann AW, Dawson TR, Wente SR (2014) Insights into mRNA export-linked molecular mechanisms of human disease through a Gle1 structure-function analysis. Adv Biol Regul 54:74–91PubMedCrossRefPubMedCentralGoogle Scholar
  46. Forler D, Rabut G, Ciccarelli FD, Herold A, Kocher T, Niggeweg R, Bork P, Ellenberg J, Izaurralde E (2004) RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol Cell Biol 24:1155–1167PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fribourg S, Braun IC, Izaurralde E, Conti E (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8:645–656PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem 282:4504–4515PubMedCrossRefGoogle Scholar
  50. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15:293–306PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fujimura S, Xing Y, Takeya M, Yamashita Y, Ohshima K, Kuwahara K, Sakaguchi N (2005) Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res 65(13):5925–5934PubMedCrossRefPubMedCentralGoogle Scholar
  52. Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106(Pt 1):261–274PubMedPubMedCentralGoogle Scholar
  53. Golovanov AP, Hautbergue GM, Tintaru AM, Lian LY, Wilson SA (2006) The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. RNA 12:1933–1948PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gould VE, Martinez N, Orucevic A, Schneider J, Alonso A (2000) A novel, nuclear pore-associated, widely distributed molecule overexpressed in oncogenesis and development. Am J Pathol 157:1605–1613PubMedPubMedCentralCrossRefGoogle Scholar
  55. Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20:265–273PubMedCrossRefPubMedCentralGoogle Scholar
  56. Griaud F, Pierce A, Gonzalez Sanchez MB, Scott M, Abraham SA, Holyoake TL, Tran DD, Tamura T, Whetton AD (2013) A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia 27:932–940PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659PubMedCrossRefPubMedCentralGoogle Scholar
  58. Guo S, Hakimi MA, Baillat D, Chen X, Farber MJ, Klein-Szanto AJ, Cooch NS, Godwin AK, Shiekhattar R (2005) Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res 65:3011–3016PubMedCrossRefPubMedCentralGoogle Scholar
  59. Guria A, Tran DD, Ramachandran S, Koch A, El Bounkari O, Dutta P, Hauser H, Tamura T (2011) Identification of mRNAs that are spliced but not exported to the cytoplasm in the absence of THOC5 in mouse embryo fibroblasts. RNA 17:1048–1056PubMedPubMedCentralCrossRefGoogle Scholar
  60. Guzik BW, Levesque L, Prasad S, Bor YC, Black BE, Paschal BM, Rekosh D, Hammarskjold ML (2001) NXT1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells. Mol Cell Biol 21:2545–2554PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Walde S, Joseph J, Kehlenbach RH, van Deursen JM (2011) Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 194:597–612PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hargous Y, Hautbergue GM, Tintaru AM, Skrisovska L, Golovanov AP, Stevenin J, Lian LY, Wilson SA, Allain FH (2006) Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J 25:5126–5137PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hautbergue GM, Hung ML, Golovanov AP, Lian LY, Wilson SA (2008) Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci USA 105:5154–5159PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hautbergue GM, Hung ML, Walsh MJ, Snijders AP, Chang CT, Jones R, Ponting CP, Dickman MJ, Wilson SA (2009) UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol 19:1918–1924PubMedPubMedCentralCrossRefGoogle Scholar
  65. Heath CG, Viphakone N, Wilson SA (2016) The role of TREX in gene expression and disease. Biochem J 473:2911–2935PubMedPubMedCentralCrossRefGoogle Scholar
  66. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E (2000) TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol 20:8996–9008PubMedPubMedCentralCrossRefGoogle Scholar
  67. Herold A, Klymenko T, Izaurralde E (2001) NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7:1768–1780PubMedPubMedCentralGoogle Scholar
  68. Hocine S, Singer RH, Grunwald D (2010) RNA processing and export. Cold Spring Harb Perspect Biol 2:a000752PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hodge DL, Berthet C, Coppola V, Kastenmuller W, Buschman MD, Schaughency PM, Shirota H, Scarzello AJ, Subleski JJ, Anver MR, Ortaldo JR, Lin F, Reynolds DA, Sanford ME, Kaldis P, Tessarollo L, Klinman DM, Young HA (2014) IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. J Autoimmun 53:33–45PubMedPubMedCentralCrossRefGoogle Scholar
  70. Holt I, Mittal S, Furling D, Butler-Browne GS, Brook JD, Morris GE (2007) Defective mRNA in myotonic dystrophy accumulates at the periphery of nuclear splicing speckles. Genes Cells 12:1035–1048PubMedCrossRefPubMedCentralGoogle Scholar
  71. Huang Y, Steitz JA (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7:899–905PubMedCrossRefPubMedCentralGoogle Scholar
  72. Huang Y, Steitz JA (2005) SRprises along a messenger’s journey. Mol Cell 17:613–615PubMedCrossRefPubMedCentralGoogle Scholar
  73. Huang Y, Gattoni R, Stevenin J, Steitz JA (2003) SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell 11:837–843PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hung ML, Hautbergue GM, Snijders AP, Dickman MJ, Wilson SA (2010) Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res 38:3351–3361PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hurt JA, Silver PA (2008) mRNA nuclear export and human disease. Dis Model Mech 1:103–108PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jani D, Lutz S, Hurt E, Laskey RA, Stewart M, Wickramasinghe VO (2012) Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res 40:4562–4573PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107:291–308CrossRefPubMedGoogle Scholar
  79. Johnson C, Primorac D, McKinstry M, McNeil J, Rowe D, Lawrence JB (2000) Tracking COL1A1 RNA in osteogenesis imperfecta: splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J Cell Biol 150:417–432PubMedPubMedCentralCrossRefGoogle Scholar
  80. Johnson LA, Li L, Sandri-Goldin RM (2009) The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 83:6335–6346PubMedPubMedCentralCrossRefGoogle Scholar
  81. Katahira J (2015) Nuclear export of messenger RNA. Genes (Basel) 6:163–184CrossRefGoogle Scholar
  82. Katahira J, Inoue H, Hurt E, Yoneda Y (2009) Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. EMBO J 28:556–567PubMedPubMedCentralCrossRefGoogle Scholar
  83. Katahira J, Okuzaki D, Inoue H, Yoneda Y, Maehara K, Ohkawa Y (2013) Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I. Nucleic Acids Res 41:7060–7072PubMedPubMedCentralCrossRefGoogle Scholar
  84. Katahira J, Dimitrova L, Imai Y, Hurt E (2015) NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Res 43:1894–1904PubMedPubMedCentralCrossRefGoogle Scholar
  85. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kelich JM, Yang W (2014) High-resolution imaging reveals new features of nuclear export of mRNA through the nuclear pore complexes. Int J Mol Sci 15:14492–14504PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL (2004) Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci USA 101:18105–18110PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, Borden KL (2005) Further evidence that ribavirin interacts with eIF4E. RNA 11:1762–1766PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kimura T, Hashimoto I, Nagase T, Fujisawa J (2004) CRM1-dependent, but not ARE-mediated, nuclear export of IFN-alpha1 mRNA. J Cell Sci 117:2259–2270PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA (2008) Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 121:1526–1537PubMedCrossRefGoogle Scholar
  92. Kraljacic BC, Arguello M, Amri A, Cormack G, Borden K (2011) Inhibition of eIF4E with ribavirin cooperates with common chemotherapies in primary acute myeloid leukemia specimens. Leukemia 25:1197–1200PubMedCrossRefGoogle Scholar
  93. Kraut-Cohen J, Gerst JE (2010) Addressing mRNAs to the ER: cis sequences act up! Trends Biochem Sci 35:459–469PubMedCrossRefGoogle Scholar
  94. Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32:204–218PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lei H, Dias AP, Reed R (2011) Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci USA 108:17985–17990PubMedCrossRefGoogle Scholar
  96. Lei H, Zhai B, Yin S, Gygi S, Reed R (2013) Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res 41:2517–2525PubMedCrossRefGoogle Scholar
  97. Leisegang MS, Martin R, Ramirez AS, Bohnsack MT (2012) Exportin T and Exportin 5: tRNA and miRNA biogenesis—and beyond. Biol Chem 393:599–604PubMedCrossRefGoogle Scholar
  98. Levesque L, Guzik B, Guan T, Coyle J, Black BE, Rekosh D, Hammarskjold ML, Paschal BM (2001) RNA export mediated by tap involves NXT1-dependent interactions with the nuclear pore complex. J Biol Chem 276:44953–44962PubMedCrossRefGoogle Scholar
  99. Liker E, Fernandez E, Izaurralde E, Conti E (2000) The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J 19:5587–5598PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lindtner S, Zolotukhin AS, Uranishi H, Bear J, Kulkarni V, Smulevitch S, Samiotaki M, Panayotou G, Felber BK, Pavlakis GN (2006) RNA-binding motif protein 15 binds to the RNA transport element RTE and provides a direct link to the NXF1 export pathway. J Biol Chem 281:36915–36928PubMedCrossRefGoogle Scholar
  101. Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27PubMedCrossRefGoogle Scholar
  102. Luna R, Rondon AG, Aguilera A (2012) New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. Biochim Biophys Acta 1819:514–520PubMedCrossRefGoogle Scholar
  103. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66PubMedCrossRefGoogle Scholar
  104. Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414PubMedPubMedCentralCrossRefGoogle Scholar
  105. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mancini A, Niemann-Seyde SC, Pankow R, El Bounkari O, Klebba-Farber S, Koch A, Jaworska E, Spooncer E, Gruber AD, Whetton AD, Tamura T (2010) THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo. BMC Biol 8(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mansfield KD, Keene JD (2009) The ribonome: a dominant force in co-ordinating gene expression. Biol Cell 101:169–181PubMedPubMedCentralCrossRefGoogle Scholar
  108. Martinez N, Alonso A, Moragues MD, Ponton J, Schneider J (1999) The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59:5408–5411PubMedGoogle Scholar
  109. Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19:1512–1517PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernandez-Torron R, Garcia-Puga M, Matheu A, de Munain AL (2015) Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 7:125PubMedPubMedCentralCrossRefGoogle Scholar
  111. Miyashiro K, Eberwine J (2004) Fragile X syndrome: (What’s) lost in translation? Proc Natl Acad Sci USA 101:17329–17330PubMedCrossRefPubMedCentralGoogle Scholar
  112. Narita T, Yung TM, Yamamoto J, Tsuboi Y, Tanabe H, Tanaka K, Yamaguchi Y, Handa H (2007) NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol Cell 26:349–365PubMedCrossRefPubMedCentralGoogle Scholar
  113. Newlands ES, Rustin GJ, Brampton MH (1996) Phase I trial of elactocin. Br J Cancer 74:648–649PubMedPubMedCentralCrossRefGoogle Scholar
  114. Nousiainen HO, Kestila M, Pakkasjarvi N, Honkala H, Kuure S, Tallila J, Vuopala K, Ignatius J, Herva R, Peltonen L (2008) Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet 40:155–157PubMedPubMedCentralCrossRefGoogle Scholar
  115. Okada M, Jang SW, Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci USA 105:8649–8654PubMedCrossRefPubMedCentralGoogle Scholar
  116. Okamura M, Inose H, Masuda S (2015) RNA export through the NPC in eukaryotes. Genes (Basel) 6:124–149CrossRefGoogle Scholar
  117. Ossareh-Nazari B, Bachelerie F, Dargemont C (1997) Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144PubMedCrossRefPubMedCentralGoogle Scholar
  118. Ossareh-Nazari B, Maison C, Black BE, Levesque L, Paschal BM, Dargemont C (2000) RanGTP-binding protein NXT1 facilitates nuclear export of different classes of RNA in vitro. Mol Cell Biol 20:4562–4571PubMedPubMedCentralCrossRefGoogle Scholar
  119. Palazzo AF, Springer M, Shibata Y, Lee CS, Dias AP, Rapoport TA (2007) The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol 5:e322PubMedPubMedCentralCrossRefGoogle Scholar
  120. Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129:83–96PubMedCrossRefPubMedCentralGoogle Scholar
  121. Pena A, Gewartowski K, Mroczek S, Cuellar J, Szykowska A, Prokop A, Czarnocki-Cieciura M, Piwowarski J, Tous C, Aguilera A, Carrascosa JL, Valpuesta JM, Dziembowski A (2012) Architecture and nucleic acids recognition mechanism of the THO complex, an mRNP assembly factor. EMBO J 31:1605–1616PubMedPubMedCentralCrossRefGoogle Scholar
  122. Peters R (2005) Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6:421–427PubMedCrossRefGoogle Scholar
  123. Petersen JM, Her LS, Varvel V, Lund E, Dahlberg JE (2000) The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 20:8590–8601PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pettersson OJ, Aagaard L, Jensen TG, Damgaard CK (2015) Molecular mechanisms in DM1: a focus on foci. Nucleic Acids Res 43:2433–2441PubMedPubMedCentralCrossRefGoogle Scholar
  125. Phillips A, Blaydes JP (2008) MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 27:1645–1649PubMedCrossRefPubMedCentralGoogle Scholar
  126. Pierotti MA, Greco A (2006) Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 232:90–98PubMedCrossRefPubMedCentralGoogle Scholar
  127. Pryor A, Tung L, Yang Z, Kapadia F, Chang TH, Johnson LF (2004) Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56. Nucleic Acids Res 32:1857–1865PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rajanala K, Nandicoori VK (2012) Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS One 7:e29921PubMedPubMedCentralCrossRefGoogle Scholar
  129. Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17:269–273PubMedCrossRefPubMedCentralGoogle Scholar
  130. Ribbeck K, Gorlich D (2002) The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21:2664–2671PubMedPubMedCentralCrossRefGoogle Scholar
  131. Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, Rivera VM, Albitar M, Bedrosian CL, Giles FJ (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14:2756–2762PubMedCrossRefPubMedCentralGoogle Scholar
  132. Rodriguez-Navarro S, Hurt E (2011) Linking gene regulation to mRNA production and export. Curr Opin Cell Biol 23:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rollenhagen C, Hodge CA, Cole CN (2007) Following temperature stress, export of heat shock mRNA occurs efficiently in cells with mutations in genes normally important for mRNA export. Eukaryot Cell 6:505–513PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rougemaille M, Dieppois G, Kisseleva-Romanova E, Gudipati RK, Lemoine S, Blugeon C, Boulay J, Jensen TH, Stutz F, Devaux F, Libri D (2008) THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell 135:308–321PubMedCrossRefPubMedCentralGoogle Scholar
  135. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13:622–628PubMedPubMedCentralCrossRefGoogle Scholar
  137. Saito Y, Kasamatsu A, Yamamoto A, Shimizu T, Yokoe H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K (2013) ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 139:585–594PubMedCrossRefPubMedCentralGoogle Scholar
  138. Shen J, Zhang L, Zhao R (2007) Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J Biol Chem 282:22544–22550PubMedCrossRefPubMedCentralGoogle Scholar
  139. Shen H, Zheng X, Shen J, Zhang L, Zhao R, Green MR (2008) Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev 22:1796–1803PubMedPubMedCentralCrossRefGoogle Scholar
  140. Siddiqui N, Borden KL (2012) mRNA export and cancer. Wiley Interdiscip Rev RNA 3:13–25PubMedCrossRefPubMedCentralGoogle Scholar
  141. Siebrasse JP, Kaminski T, Kubitscheck U (2012) Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc Natl Acad Sci USA 109:9426–9431PubMedCrossRefPubMedCentralGoogle Scholar
  142. Smulevitch S, Michalowski D, Zolotukhin AS, Schneider R, Bear J, Roth P, Pavlakis GN, Felber BK (2005) Structural and functional analysis of the RNA transport element, a member of an extensive family present in the mouse genome. J Virol 79:2356–2365PubMedPubMedCentralCrossRefGoogle Scholar
  143. Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA 88:4892–4896PubMedCrossRefPubMedCentralGoogle Scholar
  144. Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang YT, Li Q, Moore MJ, Budnik V (2012) Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149:832–846PubMedPubMedCentralCrossRefGoogle Scholar
  145. Stubbs SH, Conrad NK (2015) Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res 43:504–519PubMedCrossRefPubMedCentralGoogle Scholar
  146. Sullivan KD, Mullen TE, Marzluff WF, Wagner EJ (2009) Knockdown of SLBP results in nuclear retention of histone mRNA. RNA 15:459–472PubMedPubMedCentralCrossRefGoogle Scholar
  147. Suyama M, Doerks T, Braun IC, Sattler M, Izaurralde E, Bork P (2000) Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins. EMBO Rep 1:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tenenbaum SA, Carson CC, Lager PJ, Keene JD (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97:14085–14090PubMedCrossRefPubMedCentralGoogle Scholar
  149. Tintaru AM, Hautbergue GM, Hounslow AM, Hung ML, Lian LY, Craven CJ, Wilson SA (2007) Structural and functional analysis of RNA and TAP binding to SF2/ASF. EMBO Rep 8:756–762PubMedPubMedCentralCrossRefGoogle Scholar
  150. Topisirovic I, Culjkovic B, Cohen N, Perez JM, Skrabanek L, Borden KL (2003a) The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J 22:689–703PubMedPubMedCentralCrossRefGoogle Scholar
  151. Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ, Jordan CT, Borden KL (2003b) Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 23:8992–9002PubMedPubMedCentralCrossRefGoogle Scholar
  152. Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64:8639–8642PubMedCrossRefPubMedCentralGoogle Scholar
  153. Topisirovic I, Siddiqui N, Lapointe VL, Trost M, Thibault P, Bangeranye C, Pinol-Roma S, Borden KL (2009) Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J 28:1087–1098PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tran EJ, Zhou Y, Corbett AH, Wente SR (2007) The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 28:850–859PubMedCrossRefPubMedCentralGoogle Scholar
  155. Tran DD, Koch A, Tamura T (2014a) THOC5, a member of the mRNA export complex: a novel link between mRNA export machinery and signal transduction pathways in cell proliferation and differentiation. Cell Commun Signal 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tran DD, Saran S, Williamson AJ, Pierce A, Dittrich-Breiholz O, Wiehlmann L, Koch A, Whetton AD, Tamura T (2014b) THOC5 controls 3′ end-processing of immediate early genes via interaction with polyadenylation specific factor 100 (CPSF100). Nucleic Acids Res 42:12249–12260PubMedPubMedCentralCrossRefGoogle Scholar
  157. Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032PubMedCrossRefPubMedCentralGoogle Scholar
  158. Umlauf D, Bonnet J, Waharte F, Fournier M, Stierle M, Fischer B, Brino L, Devys D, Tora L (2013) The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci 126:2656–2667PubMedCrossRefGoogle Scholar
  159. Vainberg IE, Dower K, Rosbash M (2000) Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Mol Cell Biol 20:3996–4005PubMedPubMedCentralCrossRefGoogle Scholar
  160. Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M (2012) Structural basis for the assembly and disassembly of mRNA nuclear export complexes. Biochim Biophys Acta 1819:578–592PubMedCrossRefGoogle Scholar
  161. van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L, Govender D, Birrer MJ, Leaner VD (2009) The Karyopherin proteins, Crm1 and Karyopherin β1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840PubMedCrossRefPubMedCentralGoogle Scholar
  162. Verma D, Bais S, Gaillard M, Swaminathan S (2010) Epstein-Barr Virus SM protein utilizes cellular splicing factor SRp20 to mediate alternative splicing. J Virol 84:11781–11789PubMedPubMedCentralCrossRefGoogle Scholar
  163. Viphakone N, Hautbergue GM, Walsh M, Chang CT, Holland A, Folco EG, Reed R, Wilson SA (2012) TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun 3:1006PubMedPubMedCentralCrossRefGoogle Scholar
  164. Viphakone N, Cumberbatch MG, Livingstone MJ, Heath PR, Dickman MJ, Catto JW, Wilson SA (2015) Luzp4 defines a new mRNA export pathway in cancer cells. Nucleic Acids Res 43:2353–2366PubMedPubMedCentralCrossRefGoogle Scholar
  165. Volpon L, Culjkovic-Kraljacic B, Osborne MJ, Ramteke A, Sun Q, Niesman A, Chook YM, Borden KL (2016) Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E. Proc Natl Acad Sci USA 113:5263–5268PubMedCrossRefPubMedCentralGoogle Scholar
  166. Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchett-Cohen A, Osborne MJ, Borden K (2017) A biochemical framework for eIF4E-dependent mRNA export and nuclear re-cycling of the export machinery. RNA 6:927–937PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wang L, Miao YL, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward JM, Burkholder A, Lipchina I, Fargo DC, Hochedlinger K, Shi Y, Williams CJ, Hu G (2013) The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 13:676–690PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wang B, Rekosh D, Hammarskjold ML (2015) Evolutionary conservation of a molecular machinery for export and expression of mRNAs with retained introns. RNA 21:426–437PubMedPubMedCentralCrossRefGoogle Scholar
  169. Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8:668–676PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wickramasinghe VO, Laskey RA (2015) Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 16:431–442PubMedCrossRefPubMedCentralGoogle Scholar
  171. Wickramasinghe VO, McMurtrie PI, Mills AD, Takei Y, Penrhyn-Lowe S, Amagase Y, Main S, Marr J, Stewart M, Laskey RA (2010a) mRNA export from mammalian cell nuclei is dependent on GANP. Curr Biol 20:25–31PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wickramasinghe VO, Stewart M, Laskey RA (2010b) GANP enhances the efficiency of mRNA nuclear export in mammalian cells. Nucleus 1:393–396PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wickramasinghe VO, Savill JM, Chavali S, Jonsdottir AB, Rajendra E, Gruner T, Laskey RA, Babu MM, Venkitaraman AR (2013) Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity. Mol Cell 51:737–750PubMedCrossRefGoogle Scholar
  174. Wickramasinghe VO, Andrews R, Ellis P, Langford C, Gurdon JB, Stewart M, Venkitaraman AR, Laskey RA (2014) Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP. Nucleic Acids Res 42:5059–5071PubMedPubMedCentralCrossRefGoogle Scholar
  175. Willemsen R, Oostra BA, Bassell GJ, Dictenberg J (2004) The fragile X syndrome: from molecular genetics to neurobiology. Ment Retard Dev Disabil Res Rev 10:60–67PubMedCrossRefGoogle Scholar
  176. Williams BJ, Boyne JR, Goodwin DJ, Roaden L, Hautbergue GM, Wilson SA, Whitehouse A (2005) The prototype γ-2 herpesvirus nucleocytoplasmic shuttling protein, ORF 57, transports viral RNA through the cellular mRNA export pathway. Biochem J 387:295–308PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, Sznajder LJ, Mykowska A, Sroka J, Thornton CA, Sobczak K (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43:3318–3331PubMedPubMedCentralCrossRefGoogle Scholar
  178. Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20:620–630PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, Kambe T, Nagao M, Nishida E, Masuda S (2010) The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. Mol Biol Cell 21:2953–2965PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yang J, Bogerd HP, Wang PJ, Page DC, Cullen BR (2001) Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol Cell 8:397–406PubMedCrossRefGoogle Scholar
  181. Yang J, Li Y, Khoury T, Alrawi S, Goodrich DW, Tan D (2008) Relationships of hHpr1/p84/Thoc1 expression to clinicopathologic characteristics and prognosis in non-small cell lung cancer. Ann Clin Lab Sci 38:105–112PubMedPubMedCentralGoogle Scholar
  182. Yi R, Bogerd HP, Cullen BR (2002) Recruitment of the Crm1 nuclear export factor is sufficient to induce cytoplasmic expression of incompletely spliced human immunodeficiency virus mRNAs. J Virol 76:2036–2042PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yu J, Miehlke S, Ebert MP, Hoffmann J, Breidert M, Alpen B, Starzynska T, Stolte Prof M, Malfertheiner P, Bayerdorffer E (2000) Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88:1801–1806PubMedCrossRefGoogle Scholar
  184. Zahreddine HA, Culjkovic-Kraljacic B, Assouline S, Gendron P, Romeo AA, Morris SJ, Cormack G, Jaquith JB, Cerchietti L, Cocolakis E, Amri A, Bergeron J, Leber B, Becker MW, Pei S, Jordan CT, Miller WH, Borden KL (2014) The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature 511:90–93PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhao J, Jin SB, Wieslander L (2004) CRM1 and Ran are present but a NES-CRM1-RanGTP complex is not required in Balbiani ring mRNP particles from the gene to the cytoplasm. J Cell Sci 117:1553–1566PubMedCrossRefGoogle Scholar
  186. Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407:401–405PubMedCrossRefGoogle Scholar
  187. Zolotukhin AS, Uranishi H, Lindtner S, Bear J, Pavlakis GN, Felber BK (2009) Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res 37:7151–7162PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell BiologyUniversité de MontréalMontrealCanada

Personalised recommendations