On the Role of the Channel Nucleoporins in Nuclear Transport

  • Sozanne R. SolmazEmail author
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 33)


The nuclear pore complex (NPC) facilitates transport of a large diversity of cargoes, including proteins, mRNA protein complexes, and ribosomal subunits. Three of its proteins line the central transport channel: Nup58, Nup54, and Nup62. These channel nups are essential to achieve significant transport rates through the NPC. Recently, several x-ray structures of the channel nups have been determined. Furthermore, a cryo-electron tomography structure of the NPC was determined, and the x-ray structures were docked into the electron microscopy map, yielding a composite structure of the NPC. These advances provide insight into the organization of the channel nups in the NPC transport channel, the FG-repeat permeability barrier, and the mechanism of active transport. They provide a foundation to investigate in the future whether the NPC scaffold is static, and merely serves to provide anchorage sites for FG-repeat domains, or whether multiple structural conformations of the NPC scaffold are formed. It will also be important to investigate how the presence of FG-repeats, which make up a significant portion of the NPC mass, and their interactions with transport receptors modulate the NPC scaffold and how this affects nuclear transport rates. It also needs to be established how distinct physiological states, such as cell proliferation, developmental stages, cell quiescence, cancer, or viral infections, modulate the structure and composition of the NPC transport channel to adjust transport rates to cellular demands.



I thank Günter Blobel, as well as his trainees Ivo Melcak, Junseock Koh, and Bartlomiej Blus (HHMI at The Rockefeller University) for critical reading of the manuscript. Sadly, my dear mentor and friend Günter Blobel passed away on February 18, 2018. Words cannot express how much I miss his enthusiasm, vision, brilliance, generosity and impeccable scholarship. I would like to dedicate my book chapter to his memory and to the great scientific discussions we had. Furthermore, I would like to thank Rachael Behler, Kyle Loftus and Ayesha Siddiqua (Binghamton University), for helpful comments. We thank the Research Foundation of the State University of New York and the Department of Chemistry, State University of New York at Binghamton for funding.


  1. Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107(14):6281–6285PubMedCrossRefGoogle Scholar
  2. Akey CW, Goldfarb DS (1989) Protein import through the nuclear pore complex is a multistep process. J Cell Biol 109(3):971–982CrossRefPubMedGoogle Scholar
  3. Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos Damien P, Arumugam M, Bork P, Hurt E (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146(2):277–289PubMedCrossRefGoogle Scholar
  4. Ao Z, Jayappa KD, Wang B, Zheng Y, Wang X, Peng J, Yao X (2012) Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration. J Biol Chem 287(13):10544–10555PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asakawa H, Yang H-J, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata-Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y, Haraguchi T (2014) Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 5(2):149–162PubMedPubMedCentralCrossRefGoogle Scholar
  6. Au S, Panté N (2012) Nuclear transport of baculovirus: revealing the nuclear pore complex passage. J Struct Biol 177(1):90–98PubMedCrossRefGoogle Scholar
  7. Bailer SM (2000) Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J Biol Chem 275:23540–23548PubMedCrossRefGoogle Scholar
  8. Bailer SM, Balduf C, Hurt E (2001) The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. Mol Cell Biol 21:7944–7955PubMedPubMedCentralCrossRefGoogle Scholar
  9. Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60(2):214–222PubMedCrossRefGoogle Scholar
  10. Bayliss R, Littlewood T, Stewart M (2000) Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102(1):99–108CrossRefPubMedGoogle Scholar
  11. Bayliss R, Leung SW, Baker RP, Quimby B, Corbett AH, Stewart M (2002) Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J 21(12):2843–2853PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brunger AT, Weninger K, Bowen M, Chu S (2009) Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 78(1):903–928. Scholar
  13. Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull M-T, Bock T, Hagen W, Andres-Pons A, Glavy JS, Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6):1233–1243CrossRefPubMedGoogle Scholar
  14. Buss F, Stewart M (1995) Macromolecular interactions in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62. J Cell Biol 128(3):251–261PubMedCrossRefGoogle Scholar
  15. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carmo-Fonseca M, Kern H, Hurt EC (1991) Human nucleoporin p62 and the essential yeast nuclear pore protein NSP1 show sequence homology and a similar domain organization. Eur J Cell Biol 55(1):17–30PubMedGoogle Scholar
  17. Castelló A, Izquierdo JM, Welnowska E, Carrasco L (2009) RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 122(Pt20):3799–3809PubMedCrossRefGoogle Scholar
  18. Chang C-W, Lee C-P, Su M-T, Tsai C-H, Chen M-R (2015) BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins. J Virol 89(3):1703–1718PubMedCrossRefGoogle Scholar
  19. Chug H, Trakhanov S, Hülsmann BB, Pleiner T, Görlich D (2015) Crystal structure of the metazoan Nup62•Nup58•Nup54 nucleoporin complex. Science 350(6256):106PubMedCrossRefGoogle Scholar
  20. Ciomperlik JJ, Basta HA, Palmenberg AC (2015) Three cardiovirus leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways. Virology 484:194–202PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cohen S, Au S, Pante N (2011) How viruses access the nucleus. Biochim Biophys Acta 1813(9):1634–1645PubMedCrossRefGoogle Scholar
  22. Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697CrossRefGoogle Scholar
  23. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927PubMedPubMedCentralCrossRefGoogle Scholar
  24. Davis LI, Blobel G (1986) Identification and characterization of a nuclear pore complex protein. Cell 45(5):699–709PubMedCrossRefGoogle Scholar
  25. Davis LI, Blobel G (1987) Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA 84(21):7552–7556PubMedCrossRefGoogle Scholar
  26. Dewangan PS, Sonawane PJ, Chouksey AR, Chauhan R (2017) The Nup62 coiled-coil motif provides plasticity for triple-helix bundle formation. Biochemistry 56(22):2803–2811PubMedCrossRefGoogle Scholar
  27. Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6:7532PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138(6):1193PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feldherr CM, Akin D (1990) The permeability of the nuclear envelope in dividing and nondividing cell cultures. J Cell Biol 111(1):1–8PubMedCrossRefGoogle Scholar
  30. Feldherr CM, Akin D (1991) Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J Cell Biol 115(4):933–939PubMedCrossRefGoogle Scholar
  31. Feldherr CM, Akin D (1993) Regulation of nuclear transport in proliferating and quiescent cells. Exp Cell Res 205(1):179–186PubMedCrossRefPubMedCentralGoogle Scholar
  32. Finlay D, Newmeyer D, Price T, Forbes D (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104(2):189–200PubMedCrossRefGoogle Scholar
  33. Finlay D, Meier E, Bradley P, Horecka J, Forbes D (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114(1):169–183PubMedCrossRefGoogle Scholar
  34. Finlay DR, Forbes DJ (1990) Reconstitution of biochemically altered nuclear pores: transport can be eliminated and restored. Cell 60(1):17–29PubMedCrossRefGoogle Scholar
  35. Fischer J, Teimer R, Amlacher S, Kunze R, Hurt E (2015) Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat Struct Mol Biol 22(10):774–781CrossRefPubMedGoogle Scholar
  36. Forbes DJ, Kirschner MW, Newport JW (1983) Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34(1):13–23PubMedCrossRefGoogle Scholar
  37. Frank S, Lustig A, Schulthess T, Engel J, Kammerer RA (2000) A distinct seven-residue trigger sequence is indispensable for proper coiled-coil formation of the human macrophage scavenger receptor oligomerization domain. J Biol Chem 275(16):11672–11677PubMedCrossRefGoogle Scholar
  38. Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817PubMedCrossRefGoogle Scholar
  39. Fribourg S, Braun IC, Izaurralde E, Conti E (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8(3):645–656PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gamini R, Han W, Stone JE, Schulten K (2014) Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comput Biol 10(3):e1003488PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gonzalez L, Woolfson DN, Alber T (1996) Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Mol Biol 3(12):1011–1018CrossRefGoogle Scholar
  42. Grandi P, Schlaich N, Tekotte H, Hurt EC (1995) Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J 14(1):76–87PubMedPubMedCentralCrossRefGoogle Scholar
  43. Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14(2):600–610PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guan T, Müller S, Klier G, Panté N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6(11):1591–1603PubMedPubMedCentralCrossRefGoogle Scholar
  45. Haltiwanger RS, Blomberg MA, Hart GW (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem 267(13):9005–9013PubMedPubMedCentralGoogle Scholar
  46. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Ann Rev Biochem 80:825–858PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hoelz A, Glavy JS, Beck M (2016) Towards the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat Struct Mol Biol 23(7):624–630PubMedPubMedCentralCrossRefGoogle Scholar
  48. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O- linked N-acetylglucosamine. J Cell Biol 104(5):1157–1164PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D (2015) The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 4:e10027PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hu T, Gerace L (1998) cDNA cloning and analysis of the expression of nucleoporin p45. Gene 221(2):245–253PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hu T, Guan T, Gerace L (1996) Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J Cell Biol 134(3):589–601PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hülsmann Bastian B, Labokha Aksana A, Görlich D (2012) The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150(4):738–751PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jeudy S, Schwartz TU (2007) Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture. J Biol Chem 282(48):34904–34912PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371CrossRefPubMedGoogle Scholar
  55. Kapinos Larisa E, Schoch Rafael L, Wagner Raphael S, Schleicher Kai D, Lim Roderick Y (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kelich JM, Ma J, Dong B, Wang Q, Chin M, Magura CM, Xiao W, Yang W (2015) Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol Ther Methods Clin Dev 2:15047PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475PubMedCrossRefPubMedCentralGoogle Scholar
  58. King MC, Lusk C, Blobel G (2006) Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442(7106):1003–1007CrossRefPubMedGoogle Scholar
  59. Kinoshita Y, Kalir T, Dottino P, Kohtz DS (2012) Nuclear distributions of Nup62 and Nup214 suggest architectural diversity and spatial patterning among nuclear pore complexes. PLoS One 7(4):e36137PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kinoshita Y, Hunter RG, Gray JD, Mesias R, McEwen BS, Benson DL, Kohtz DS (2014) Role for NUP62 depletion and PYK2 redistribution in dendritic retraction resulting from chronic stress. Proc Natl Acad Sci USA 111(45):16130–16135PubMedCrossRefGoogle Scholar
  61. Kiseleva E, Goldberg MW, Allen TD, Akey CW (1998) Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J Cell Sci 111(2):223PubMedGoogle Scholar
  62. Kita K, Omata S, Horigome T (1993) Purification and characterization of a nuclear pore glycoprotein complex containing p 62. J Biochem 113(3):377–382PubMedCrossRefGoogle Scholar
  63. Koder RL, Valentine KG, Cerda J, Noy D, Smith KM, Wand AJ, Dutton PL (2006) Nativelike structure in designed four α-helix bundles driven by buried polar interactions. J Am Chem Soc 128(45):14450–14451PubMedCrossRefGoogle Scholar
  64. Koh J, Blobel G (2015) Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161(6):1361–1373PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJH, Briggs JAG, Glavy JS, Hurt E, Beck M (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283):363–365CrossRefPubMedGoogle Scholar
  66. Lagerlöf O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, Huganir RL (2016) The nutrient sensor OGT in PVN neurons regulates feeding. Science 351(6279):1293–1296PubMedPubMedCentralCrossRefGoogle Scholar
  67. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutay U (2011) Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144:539–550CrossRefPubMedGoogle Scholar
  68. Liashkovich I, Meyring A, Oberleithner H, Shahin V (2012) Structural organization of the nuclear pore permeability barrier. J Control Release 160(3):601–608PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A (2016) Architecture of the symmetric core of the nuclear pore. Science 352(6283). Scholar
  70. Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598):719PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lubas WA, Smith M, Starr CM, Hanover JA (1995) Analysis of nuclear pore protein p62 glycosylation. Biochemistry 34(5):1686–1694PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164PubMedCrossRefGoogle Scholar
  73. Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8(5):414–420CrossRefPubMedGoogle Scholar
  74. Ma J, Goryaynov A, Sarma A, Yang W (2012) Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci USA 109(19):7326–7331PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414–2414PubMedPubMedCentralCrossRefGoogle Scholar
  76. Macaulay C, Meier E, Forbes DJ (1995) Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem 270(1):254–262. Scholar
  77. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Kuhn Cuellar L, Förster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276):969PubMedCrossRefGoogle Scholar
  78. Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, Schirmer EC (2012) Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through Nup62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem 287(15):12277–12292PubMedPubMedCentralCrossRefGoogle Scholar
  79. Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FAA, Kralt A, van den Bogaart G, Lusk CP, Poolman B, Veenhoff LM (2011) Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333(6038):90–93CrossRefPubMedGoogle Scholar
  80. Melcák I, Hoelz A, Blobel G (2007) Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science 315(5819):1729–1732CrossRefPubMedGoogle Scholar
  81. Mi L, Goryaynov A, Lindquist A, Rexach M, Yang W (2015) Quantifying nucleoporin stoichiometry inside single nuclear pore complexes in vivo. Sci Rep 5:9372PubMedPubMedCentralCrossRefGoogle Scholar
  82. Miao L, Schulten K (2009) Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17(3):449–459PubMedPubMedCentralCrossRefGoogle Scholar
  83. Miao L, Schulten K (2010) Probing a structural model of the nuclear pore complex channel through Molecular Dynamics. Biophys J 98(8):1658–1667PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mizuguchi-Hata C, Ogawa Y, Oka M, Yoneda Y (2013) Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. Biochim Biophys Acta 1833(12):2682–2689PubMedCrossRefGoogle Scholar
  85. Monette A, Panté N, Mouland AJ (2011) HIV-1 remodels the nuclear pore complex. J Cell Biol 193(4):619–631PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mosalaganti S, Kosinski J, Albert S, Schaffer M, Plitzko JM, Baumeister W, Engel BD, Beck M (2017) In situ architecture of the algal nuclear pore complex. bioRxiv.
  87. Ohba T, Schirmer EC, Nishimoto T, Gerace L (2004) Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J Cell Biol 167(6):1051PubMedPubMedCentralCrossRefGoogle Scholar
  88. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3PubMedCrossRefGoogle Scholar
  89. Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Bui KH, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648–648PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ostlund C, Ellenberg J, Hallberg E, Lippincott-Schwartz J, Worman HJ (1999) Intracellular trafficking of emerin, the Emery-Dreifuss muscular dystrophy protein. J Cell Sci 112(11):1709PubMedGoogle Scholar
  91. Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol Biol Cell 13(2):425–434PubMedPubMedCentralCrossRefGoogle Scholar
  92. Park N, Katikaneni P, Skern T, Gustin KE (2008) Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 82(4):1647–1655PubMedCrossRefGoogle Scholar
  93. Park N, Skern T, Gustin KE (2010) Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. J Biol Chem 285(37):28796–28805PubMedPubMedCentralCrossRefGoogle Scholar
  94. Porter FW, Brown B, Palmenberg AC (2010) Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. J Virol 84(24):12538–12548PubMedPubMedCentralCrossRefGoogle Scholar
  95. Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81(2):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rajoo S, Vallotton P, Onischenko E, Weis K (2018) Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc Nat Acad Sci USA.
  97. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–652PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sachdev R, Sieverding C, Flötenmeyer M, Antonin W (2012) The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol Biol Cell 23(4):740–749PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schrader N, Stelter P, Flemming D, Kunze R, Hurt E, Vetter IR (2008) Structural basis of the Nic96 subcomplex organization in the nuclear pore channel. Mol Cell 29(1):46–55PubMedCrossRefGoogle Scholar
  100. Sharma A, Solmaz SR, Blobel G, Melcak I (2015) Ordered regions of channel nucleoporins Nup62, Nup54, and Nup58 form dynamic complexes in solution. J Biol Chem 290(30):18370–18378PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shindo Y, Iwamoto K, Mouri K, Hibino K, Tomita M, Kosako H, Sako Y, Takahashi K (2016) Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat Commun 7:10485PubMedPubMedCentralCrossRefGoogle Scholar
  102. Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104(5):1143–1156PubMedCrossRefGoogle Scholar
  103. Solmaz SR, Chauhan R, Blobel G, Melcak I (2011) Molecular architecture of the transport channel of the nuclear pore complex. Cell 147(3):590–602PubMedPubMedCentralCrossRefGoogle Scholar
  104. Solmaz SR, Blobel G, Melcak I (2013) Ring cycle for dilating and constricting the nuclear pore. Proc Natl Acad Sci USA 110(15):5858–5863CrossRefPubMedGoogle Scholar
  105. Steinmetz MO, Stock A, Schulthess T, Landwehr R, Lustig A, Faix J, Gerisch G, Aebi U, Kammerer RA (1998) A distinct 14 residue site triggers coiled-coil formation in cortexillin I. EMBO J 17(7):1883–1891PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, Perriches T, Rundlet EJ, Jeon YE, Collins LN, Huber FM, Lin DH, Paduch M, Koide A, Lu V, Fischer J, Hurt E, Koide S, Kossiakoff AA, Hoelz A (2015) Architecture of the nuclear pore inner ring complex. Science 350(6256):56–64PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ulrich A, Partridge JR, Schwartz TU (2014) The stoichiometry of the nucleoporin 62 subcomplex of the nuclear pore in solution. Mol Biol Cell 25:1484–1492PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ungricht R, Klann M, Horvath P, Kutay U (2015) Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J Cell Biol 209(5):687–704PubMedPubMedCentralCrossRefGoogle Scholar
  109. von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL, Vollmer B, Mackmull M-T, Banterle N, Parca L, Kastritis P, Buczak K, Mosalaganti S, Hagen W, Andres-Pons A, Lemke EA, Bork P, Antonin W, Glavy JS, Bui KH, Beck M (2015) In situ structural analysis of the human nuclear pore complex. Nature 526(7571):140–143CrossRefGoogle Scholar
  110. Wang J, Sykes BD, Ryan RO (2002) Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad of Sci USA 99(3):1188–1193CrossRefGoogle Scholar
  111. Wimmer C, Doye V, Grandi P, Nehrbass U, Hurt EC (1992) A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1. EMBO J 11(13):5051–5061PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wu W, Lin F, Worman HJ (2002) Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J Cell Sci 115(7):1361PubMedGoogle Scholar
  113. Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin β concentration. J Cell Biol 174(7):951–961PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhu Y, Liu T-W, Madden Z, Yuzwa SA, Murray K, Cecioni S, Zachara N, Vocadlo DJ (2016) Post-translational O-GlcNAcylation is essential for nuclear pore integrity and maintenance of the pore selectivity filter. J Mol Cell Biol 8(1):2–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryState University of New YorkBinghamtonUSA

Personalised recommendations