Advertisement

Structures of Importins and Exportins

  • Jordan Baumhardt
  • Yuh Min Chook
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 33)

Abstract

The karyopherin-β (Kap) family of nuclear transport receptors mediates the majority of nuclear-cytoplasmic transport of macromolecules, especially that of proteins. Kaps include importins that transport cargos into the nucleus, exportins that transport cargos out of the nucleus, and bidirectional Kaps that transport one set of cargos into the nucleus and another set of cargos out of the nucleus. The binding of transport cargos to Kaps and the release of cargos from Kaps are controlled by the Ran GTPase, hence dependent on the RanGTP–RanGDP gradient in cells. Many structures of the import adaptor importin-α complexes and of ten different Kaps are available. This chapter begins covers nucleotide-specific conformational differences of the Ran GTPase, structural information on importin-α and of ten different Kaps describing how each protein recognizes cargo(s), how Ran affects Kap-cargo interactions, and in a few cases how Kaps interact with nucleoporins.

References

  1. Adam EJ, Adam SA (1994) Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J Cell Biol 125(3):547–555CrossRefPubMedGoogle Scholar
  2. Aksu M, Trakhanov S, Gorlich D (2016) Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nat Commun 7:11952.  https://doi.org/10.1038/ncomms11952 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allemand E, Dokudovskaya S, Bordonne R, Tazi J (2002) A conserved Drosophila transportin-serine/arginine-rich (SR) protein permits nuclear import of Drosophila SR protein splicing factors and their antagonist repressor splicing factor 1. Mol Biol Cell 13(7):2436–2447.  https://doi.org/10.1091/mbc.E02-02-0102 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aramburu IV, Lemke EA (2017) Floppy but not sloppy: interaction mechanism of FG-Nucleoporins and nuclear transport receptors. Semin Cell Dev Biol 68:34–41.  https://doi.org/10.1016/j.semcdb.2017.06.026 CrossRefPubMedGoogle Scholar
  5. Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102(1):99–108CrossRefPubMedGoogle Scholar
  6. Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M (2002) GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem 277(52):50597–50606.  https://doi.org/10.1074/jbc.M209037200 CrossRefPubMedGoogle Scholar
  7. Bednenko J, Cingolani G, Gerace L (2003) Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport. J Cell Biol 162(3):391–401.  https://doi.org/10.1083/jcb.200303085 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bjork GR, Ericson JU, Gustafsson CE, Hagervall TG, Jonsson YH, Wikstrom PM (1987) Transfer RNA modification. Annu Rev Biochem 56:263–287.  https://doi.org/10.1146/annurev.bi.56.070187.001403 CrossRefPubMedGoogle Scholar
  9. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bono F, Cook AG, Grunwald M, Ebert J, Conti E (2010) Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol Cell 37(2):211–222.  https://doi.org/10.1016/j.molcel.2010.01.007 CrossRefPubMedGoogle Scholar
  11. Brownawell AM, Macara IG (2002) Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J Cell Biol 156(1):53–64.  https://doi.org/10.1083/jcb.200110082 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cansizoglu AE, Chook YM (2007) Conformational heterogeneity of karyopherin beta2 is segmental. Structure 15(11):1431–1441.  https://doi.org/10.1016/j.str.2007.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cansizoglu AE, Lee BJ, Zhang ZC, Fontoura BM, Chook YM (2007) Structure-based design of a pathway-specific nuclear import inhibitor. Nat Struct Mol Biol 14(5):452–454.  https://doi.org/10.1038/nsmb1229 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chang CW, Counago RL, Williams SJ, Boden M, Kobe B (2012) Crystal structure of rice importin-alpha and structural basis of its interaction with plant-specific nuclear localization signals. Plant Cell 24(12):5074–5088.  https://doi.org/10.1105/tpc.112.104422 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Choi S, Yamashita E, Yasuhara N, Song J, Son SY, Won YH, Hong HR, Shin YS, Sekimoto T, Park IY, Yoneda Y, Lee SJ (2014) Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by importin beta. Acta Crystallogr D Biol Crystallogr 70(Pt 4):1050–1060.  https://doi.org/10.1107/S1399004714000972 CrossRefPubMedGoogle Scholar
  16. Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 399(6733):230–237.  https://doi.org/10.1038/20375 CrossRefPubMedGoogle Scholar
  17. Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11(6):703–715CrossRefPubMedGoogle Scholar
  18. Chook YM, Suel KE (2011) Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 1813(9):1593–1606.  https://doi.org/10.1016/j.bbamcr.2010.10.014 CrossRefPubMedGoogle Scholar
  19. Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399(6733):221–229.  https://doi.org/10.1038/20367 CrossRefPubMedGoogle Scholar
  20. Cingolani G, Bednenko J, Gillespie MT, Gerace L (2002) Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell 10(6):1345–1353CrossRefPubMedGoogle Scholar
  21. Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13(3):310–319CrossRefPubMedGoogle Scholar
  22. Conti E, Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8(3):329–338CrossRefPubMedGoogle Scholar
  23. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94(2):193–204CrossRefPubMedGoogle Scholar
  24. Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E (2005) The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 18(3):355–367.  https://doi.org/10.1016/j.molcel.2005.03.021 CrossRefPubMedGoogle Scholar
  25. Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671.  https://doi.org/10.1146/annurev.biochem.76.052705.161529 CrossRefPubMedGoogle Scholar
  26. Cook AG, Fukuhara N, Jinek M, Conti E (2009) Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 461(7260):60–65.  https://doi.org/10.1038/nature08394 CrossRefPubMedGoogle Scholar
  27. Cooper HL, Park MH, Folk JE, Safer B, Braverman R (1983) Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc Natl Acad Sci USA 80(7):1854–1857CrossRefPubMedGoogle Scholar
  28. Crochiere ML, Baloglu E, Klebanov B, Donovan S, Del Alamo D, Lee M, Kauffman M, Shacham S, Landesman Y (2016) A method for quantification of exportin-1 (XPO1) occupancy by Selective Inhibitor of Nuclear Export (SINE) compounds. Oncotarget 7(2):1863–1877.  https://doi.org/10.18632/oncotarget.6495 CrossRefPubMedGoogle Scholar
  29. Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121(Pt 7):957–968.  https://doi.org/10.1242/jcs.022103 CrossRefPubMedGoogle Scholar
  30. Daelemans D, Afonina E, Nilsson J, Werner G, Kjems J, De Clercq E, Pavlakis GN, Vandamme AM (2002) A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc Natl Acad Sci USA 99(22):14440–14445.  https://doi.org/10.1073/pnas.212285299 CrossRefPubMedGoogle Scholar
  31. Dong X, Biswas A, Suel KE, Jackson LK, Martinez R, Gu H, Chook YM (2009) Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 458(7242):1136–1141.  https://doi.org/10.1038/nature07975 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Enenkel C, Blobel G, Rexach M (1995) Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J Biol Chem 270(28):16499–16502CrossRefPubMedGoogle Scholar
  33. Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U (2001) RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. EMBO Rep 2(10):926–932.  https://doi.org/10.1093/embo-reports/kve200 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Etchin J, Sun Q, Kentsis A, Farmer A, Zhang ZC, Sanda T, Mansour MR, Barcelo C, McCauley D, Kauffman M, Shacham S, Christie AL, Kung AL, Rodig SJ, Chook YM, Look AT (2013) Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 27(1):66–74.  https://doi.org/10.1038/leu.2012.219 CrossRefPubMedGoogle Scholar
  35. Fontes MR, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297(5):1183–1194.  https://doi.org/10.1006/jmbi.2000.3642 CrossRefPubMedGoogle Scholar
  36. Forwood JK, Lange A, Zachariae U, Marfori M, Preast C, Grubmuller H, Stewart M, Corbett AH, Kobe B (2010) Quantitative structural analysis of importin-beta flexibility: paradigm for solenoid protein structures. Structure 18(9):1171–1183.  https://doi.org/10.1016/j.str.2010.06.015 CrossRefPubMedGoogle Scholar
  37. Fribourg S, Gatfield D, Izaurralde E, Conti E (2003) A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol 10(6):433–439.  https://doi.org/10.1038/nsb926 CrossRefPubMedGoogle Scholar
  38. Fung HY, Chook YM (2014) Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 27:52–61.  https://doi.org/10.1016/j.semcancer.2014.03.002 CrossRefPubMedGoogle Scholar
  39. Fung HY, Fu SC, Brautigam CA, Chook YM (2015) Structural determinants of nuclear export signal orientation in binding to exportin CRM1. Elife 4.  https://doi.org/10.7554/eLife.10034
  40. Fung HY, Fu SC, Chook YM (2017) Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. Elife 6.  https://doi.org/10.7554/eLife.23961
  41. Gao W, Lu C, Chen L, Keohavong P (2015) Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy. J Thorac Oncol 10(5):815–825.  https://doi.org/10.1097/JTO.0000000000000485 CrossRefPubMedGoogle Scholar
  42. Garzon R, Savona M, Baz R, Andreeff M, Gabrail N, Gutierrez M, Savoie L, Mau-Sorensen PM, Wagner-Johnston N, Yee K, Unger TJ, Saint-Martin JR, Carlson R, Rashal T, Kashyap T, Klebanov B, Shacham S, Kauffman M, Stone R (2017) A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood 129(24):3165–3174.  https://doi.org/10.1182/blood-2016-11-750158 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95(2):237–248CrossRefPubMedGoogle Scholar
  44. Gontan C, Guttler T, Engelen E, Demmers J, Fornerod M, Grosveld FG, Tibboel D, Gorlich D, Poot RA, Rottier RJ (2009) Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J Cell Biol 185(1):27–34.  https://doi.org/10.1083/jcb.200810106 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660.  https://doi.org/10.1146/annurev.cellbio.15.1.607 CrossRefPubMedGoogle Scholar
  46. Gorlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79(5):767–778CrossRefPubMedGoogle Scholar
  47. Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C (2014) Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol 7:85.  https://doi.org/10.1186/s13045-014-0085-1 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grunwald M, Bono F (2011) Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. EMBO J 30(2):427–438.  https://doi.org/10.1038/emboj.2010.320 CrossRefPubMedGoogle Scholar
  49. Grunwald M, Lazzaretti D, Bono F (2013) Structural basis for the nuclear export activity of Importin13. EMBO J 32(6):899–913.  https://doi.org/10.1038/emboj.2013.29 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gudleski N, Flanagan JM, Ryan EP, Bewley MC, Parent LJ (2010) Directionality of nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of karyopherins and viral RNA. Proc Natl Acad Sci USA 107(20):9358–9363.  https://doi.org/10.1073/pnas.1000304107 CrossRefPubMedGoogle Scholar
  51. Guttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Gorlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17(11):1367–1376.  https://doi.org/10.1038/nsmb.1931 CrossRefPubMedGoogle Scholar
  52. Haines JD, Herbin O, de la Hera B, Vidaurre OG, Moy GA, Sun Q, Fung HY, Albrecht S, Alexandropoulos K, McCauley D, Chook YM, Kuhlmann T, Kidd GJ, Shacham S, Casaccia P (2015) Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat Neurosci 18(4):511–520.  https://doi.org/10.1038/nn.3953 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hamamoto T, Seto H, Beppu T (1983) Leptomycins A and B, new antifungal antibiotics. II. Structure elucidation. J Antibiot (Tokyo) 36(6):646–650CrossRefGoogle Scholar
  54. Hayama R, Rout MP, Fernandez-Martinez J (2017) The nuclear pore complex core scaffold and permeability barrier: variations of a common theme. Curr Opin Cell Biol 46:110–118.  https://doi.org/10.1016/j.ceb.2017.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hing ZA, Fung HY, Ranganathan P, Mitchell S, El-Gamal D, Woyach JA, Williams K, Goettl VM, Smith J, Yu X, Meng X, Sun Q, Cagatay T, Lehman AM, Lucas DM, Baloglu E, Shacham S, Kauffman MG, Byrd JC, Chook YM, Garzon R, Lapalombella R (2016) Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia 30(12):2364–2372.  https://doi.org/10.1038/leu.2016.136 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hirano H, Kobayashi J, Matsuura Y (2017) Structures of the Karyopherins Kap121p and Kap60p Bound to the Nuclear Pore-Targeting Domain of the SUMO Protease Ulp1p. J Mol Biol 429(2):249–260.  https://doi.org/10.1016/j.jmb.2016.11.029 CrossRefPubMedGoogle Scholar
  57. Hood JK, Silver PA (1998) Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae. J Biol Chem 273(52):35142–35146CrossRefPubMedGoogle Scholar
  58. Huber FM, Hoelz A (2017) Molecular basis for protection of ribosomal protein L4 from cellular degradation. Nat Commun 8:14354.  https://doi.org/10.1038/ncomms14354 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Luhrmann R (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17(14):4114–4126.  https://doi.org/10.1093/emboj/17.14.4114 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Imasaki T, Shimizu T, Hashimoto H, Hidaka Y, Kose S, Imamoto N, Yamada M, Sato M (2007) Structural basis for substrate recognition and dissociation by human transportin 1. Mol Cell 28(1):57–67.  https://doi.org/10.1016/j.molcel.2007.08.006 CrossRefPubMedGoogle Scholar
  61. Ishizawa J, Kojima K, Hail N Jr, Tabe Y, Andreeff M (2015) Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. Pharmacol Ther 153:25–35.  https://doi.org/10.1016/j.pharmthera.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jeong SA, Kim K, Lee JH, Cha JS, Khadka P, Cho HS, Chung IK (2015) Akt-mediated phosphorylation increases the binding affinity of hTERT for importin alpha to promote nuclear translocation. J Cell Sci 128(15):2951.  https://doi.org/10.1242/jcs.176453 CrossRefPubMedGoogle Scholar
  63. Jovanovic-Talisman T, Zilman A (2017) Protein transport by the nuclear pore complex: simple biophysics of a complex biomachine. Biophys J 113(1):6–14.  https://doi.org/10.1016/j.bpj.2017.05.024 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kahle J, Baake M, Doenecke D, Albig W (2005) Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol Cell Biol 25(13):5339–5354.  https://doi.org/10.1128/MCB.25.13.5339-5354.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762.  https://doi.org/10.1016/j.bpj.2014.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kataoka N, Bachorik JL, Dreyfuss G (1999) Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol 145(6):1145–1152CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, Clardy J, Sellers WR, Silver PA (2003) A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 4(6):463–476CrossRefPubMedGoogle Scholar
  68. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139.  https://doi.org/10.1038/nrm2632 CrossRefPubMedGoogle Scholar
  69. Kobayashi J, Matsuura Y (2013) Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. J Mol Biol 425(11):1852–1868.  https://doi.org/10.1016/j.jmb.2013.02.035 CrossRefPubMedGoogle Scholar
  70. Kobayashi J, Hirano H, Matsuura Y (2015) Crystal structure of the karyopherin Kap121p bound to the extreme C-terminus of the protein phosphatase Cdc14p. Biochem Biophys Res Commun 463(3):309–314.  https://doi.org/10.1016/j.bbrc.2015.05.060 CrossRefPubMedGoogle Scholar
  71. Kobe B (1999) Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin alpha. Nat Struct Biol 6(4):388–397.  https://doi.org/10.1038/7625 CrossRefPubMedGoogle Scholar
  72. Kosugi S, Hasebe M, Tomita M, Yanagawa H (2008) Nuclear export signal consensus sequences defined using a localization-based yeast selection system. Traffic 9(12):2053–2062.  https://doi.org/10.1111/j.1600-0854.2008.00825.x CrossRefPubMedGoogle Scholar
  73. Koyama M, Matsuura Y (2010) An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J 29(12):2002–2013.  https://doi.org/10.1038/emboj.2010.89 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Koyama M, Shirai N, Matsuura Y (2014) Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex. Cell Rep 9(3):983–995.  https://doi.org/10.1016/j.celrep.2014.09.052 CrossRefPubMedGoogle Scholar
  75. Kubitscheck U, Siebrasse JP (2017) Kinetics of transport through the nuclear pore complex. Semin Cell Dev Biol 68:18–26.  https://doi.org/10.1016/j.semcdb.2017.06.016 CrossRefPubMedGoogle Scholar
  76. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A (2006) The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol 26(4):1318–1332.  https://doi.org/10.1128/MCB.26.4.1318-1332.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kuruvilla J, Savona M, Baz R, Mau-Sorensen PM, Gabrail N, Garzon R, Stone R, Wang M, Savoie L, Martin P, Flinn I, Jacoby M, Unger TJ, Saint-Martin JR, Rashal T, Friedlander S, Carlson R, Kauffman M, Shacham S, Gutierrez M (2017) Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 129(24):3175–3183.  https://doi.org/10.1182/blood-2016-11-750174 CrossRefPubMedGoogle Scholar
  78. Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90(6):1061–1071CrossRefPubMedGoogle Scholar
  79. Lai MC, Lin RI, Huang SY, Tsai CW, Tarn WY (2000) A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. J Biol Chem 275(11):7950–7957CrossRefPubMedGoogle Scholar
  80. Lai MC, Lin RI, Tarn WY (2001) Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc Natl Acad Sci USA 98(18):10154–10159.  https://doi.org/10.1073/pnas.181354098 CrossRefPubMedGoogle Scholar
  81. Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Mo X, Daelemans D, Sandanayaka V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC (2012) Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120(23):4621–4634.  https://doi.org/10.1182/blood-2012-05-429506 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Larue R, Gupta K, Wuensch C, Shkriabai N, Kessl JJ, Danhart E, Feng L, Taltynov O, Christ F, Van Duyne GD, Debyser Z, Foster MP, Kvaratskhelia M (2012) Interaction of the HIV-1 intasome with transportin 3 protein (TNPO3 or TRN-SR2). J Biol Chem 287(41):34044–34058.  https://doi.org/10.1074/jbc.M112.384669 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lau CK, Diem MD, Dreyfuss G, Van Duyne GD (2003) Structure of the Y14-Magoh core of the exon junction complex. Curr Biol 13(11):933–941CrossRefPubMedGoogle Scholar
  84. Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126(3):543–558.  https://doi.org/10.1016/j.cell.2006.05.049 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lee SJ, Sekimoto T, Yamashita E, Nagoshi E, Nakagawa A, Imamoto N, Yoshimura M, Sakai H, Chong KT, Tsukihara T, Yoneda Y (2003) The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor. Science 302(5650):1571–1575.  https://doi.org/10.1126/science.1088372 CrossRefPubMedGoogle Scholar
  86. Lee SJ, Matsuura Y, Liu SM, Stewart M (2005) Structural basis for nuclear import complex dissociation by RanGTP. Nature 435(7042):693–696.  https://doi.org/10.1038/nature03578 CrossRefPubMedGoogle Scholar
  87. Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG (2001) Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol 153(7):1391–1402CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lipowsky G, Bischoff FR, Schwarzmaier P, Kraft R, Kostka S, Hartmann E, Kutay U, Gorlich D (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 19(16):4362–4371.  https://doi.org/10.1093/emboj/19.16.4362 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Liu SM, Stewart M (2005) Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. J Mol Biol 349(3):515–525.  https://doi.org/10.1016/j.jmb.2005.04.003 CrossRefPubMedGoogle Scholar
  90. Lorenz C, Lunse CE, Morl M (2017) tRNA modifications: impact on structure and thermal adaptation. Biomolecules 7(2).  https://doi.org/10.3390/biom7020035 CrossRefPubMedCentralGoogle Scholar
  91. Lott K, Cingolani G (2011) The importin beta binding domain as a master regulator of nucleocytoplasmic transport. Biochim Biophys Acta 1813(9):1578–1592.  https://doi.org/10.1016/j.bbamcr.2010.10.012 CrossRefPubMedGoogle Scholar
  92. Lott K, Bhardwaj A, Sims PJ, Cingolani G (2011) A minimal nuclear localization signal (NLS) in human phospholipid scramblase 4 that binds only the minor NLS-binding site of importin alpha1. J Biol Chem 286(32):28160–28169.  https://doi.org/10.1074/jbc.M111.228007 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282(5396):2082–2085CrossRefPubMedGoogle Scholar
  94. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98.  https://doi.org/10.1126/science.1090599 CrossRefPubMedGoogle Scholar
  95. Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Oztop I, Lee K, Pye VE, Cosnefroy O, Snijders AP, KewalRamani VN, Fassati A, Engelman A, Cherepanov P (2014) Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci USA 111(7):2728–2733.  https://doi.org/10.1073/pnas.1320755111 CrossRefPubMedGoogle Scholar
  96. Marfori M, Lonhienne TG, Forwood JK, Kobe B (2012) Structural basis of high-affinity nuclear localization signal interactions with importin-alpha. Traffic 13(4):532–548.  https://doi.org/10.1111/j.1600-0854.2012.01329.x CrossRefPubMedGoogle Scholar
  97. Mason DA, Stage DE, Goldfarb DS (2009) Evolution of the metazoan-specific importin alpha gene family. J Mol Evol 68(4):351–365.  https://doi.org/10.1007/s00239-009-9215-8 CrossRefPubMedGoogle Scholar
  98. Matsuura Y, Stewart M (2004) Structural basis for the assembly of a nuclear export complex. Nature 432(7019):872–877.  https://doi.org/10.1038/nature03144 CrossRefPubMedGoogle Scholar
  99. Matsuura Y, Stewart M (2005) Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J 24(21):3681–3689.  https://doi.org/10.1038/sj.emboj.7600843 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Melchior F, Paschal B, Evans J, Gerace L (1993) Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123(6 Pt 2):1649–1659CrossRefPubMedGoogle Scholar
  101. Mingot JM, Kostka S, Kraft R, Hartmann E, Gorlich D (2001) Importin 13: a novel mediator of nuclear import and export. EMBO J 20(14):3685–3694.  https://doi.org/10.1093/emboj/20.14.3685 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mitrousis G, Olia AS, Walker-Kopp N, Cingolani G (2008) Molecular basis for the recognition of snurportin 1 by importin beta. J Biol Chem 283(12):7877–7884.  https://doi.org/10.1074/jbc.M709093200 CrossRefPubMedGoogle Scholar
  103. Miyatake H, Sanjoh A, Murakami T, Murakami H, Matsuda G, Hagiwara K, Yokoyama M, Sato H, Miyamoto Y, Dohmae N, Aida Y (2016) Molecular Mechanism of HIV-1 Vpr for Binding to Importin-alpha. J Mol Biol 428(13):2744–2757.  https://doi.org/10.1016/j.jmb.2016.05.003 CrossRefPubMedGoogle Scholar
  104. Monecke T, Guttler T, Neumann P, Dickmanns A, Gorlich D, Ficner R (2009) Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324(5930):1087–1091.  https://doi.org/10.1126/science.1173388 CrossRefPubMedGoogle Scholar
  105. Monecke T, Haselbach D, Voss B, Russek A, Neumann P, Thomson E, Hurt E, Zachariae U, Stark H, Grubmuller H, Dickmanns A, Ficner R (2013) Structural basis for cooperativity of CRM1 export complex formation. Proc Natl Acad Sci USA 110(3):960–965.  https://doi.org/10.1073/pnas.1215214110 CrossRefPubMedGoogle Scholar
  106. Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365(6447):661–663.  https://doi.org/10.1038/365661a0 CrossRefPubMedGoogle Scholar
  107. Moroianu J, Blobel G, Radu A (1995a) Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc Natl Acad Sci USA 92(6):2008–2011CrossRefPubMedGoogle Scholar
  108. Moroianu J, Hijikata M, Blobel G, Radu A (1995b) Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci USA 92(14):6532–6536CrossRefPubMedGoogle Scholar
  109. Moroianu J, Blobel G, Radu A (1997) RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153. Proc Natl Acad Sci USA 94(18):9699–9704CrossRefPubMedGoogle Scholar
  110. Murakami N, Ye Y, Kawanishi M, Aoki S, Kudo N, Yoshida M, Nakayama EE, Shioda T, Kobayashi M (2002) New Rev-transport inhibitor with anti-HIV activity from Valerianae Radix. Bioorg Med Chem Lett 12(20):2807–2810CrossRefPubMedGoogle Scholar
  111. Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB, Murli S (2009) Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 69(2):510–517.  https://doi.org/10.1158/0008-5472.CAN-08-0858 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Nakada R, Hirano H, Matsuura Y (2015) Structure of importin-alpha bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci Rep 5:15055.  https://doi.org/10.1038/srep15055 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Newlands ES, Rustin GJ, Brampton MH (1996) Phase I trial of elactocin. Br J Cancer 74(4):648–649CrossRefPubMedPubMedCentralGoogle Scholar
  114. Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269(9):6320–6324PubMedGoogle Scholar
  115. Niu C, Zhang J, Gao F, Yang L, Jia M, Zhu H, Gong W (2012) FUS-NLS/Transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS One 7(10):e47056.  https://doi.org/10.1371/journal.pone.0047056 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Noguchi E, Hayashi N, Nakashima N, Nishimoto T (1997) Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rna1p, a yeast Ran-GTPase-activating protein. Mol Cell Biol 17(4):2235–2246CrossRefPubMedPubMedCentralGoogle Scholar
  117. Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326(5957):1275–1279.  https://doi.org/10.1126/science.1178705 CrossRefPubMedGoogle Scholar
  118. Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9(8):2351–2359PubMedPubMedCentralCrossRefGoogle Scholar
  119. Parikh K, Cang S, Sekhri A, Liu D (2014) Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents. J Hematol Oncol 7:78.  https://doi.org/10.1186/s13045-014-0078-0 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Park MH, Cooper HL, Folk JE (1982) The biosynthesis of protein-bound hypusine (N epsilon -(4-amino-2-hydroxybutyl)lysine). Lysine as the amino acid precursor and the intermediate role of deoxyhypusine (N epsilon -(4-aminobutyl)lysine). J Biol Chem 257(12):7217–7222PubMedGoogle Scholar
  121. Partridge JR, Schwartz TU (2009) Crystallographic and biochemical analysis of the Ran-binding zinc finger domain. J Mol Biol 391(2):375–389.  https://doi.org/10.1016/j.jmb.2009.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Port SA, Monecke T, Dickmanns A, Spillner C, Hofele R, Urlaub H, Ficner R, Kehlenbach RH (2015) Structural and functional characterization of CRM1-Nup214 interactions reveals multiple FG-binding sites involved in nuclear export. Cell Rep 13(4):690–702.  https://doi.org/10.1016/j.celrep.2015.09.042 CrossRefPubMedGoogle Scholar
  123. Pumroy RA, Cingolani G (2015) Diversification of importin-alpha isoforms in cellular trafficking and disease states. Biochem J 466(1):13–28.  https://doi.org/10.1042/BJ20141186 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Radu A, Blobel G, Moore MS (1995a) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92(5):1769–1773CrossRefPubMedGoogle Scholar
  125. Radu A, Moore MS, Blobel G (1995b) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81(2):215–222CrossRefPubMedGoogle Scholar
  126. Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105(2):245–255CrossRefPubMedGoogle Scholar
  127. Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83(5):683–692CrossRefPubMedGoogle Scholar
  128. Riccio AA, Cingolani G, Pascal JM (2016) PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res 44(4):1691–1702.  https://doi.org/10.1093/nar/gkv1376 CrossRefPubMedGoogle Scholar
  129. Richards SA, Lounsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem 270(24):14405–14411CrossRefPubMedGoogle Scholar
  130. Rona G, Marfori M, Borsos M, Scheer I, Takacs E, Toth J, Babos F, Magyar A, Erdei A, Bozoky Z, Buday L, Kobe B, Vertessy BG (2013) Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights. Acta Crystallogr D Biol Crystallogr 69(Pt 12):2495–2505.  https://doi.org/10.1107/S0907444913023354 CrossRefPubMedGoogle Scholar
  131. Rudack T, Jenrich S, Brucker S, Vetter IR, Gerwert K, Kotting C (2015) Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy. J Biol Chem 290(40):24079–24090.  https://doi.org/10.1074/jbc.M115.648071 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Saito N, Matsuura Y (2013) A 2.1-A-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition. J Mol Biol 425(2):350–364.  https://doi.org/10.1016/j.jmb.2012.11.014 CrossRefPubMedGoogle Scholar
  133. Sakakibara K, Saito N, Sato T, Suzuki A, Hasegawa Y, Friedman JM, Kufe DW, Vonhoff DD, Iwami T, Kawabe T (2011) CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118(14):3922–3931.  https://doi.org/10.1182/blood-2011-01-333138 CrossRefPubMedGoogle Scholar
  134. Sakiyama Y, Panatala R, Lim RYH (2017) Structural dynamics of the nuclear pore complex. Semin Cell Dev Biol 68:27–33.  https://doi.org/10.1016/j.semcdb.2017.05.021 CrossRefPubMedGoogle Scholar
  135. Scheidig AJ, Sanchez-Llorente A, Lautwein A, Pai EF, Corrie JE, Reid GP, Wittinghofer A, Goody RS (1994) Crystallographic studies on p21(H-ras) using the synchrotron Laue method: improvement of crystal quality and monitoring of the GTPase reaction at different time points. Acta Crystallogr D Biol Crystallogr 50(Pt 4):512–520.  https://doi.org/10.1107/S090744499301443X CrossRefPubMedGoogle Scholar
  136. Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR (2008) The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 16(7):1116–1125.  https://doi.org/10.1016/j.str.2008.03.014 CrossRefPubMedGoogle Scholar
  137. Seewald MJ, Korner C, Wittinghofer A, Vetter IR (2002) RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415(6872):662–666.  https://doi.org/10.1038/415662a CrossRefPubMedGoogle Scholar
  138. Senger B, Simos G, Bischoff FR, Podtelejnikov A, Mann M, Hurt E (1998) Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J 17(8):2196–2207.  https://doi.org/10.1093/emboj/17.8.2196 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65(1):153–159.; discussion 159–160.  https://doi.org/10.1227/01.NEU.0000348550.47441.4B CrossRefPubMedGoogle Scholar
  140. Shi H, Xu RM (2003) Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev 17(8):971–976.  https://doi.org/10.1101/gad.260403 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Shiba T, Mizote H, Kaneko T, Nakajima T, Kakimoto Y (1971) Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determination. Biochim Biophys Acta 244(3):523–531CrossRefPubMedGoogle Scholar
  142. Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoneda Y (2006) Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res 34(17):4711–4721.  https://doi.org/10.1093/nar/gkl663 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G (1998) Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 18(11):6805–6815CrossRefPubMedPubMedCentralGoogle Scholar
  144. Soniat M, Chook YM (2015) Nuclear localization signals for four distinct karyopherin-beta nuclear import systems. Biochem J 468(3):353–362.  https://doi.org/10.1042/BJ20150368 CrossRefPubMedGoogle Scholar
  145. Soniat M, Chook YM (2016) Karyopherin-beta2 Recognition of a PY-NLS Variant that Lacks the Proline-Tyrosine Motif. Structure 24(10):1802–1809.  https://doi.org/10.1016/j.str.2016.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Soniat M, Sampathkumar P, Collett G, Gizzi AS, Banu RN, Bhosle RC, Chamala S, Chowdhury S, Fiser A, Glenn AS, Hammonds J, Hillerich B, Khafizov K, Love JD, Matikainen B, Seidel RD, Toro R, Rajesh Kumar P, Bonanno JB, Chook YM, Almo SC (2013) Crystal structure of human Karyopherin beta2 bound to the PY-NLS of Saccharomyces cerevisiae Nab2. J Struct Funct Genomics 14(2):31–35.  https://doi.org/10.1007/s10969-013-9150-1 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Stewart M, Kent HM, McCoy AJ (1998a) Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J Mol Biol 277(3):635–646.  https://doi.org/10.1006/jmbi.1997.1602 CrossRefPubMedGoogle Scholar
  148. Stewart M, Kent HM, McCoy AJ (1998b) The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 284(5):1517–1527.  https://doi.org/10.1006/jmbi.1998.2204 CrossRefPubMedGoogle Scholar
  149. Suel KE, Gu H, Chook YM (2008) Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLoS Biol 6(6):e137.  https://doi.org/10.1371/journal.pbio.0060137 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sun Q, Carrasco YP, Hu Y, Guo X, Mirzaei H, Macmillan J, Chook YM (2013) Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc Natl Acad Sci USA 110(4):1303–1308.  https://doi.org/10.1073/pnas.1217203110 CrossRefPubMedGoogle Scholar
  151. Takeda AA, de Barros AC, Chang CW, Kobe B, Fontes MR (2011) Structural basis of importin-alpha-mediated nuclear transport for Ku70 and Ku80. J Mol Biol 412(2):226–234.  https://doi.org/10.1016/j.jmb.2011.07.038 CrossRefPubMedGoogle Scholar
  152. Tamura S, Shiomi A, Kaneko M, Ye Y, Yoshida M, Yoshikawa M, Kimura T, Kobayashi M, Murakami N (2009) New Rev-export inhibitor from Alpinia galanga and structure-activity relationship. Bioorg Med Chem Lett 19(9):2555–2557.  https://doi.org/10.1016/j.bmcl.2009.03.047 CrossRefPubMedGoogle Scholar
  153. Tauchert MJ, Hemonnot C, Neumann P, Koster S, Ficner R, Dickmanns A (2016) Impact of the crystallization condition on importin-beta conformation. Acta Crystallogr D Struct Biol 72(Pt 6):705–717.  https://doi.org/10.1107/S2059798316004940 CrossRefPubMedGoogle Scholar
  154. Taura T, Krebber H, Silver PA (1998) A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export. Proc Natl Acad Sci USA 95(13):7427–7432CrossRefPubMedGoogle Scholar
  155. Tay MY, Smith K, Ng IH, Chan KW, Zhao Y, Ooi EE, Lescar J, Luo D, Jans DA, Forwood JK, Vasudevan SG (2016) The C-terminal 18 amino acid region of dengue virus NS5 regulates its subcellular localization and contains a conserved arginine residue essential for infectious virus production. PLoS Pathog 12(9):e1005886.  https://doi.org/10.1371/journal.ppat.1005886 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Tong Y, Park I, Hong BS, Nedyalkova L, Tempel W, Park HW (2009) Crystal structure of human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2. Proteins 75(4):1040–1045.  https://doi.org/10.1002/prot.22378 CrossRefPubMedGoogle Scholar
  157. Tsirkone VG, Beutels KG, Demeulemeester J, Debyser Z, Christ F, Strelkov SV (2014) Structure of transportin SR2, a karyopherin involved in human disease, in complex with Ran. Acta Crystallogr F Struct Biol Commun 70(Pt 6):723–729.  https://doi.org/10.1107/S2053230X14009492 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A (1999a) Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 97(5):635–646CrossRefPubMedGoogle Scholar
  159. Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999b) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398(6722):39–46.  https://doi.org/10.1038/17969 CrossRefPubMedGoogle Scholar
  160. Villa Braslavsky CI, Nowak C, Gorlich D, Wittinghofer A, Kuhlmann J (2000) Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-beta. Biochemistry 39(38):11629–11639CrossRefPubMedGoogle Scholar
  161. Walker P, Doenecke D, Kahle J (2009) Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. J Biol Chem 284(17):11652–11662.  https://doi.org/10.1074/jbc.M806820200 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112(4):441–451CrossRefPubMedGoogle Scholar
  163. Xie QL, Liu Y, Zhu Y (2016) Chromosome region maintenance 1 expression and its association with clinical pathological features in primary carcinoma of the liver. Exp Ther Med 12(1):59–68.  https://doi.org/10.3892/etm.2016.3283 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Xu D, Farmer A, Collett G, Grishin NV, Chook YM (2012a) Sequence and structural analyses of nuclear export signals in the NESdb database. Mol Biol Cell 23(18):3677–3693.  https://doi.org/10.1091/mbc.E12-01-0046 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Xu D, Grishin NV, Chook YM (2012b) NESdb: a database of NES-containing CRM1 cargoes. Mol Biol Cell 23(18):3673–3676.  https://doi.org/10.1091/mbc.E12-01-0045 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Xu S, Zhang Z, Jing B, Gannon P, Ding J, Xu F, Li X, Zhang Y (2011) Transportin-SR is required for proper splicing of resistance genes and plant immunity. PLoS Genet 7(6):e1002159.  https://doi.org/10.1371/journal.pgen.1002159 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016.  https://doi.org/10.1101/gad.1158803 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhang ZC, Chook YM (2012) Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci USA 109(30):12017–12021.  https://doi.org/10.1073/pnas.1207247109 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations