Advertisement

Complement-Like System in the Mosquito Responses Against Malaria Parasites

  • Elena A. Levashina
  • Richard H. G. Baxter
Chapter

Abstract

The life cycle of malaria parasites is divided between the two hosts with distinct organization of immune responses. While the mammalian host employs innate and adaptive defenses to restrict Plasmodium proliferation, the mosquito vector is devoid of the powerful adaptive arm and relies solely on innate immune responses. The evolutionarily conserved complement system is a powerful innate immune mechanism of animal kingdom. It includes a series of secreted proteins that upon activation bind pathogens and promote their phagocytosis, direct lysis, and recruitment of immune cells. In particular, complement-like thioester-containing protein TEP1 is a major regulator of Plasmodium development within the mosquito vector. In this chapter, we will discuss biological and chemical properties of TEP1 and the role of its genetic polymorphism in shaping mosquito interactions with the malaria parasites.

Keywords

Malaria Plasmodium Mosquito vector Insect immunity Complement-like system TEP1 Melanization Genetic variation Super-resolution structure 

Notes

Acknowledgments

This work was supported by Max Planck Society to EAL and in part by the National Institute of General Medical Sciences (1R01GM114358) of the National Institutes of Health to RHGB.

References

  1. Baxter RHG, Chang C-I, Chelliah Y, Blandin S, Levashina EA, Deisenhofer J (2007) Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc Natl Acad Sci U S A 104(28):11615–11620.  https://doi.org/10.1073/pnas.0704967104 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baxter RHG, Steinert S, Chelliah Y, Volohonsky G, Levashina EA, Deisenhofer J (2010) A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae. Proc Natl Acad Sci U S A 107(39):16817–16822.  https://doi.org/10.1073/pnas.1010575107 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Blandin S, Shiao S-H, Moita LF, Janse CJ, Waters AP, Kafatos FC et al (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116(5):661–670.  https://doi.org/10.1016/S0092-8674(04)00173-4 CrossRefPubMedGoogle Scholar
  4. Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G, Ning Y et al (2009) Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326(5949):147–150.  https://doi.org/10.1126/science.1175241 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Castillo JC, Ferreira ABB, Trisnadi N, Barillas-Mury C (2017) Activation of mosquito complement antiplasmodial response requires cellular immunity. Sci Immunol 2(7):pii: eaal1505.  https://doi.org/10.1126/sciimmunol.aal1505 CrossRefGoogle Scholar
  6. Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH et al (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234(4776):607–610.  https://doi.org/10.1126/science.3532325 CrossRefPubMedGoogle Scholar
  7. Fabrigar DJ, Hubbart C, Miles A, Rockett K (2016) High-throughput genotyping of Anopheles mosquitoes using intact legs by Agena biosciences iPLEX. Mol Ecol Resour 16(2):480–486.  https://doi.org/10.1111/1755-0998.12473 CrossRefPubMedGoogle Scholar
  8. Fraiture M, Baxter RHG, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W et al (2009) Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5(3):273–284.  https://doi.org/10.1016/j.chom.2009.01.005 CrossRefPubMedGoogle Scholar
  9. Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA (2006) Boosting NF-κB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 25(4):677–685.  https://doi.org/10.1016/j.immuni.2006.08.019 CrossRefPubMedGoogle Scholar
  10. Garcia-Ferrer I, Marrero A, Gomis-Rüth FX, Goulas T (2017) α2-macroglobulins: structure and function. Subcell Biochem 83:149–183.  https://doi.org/10.1007/978-3-319-46503-6_6 CrossRefPubMedGoogle Scholar
  11. Gros P, Milder F, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8(1):48–58.  https://doi.org/10.1038/nri2231 CrossRefPubMedGoogle Scholar
  12. Holm I, Lavazec C, Garnier T, Mitri C, Riehle MM, Bischoff E et al (2012) Diverged alleles of the Anopheles gambiae leucine-rich repeat gene APL1A display distinct protective profiles against Plasmodium falciparum. PLoS One 7(12):e52684.  https://doi.org/10.1371/journal.pone.0052684 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Le BV, Williams M, Logarajah S, Baxter RHG (2012) Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles. PLoS Pathog 8(10):e1002958.  https://doi.org/10.1371/journal.ppat.1002958 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104(5):709–718.  https://doi.org/10.1016/S0092-8674(01)00267-7 CrossRefPubMedGoogle Scholar
  15. Mitri C, Bischoff E, Takashima E, Williams M, Eiglmeier K, Pain A et al (2015) An evolution-based screen for genetic differentiation between Anopheles sister taxa enriches for detection of functional immune factors. PLoS Pathog 11(12):e1005306.  https://doi.org/10.1371/journal.ppat.1005306 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Obbard DJ, Callister DM, Jiggins FM, Soares DC, Yan G, Little TJ (2008) The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evol Biol 8:274.  https://doi.org/10.1186/1471-2148-8-274 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Oduol F, Xu J, Niare O, Natarajan R, Vernick KD (2000) Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A 97(21):11397–11402.  https://doi.org/10.1073/pnas.180060997 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Osta MA, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on Plasmodium development. Science 303(5666):2030–2032.  https://doi.org/10.1126/science.1091789 CrossRefPubMedGoogle Scholar
  19. Povelones M, Waterhouse RM, Kafatos FC, Christophides GK (2009) Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 324(5924):258–261.  https://doi.org/10.1126/science.1171400 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Povelones M, Upton LM, Sala KA, Christophides GK (2011) Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1. PLoS Pathog 7(4):e1002023.  https://doi.org/10.1371/journal.ppat.1002023 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Riehle MM, Kyriacos M, Niaré O, Xu J, Li J, Touré AM et al (2006) Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312(5773):577–579CrossRefPubMedGoogle Scholar
  22. Rottschaefer SM, Riehle MM, Coulibaly B, Sacko M, Niare O, Morlais I et al (2011) Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. PLoS Biol 9(3):e1000600.  https://doi.org/10.1371/journal.pbio.1000600 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H, Boch J, Blandin SA, Marois E (2017) Transgenic expression of the anti-parasitic factor TEP1 in the malaria mosquito Anopheles gambiae. PLoS Pathog 13(1):e1006113.  https://doi.org/10.1371/journal.ppat.1006113 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Waterhouse RM, Povelones M, Christophides GK (2010) Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins. BMC Genomics 11:531.  https://doi.org/10.1186/1471-2164-11-531 CrossRefPubMedCentralPubMedGoogle Scholar
  25. White BJ, Lawniczak MKN, Cheng C, Coulibaly MB, Wilson MD, Sagnon NF et al (2011) Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium. Proc Natl Acad Sci U S A 108(1):244–249.  https://doi.org/10.1073/pnas.1013648108 CrossRefPubMedGoogle Scholar
  26. Williams M, Summers BJ, Baxter RHG (2015) Biophysical analysis of Anopheles gambiae leucine-rich repeat proteins APL1A1, APL1B and APL1C and their interaction with LRIM1. PLoS One 10(3):e0118911.  https://doi.org/10.1371/journal.pone.0118911 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ (2003) Quantitative trait loci in Anopheles gambiae controlling the encapsulation response against Plasmodium cynomolgi Ceylon. BMC Genet 4:16.  https://doi.org/10.1186/1471-2156-4-16 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vector Biology UnitMax Planck Institute for Infection BiologyBerlinGermany
  2. 2.Department of Medical Genetics and Molecular BiochemistryLewis Katz School of Medicine at Temple UniversityPhiladelphiaUSA

Personalised recommendations