Advertisement

Complement Evasion Mechanisms of the Human Pathogen Plasmodium falciparum

  • Alexander T. Kennedy
  • Christoph Q. Schmidt
  • Wai-Hong Tham
Chapter

Abstract

Malaria parasites have evolved ingenious mechanisms to escape the human immune system to enable the establishment of successful blood-stage infection. Recent studies identifying novel host-pathogen interactions between the complement system and malaria parasites yield insights on the mechanisms of parasite entry into red blood cells, complement evasion strategies and the development of malaria pathogenesis. In particular, human complement regulators are co-opted by parasite adhesins and surface proteins for parasite invasion and to evade complement attack. However, these studies are also beginning to reveal the duality of the complement system in mediating both parasite destruction and facilitating efficient parasite invasion. The following provides a brief overview of complement evasion strategies employed by blood-stage malaria parasites and highlights the importance of understanding the complex interplay between complement and parasite infection.

Keywords

Plasmodium Malaria Merozoite Surface proteins Complement evasion Factor H 6 Cysteine proteins Parasite invasion 

References

  1. Annoura T, van Schaijk BCL, Ploemen IHJ, Sajid M, Lin J, Vos MW, Dinmohamed AG, Inaoka DK, Rijpma SR, van Gemert G-J, Chevalley-Maurel S, Kiełbasa SM, Scheltinga F, Franke-Fayard B, Klop O, Hermsen CC, Kita K, Gego A, Franetich J-F, Mazier D, Hoffman SL, Janse CJ, Sauerwein RW, Khan SM (2014) Two plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development. FASEB J 28:2158–2170.  https://doi.org/10.1096/fj.13-241570 CrossRefPubMedGoogle Scholar
  2. Arredondo SA, Cai M, Takayama Y, MacDonald NJ, Anderson DE, Aravind L, Clore GM, Miller LH (2012) Structure of the plasmodium 6-cysteine s48/45 domain. Proc Natl Acad Sci U S A 109:6692–6697.  https://doi.org/10.1073/pnas.1204363109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Badell E, Oeuvray C, Moreno A, Soe S, van Rooijen N, Bouzidi A, Druilhe P (2000) Human malaria in immunocompromised mice: an in vivo model to study defense mechanisms against Plasmodium falciparum. J Exp Med 192:1653–1660CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bannister LH, Hopkins JM, Fowler RE, Krishna S, Mitchell GH (2000) A brief illustrated guide to the ultrastructure of plasmodium falciparum asexual blood stages. Parasitol Today 16:427–433CrossRefPubMedGoogle Scholar
  5. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, Ehlgen F, Ralph SA, Beeson JG, Cowman AF (2009) Reticulocyte-binding protein homologue 5–an essential adhesin involved in invasion of human erythrocytes by plasmodium falciparum. Int J Parasitol 39:371–380.  https://doi.org/10.1016/j.ijpara.2008.10.006 CrossRefPubMedGoogle Scholar
  6. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS (2016) Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 40(3):343–372.  https://doi.org/10.1093/femsre/fuw001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Biryukov S, Angov E, Landmesser ME, Spring MD, Ockenhouse CF, Stoute JA (2016) Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites. EBioMedicine 9:207–216.  https://doi.org/10.1016/j.ebiom.2016.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boyle MJ, Wilson DW, Richards JS, Riglar DT, Tetteh KKA, Conway DJ, Ralph SA, Baum J, Beeson JG (2010) Isolation of viable plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A 107:14378–14383.  https://doi.org/10.1073/pnas.1009198107 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling-Jones H, Cheng YS, Stubbs J, Tetteh KKA, Conway DJ, McCarthy JS, Muller I, Marsh K, Anders RF, Beeson JG (2015) Human antibodies fix complement to inhibit plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42:580–590.  https://doi.org/10.1016/j.immuni.2015.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, Tsuboi T, Torii M (2009) Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in plasmodium falciparum merozoites. Parasitol Int 58:29–35.  https://doi.org/10.1016/j.parint.2008.09.005 CrossRefPubMedGoogle Scholar
  11. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TWA, Korsinczky M, Meyer EV-S, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM (2008) Comparative genomics of the neglected human malaria parasite plasmodium vivax. Nature 455:757–763.  https://doi.org/10.1038/nature07327 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198:961–971.  https://doi.org/10.1083/jcb.201206112 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, Rayner JC, Wright GJ (2011) Basigin is a receptor essential for erythrocyte invasion by plasmodium falciparum. Nature 480:534–537.  https://doi.org/10.1038/nature10606 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, Goulding D, Bustamante LY, Miles A, Moore SC, Dougan G, Holder AA, Kwiatkowski DP, Rayner JC, Pleass RJ, Wright GJ (2016) Binding of plasmodium falciparum Merozoite surface proteins DBLMSP and DBLMSP2 to human immunoglobulin M is conserved among broadly diverged sequence variants. J Biol Chem 291:14285–14299.  https://doi.org/10.1074/jbc.M116.722074 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, Watermeyer JM, Fobes ET, Martin SR, Saibil HR, Wright GJ, Treeck M, Epp C, Blackman MJ (2015) Processing of plasmodium falciparum Merozoite surface protein MSP1 activates a Spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe 18:433–444.  https://doi.org/10.1016/j.chom.2015.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dasari P, Bhakdi S (2012) Pathogenesis of malaria revisited. Med Microbiol Immunol 201:599–604.  https://doi.org/10.1007/s00430-012-0265-y CrossRefPubMedGoogle Scholar
  17. Dasari P, Reiss K, Lingelbach K, Baumeister S, Lucius R, Udomsangpetch R, Bhakdi SC, Bhakdi S (2011) Digestive vacuoles of plasmodium falciparum are selectively phagocytosed by and impair killing function of polymorphonuclear leukocytes. Blood 118:4946–4956.  https://doi.org/10.1182/blood-2011-05-353920 CrossRefPubMedGoogle Scholar
  18. Dasari P, Heber SD, Beisele M, Torzewski M, Reifenberg K, Orning C, Fries A, Zapf AL, Baumeister S, Lingelbach K, Udomsangpetch R, Bhakdi SC, Reiss K, Bhakdi S (2012) Digestive vacuole of plasmodium falciparum released during erythrocyte rupture dually activates complement and coagulation. Blood 119:4301–4310.  https://doi.org/10.1182/blood-2011-11-392134 CrossRefPubMedGoogle Scholar
  19. Dasari P, Fries A, Heber SD, Salama A, Blau I-W, Lingelbach K, Bhakdi SC, Udomsangpetch R, Torzewski M, Reiss K, Bhakdi S (2014) Malarial anemia: digestive vacuole of plasmodium falciparum mediates complement deposition on bystander cells to provoke hemophagocytosis. Med Microbiol Immunol 203(6):383–393.  https://doi.org/10.1007/s00430-014-0347-0 CrossRefPubMedGoogle Scholar
  20. Egan ES, Jiang RHY, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT (2015) Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for plasmodium falciparum invasion. Science 348:711–714.  https://doi.org/10.1126/science.aaa3526 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF (2003) A novel erythrocyte binding antigen-175 paralogue from plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J Biol Chem 278:14480–14486.  https://doi.org/10.1074/jbc.M211446200 CrossRefPubMedGoogle Scholar
  22. Gilson PR, Nebl T, Vukcevic D, Moritz RL, Sargeant T, Speed TP, Schofield L, Crabb BS (2006) Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite plasmodium falciparum. Mol Cell Proteomics 5:1286–1299.  https://doi.org/10.1074/mcp.M600035-MCP200 CrossRefPubMedGoogle Scholar
  23. Hansson HH, Kurtzhals JA, Goka BQ, Rodriques OP, Nkrumah FN, Theander TG, Bygbjerg IC, Alifrangis M (2013) Human genetic polymorphisms in the knops blood group are not associated with a protective advantage against plasmodium falciparum malaria in southern Ghana. Malar J 12:400.  https://doi.org/10.1186/1475-2875-12-400 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Harris PK, Yeoh S, Dluzewski AR, O’Donnell RA, Withers-Martinez C, Hackett F, Bannister LH, Mitchell GH, Blackman MJ (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1:241–251.  https://doi.org/10.1371/journal.ppat.0010029 CrossRefPubMedGoogle Scholar
  25. Imam M, Singh S, Kaushik NK, Chauhan VS (2014) Plasmodium falciparum merozoite surface protein 3: oligomerization, self-assembly, and heme complex formation. J Biol Chem 289:3856–3868.  https://doi.org/10.1074/jbc.M113.520239 CrossRefPubMedGoogle Scholar
  26. Kaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM (1991) Rosetting of plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood 78:812–819PubMedGoogle Scholar
  27. Kennedy AT, Schmidt CQ, Thompson JK, Weiss GE, Taechalertpaisarn T, Gilson PR, Barlow PN, Crabb BS, Cowman AF, Tham W-H (2016) Recruitment of factor H as a novel complement evasion strategy for blood-stage plasmodium falciparum infection. J Immunol 196:1239–1248.  https://doi.org/10.4049/jimmunol.1501581 CrossRefPubMedGoogle Scholar
  28. Kennedy AT, Wijeyewickrema LC, Huglo A, Lin C, Pike R, Cowman AF, Tham W-H (2017) Recruitment of human C1 esterase inhibitor controls complement activation on blood stage plasmodium falciparum Merozoites. J Immunol 198(12):4728–4737.  https://doi.org/10.4049/jimmunol.1700067 CrossRefPubMedGoogle Scholar
  29. Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122CrossRefPubMedGoogle Scholar
  30. Krych-Goldberg M, Moulds JM, Atkinson JP (2002) Human complement receptor type 1 (CR1) binds to a major malarial adhesin. Trends Mol Med 8:531–537CrossRefPubMedGoogle Scholar
  31. Li H, Child MA, Bogyo M (2012) Proteases as regulators of pathogenesis: examples from the Apicomplexa. Biochim Biophys Acta 1824:177–185.  https://doi.org/10.1016/j.bbapap.2011.06.002 CrossRefPubMedGoogle Scholar
  32. Lim NTY, Harder MJ, Kennedy AT, Lin CS, Weir C, Cowman AF, Call MJ, Schmidt CQ, Tham W-H (2015) Characterization of inhibitors and monoclonal antibodies that modulate the interaction between plasmodium falciparum Adhesin PfRh4 with its erythrocyte receptor complement receptor 1. J Biol Chem 290:25307–25321.  https://doi.org/10.1074/jbc.M115.657171 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lin CS, Uboldi AD, Marapana D, Czabotar PE, Epp C, Bujard H, Taylor NL, Perugini MA, Hodder AN, Cowman AF (2014) The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by plasmodium falciparum. J Biol Chem 289:25655–25669.  https://doi.org/10.1074/jbc.M114.586495 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, Cowman AF (2016) Multiple plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. J Biol Chem 291(14):7703–7715.  https://doi.org/10.1074/jbc.M115.698282 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lindorfer MA, Cook EM, Tupitza JC, Zent CS, Burack R, de Jong RN, Beurskens FJ, Schuurman J, Parren PWHI, Taylor RP (2016) Real-time analysis of the detailed sequence of cellular events in mAb-mediated complement-dependent cytotoxicity of B-cell lines and of chronic lymphocytic leukemia B-cells. Mol Immunol 70:13–23.  https://doi.org/10.1016/j.molimm.2015.12.007 CrossRefPubMedGoogle Scholar
  36. Lobo C-A, Rodriguez M, Reid M, Lustigman S (2003) Glycophorin C is the receptor for the plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101:4628–4631.  https://doi.org/10.1182/blood-2002-10-3076 CrossRefPubMedGoogle Scholar
  37. Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, Gout A, Speed TP, Beeson JG, Healer J, Cowman AF (2011) Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 79:1107–1117.  https://doi.org/10.1128/IAI.01021-10 CrossRefPubMedGoogle Scholar
  38. Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, Cowman AF (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9:87–92.  https://doi.org/10.1038/nm807 CrossRefPubMedGoogle Scholar
  39. Mayer DCG, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, Mendoza LH, Miller LH (2009) Glycophorin B is the erythrocyte receptor of plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci U S A 106:5348–5352.  https://doi.org/10.1073/pnas.0900878106 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Meraldi V, Nebié I, Tiono AB, Diallo D, Sanogo E, Theisen M, Druilhe P, Corradin G, Moret R, Sirima BS (2004) Natural antibody response to plasmodium falciparum Exp-1, MSP-3 and GLURP long synthetic peptides and association with protection. Parasite Immunol 26:265–272.  https://doi.org/10.1111/j.0141-9838.2004.00705.x CrossRefPubMedGoogle Scholar
  41. Moulds JM, Kassambara L, Middleton JJ, Baby M, Sagara I, Guindo A, Coulibaly S, Yalcouye D, Diallo DA, Miller L, Doumbo O (2000) Identification of complement receptor one (CR1) polymorphisms in west Africa. Genes Immun 1:325–329.  https://doi.org/10.1038/sj.gene.6363676 CrossRefPubMedGoogle Scholar
  42. Nonaka M (2000) Origin and evolution of the complement system. Curr Top Microbiol Immunol 248:37–50PubMedGoogle Scholar
  43. Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H, Bottius E, Kaidoh T, Aikawa M, Filgueira MC, Tartar A, Druilhe P (1994) Merozoite surface protein-3: a malaria protein inducing antibodies that promote plasmodium falciparum killing by cooperation with blood monocytes. Blood 84:1594–1602PubMedGoogle Scholar
  44. Orlandi PA, Klotz FW, Haynes JD (1992) A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences of glycophorin A. J Cell Biol 116:901–909CrossRefPubMedGoogle Scholar
  45. Osier FHA, Polley SD, Mwangi T, Lowe B, Conway DJ, Marsh K (2007) Naturally acquired antibodies to polymorphic and conserved epitopes of plasmodium falciparum merozoite surface protein 3. Parasite Immunol 29:387–394.  https://doi.org/10.1111/j.1365-3024.2007.00951.x CrossRefPubMedPubMedCentralGoogle Scholar
  46. Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, Schmidt CQ, Mertens HDT, Liszewski MK, Hourcade DE, Barlow PN, Atkinson JP (2014) Using mutagenesis and structural biology to map the binding site for the plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem 289:450–463.  https://doi.org/10.1074/jbc.M113.520346 CrossRefPubMedGoogle Scholar
  47. Pawluczkowycz AW, Lindorfer MA, Waitumbi JN, Taylor RP (2007) Hematin promotes complement alternative pathway-mediated deposition of C3 activation fragments on human erythrocytes: potential implications for the pathogenesis of anemia in malaria. J Immunol 179:5543–5552CrossRefPubMedGoogle Scholar
  48. Perrin AJ, Bartholdson SJ, Wright GJ (2015) P-selectin is a host receptor for plasmodium MSP7 ligands. Malar J 14:238.  https://doi.org/10.1186/s12936-015-0750-z CrossRefPubMedPubMedCentralGoogle Scholar
  49. Persson KEM, Lee CT, Marsh K, Beeson JG (2006) Development and optimization of high-throughput methods to measure plasmodium falciparum-specific growth inhibitory antibodies. J Clin Microbiol 44:1665–1673.  https://doi.org/10.1128/JCM.44.5.1665-1673.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Polley SD, Tetteh KKA, Lloyd JM, Akpogheneta OJ, Greenwood BM, Bojang KA, Conway DJ (2007) Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection. J Infect Dis 195:279–287.  https://doi.org/10.1086/509806 CrossRefPubMedGoogle Scholar
  51. Reiling L, Richards JS, Fowkes FJI, Wilson DW, Chokejindachai W, Barry AE, Tham W-H, Stubbs J, Langer C, Donelson J, Michon P, Tavul L, Crabb BS, Siba PM, Cowman AF, Mueller I, Beeson JG (2012) The plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLoS One 7:e45253.  https://doi.org/10.1371/journal.pone.0045253 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, Beeson JG, Cowman AF, Ralph SA, Baum J (2011) Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9:9–20.  https://doi.org/10.1016/j.chom.2010.12.003 CrossRefPubMedGoogle Scholar
  53. Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, Newbold CI (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357:689–692.  https://doi.org/10.1038/357689a0 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rowe JA, Moulds JM, Newbold CI, Miller LH (1997) P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388:292–295.  https://doi.org/10.1038/40888 CrossRefPubMedGoogle Scholar
  55. Rowe JA, Rogerson SJ, Raza A, Moulds JM, Kazatchkine MD, Marsh K, Newbold CI, Atkinson JP, Miller LH (2000) Mapping of the region of complement receptor (CR) 1 required for plasmodium falciparum rosetting and demonstration of the importance of CR1 in rosetting in field isolates. J Immunol 165:6341–6346CrossRefPubMedGoogle Scholar
  56. Rowe JA, Raza A, Diallo DA, Baby M, Poudiougo B, Coulibaly D, Cockburn IA, Middleton J, Lyke KE, Plowe CV, Doumbo OK, Moulds JM (2002) Erythrocyte CR1 expression level does not correlate with a HindIII restriction fragment length polymorphism in Africans; implications for studies on malaria susceptibility. Genes Immun 3:497–500.  https://doi.org/10.1038/sj.gene.6363899 CrossRefPubMedGoogle Scholar
  57. Sanders PR, Gilson PR, Cantin GT, Greenbaum DC, Nebl T, Carucci DJ, McConville MJ, Schofield L, Hodder AN, Yates JR, Crabb BS (2005) Distinct protein classes including novel merozoite surface antigens in raft-like membranes of plasmodium falciparum. J Biol Chem 280:40169–40176.  https://doi.org/10.1074/jbc.M509631200 CrossRefPubMedGoogle Scholar
  58. Sanders PR, Cantin GT, Greenbaum DC, Gilson PR, Nebl T, Moritz RL, Yates JR, Hodder AN, Crabb BS (2007) Identification of protein complexes in detergent-resistant membranes of plasmodium falciparum schizonts. Mol Biochem Parasitol 154:148–157.  https://doi.org/10.1016/j.molbiopara.2007.04.013 CrossRefPubMedGoogle Scholar
  59. Schmidt CQ, Kennedy AT, Tham W-H (2015) More than just immune evasion: hijacking complement by plasmodium falciparum. Mol Immunol 67:71–84.  https://doi.org/10.1016/j.molimm.2015.03.006 CrossRefPubMedGoogle Scholar
  60. Silva JC, Egan A, Arze C, Spouge JL, Harris DG (2015) A new method for estimating species age supports the coexistence of malaria parasites and their mammalian hosts. Mol Biol Evol 32:1354–1364.  https://doi.org/10.1093/molbev/msv005 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Simon N, Lasonder E, Scheuermayer M, Kuehn A, Tews S, Fischer R, Zipfel PF, Skerka C, Pradel G (2013) Malaria parasites co-opt human factor H to prevent complement-mediated Lysis in the mosquito Midgut. Cell Host Microbe 13:29–41.  https://doi.org/10.1016/j.chom.2012.11.013 CrossRefPubMedGoogle Scholar
  62. Singh S, Soe S, Mejia J-P, Roussilhon C, Theisen M, Corradin G, Druilhe P (2004) Identification of a conserved region of plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. J Infect Dis 190:1010–1018.  https://doi.org/10.1086/423208 CrossRefPubMedGoogle Scholar
  63. Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CE (2010) Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6:e1000746.  https://doi.org/10.1371/journal.ppat.1000746 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sirima SB, Nébié I, Ouédraogo A, Tiono AB, Konaté AT, Gansané A, Dermé AI, Diarra A, Ouédraogo A, Soulama I, Cuzzin-Ouattara N, Cousens S, Leroy O (2007) Safety and immunogenicity of the plasmodium falciparum merozoite surface protein-3 long synthetic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in Burkina Faso, West Africa. Vaccine 25:2723–2732.  https://doi.org/10.1016/j.vaccine.2006.05.090 CrossRefPubMedGoogle Scholar
  65. Sirima SB, Mordmüller B, Milligan P, Ngoa UA, Kironde F, Atuguba F, Tiono AB, Issifou S, Kaddumukasa M, Bangre O, Flach C, Christiansen M, Bang P, Chilengi R, Jepsen S, Kremsner PG, Theisen M, GMZ2 Trial Study Group (2016) A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 34:4536–4542.  https://doi.org/10.1016/j.vaccine.2016.07.041 CrossRefPubMedGoogle Scholar
  66. Soe S, Theisen M, Roussilhon C, Aye K-S, Druilhe P (2004) Association between protection against clinical malaria and antibodies to merozoite surface antigens in an area of hyperendemicity in Myanmar: complementarity between responses to merozoite surface protein 3 and the 220-kilodalton glutamate-rich protein. Infect Immun 72:247–252CrossRefPubMedPubMedCentralGoogle Scholar
  67. Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, Tsokos GC, Stoute JA (2010) Complement receptor 1 is a sialic acid-independent erythrocyte receptor of plasmodium falciparum. PLoS Pathog 6:e1000968.  https://doi.org/10.1371/journal.ppat.1000968 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, Tyler JS, Narum DL, Pierce SK, Boothroyd JC, Haynes JD, Miller LH (2011) Binding of plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108:13275–13280.  https://doi.org/10.1073/pnas.1110303108 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes. Cell 82:89–100CrossRefPubMedGoogle Scholar
  70. Taechalertpaisarn T, Crosnier C, Bartholdson SJ, Hodder AN, Thompson J, Bustamante LY, Wilson DW, Sanders PR, Wright GJ, Rayner JC, Cowman AF, Gilson PR, Crabb BS (2012) Biochemical and functional analysis of two plasmodium falciparum blood-stage 6-cys proteins: P12 and P41. PLoS One 7:e41937.  https://doi.org/10.1371/journal.pone.0041937 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tetteh-Quarcoo PB, Schmidt CQ, Tham W-H, Hauhart R, Mertens HDT, Rowe A, Atkinson JP, Cowman AF, Rowe JA, Barlow PN (2012) Lack of evidence from studies of soluble protein fragments that knops blood group polymorphisms in complement receptor-type 1 are driven by malaria. PLoS One 7:e34820.  https://doi.org/10.1371/journal.pone.0034820 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tettey R, Ayeh-Kumi P, Tettey P, Adjei GO, Asmah RH, Dodoo D (2015) Severity of malaria in relation to a complement receptor 1 polymorphism: a case-control study. Pathog Glob Health 109:247–252.  https://doi.org/10.1179/2047773215Y.0000000011 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tham W-H, Kennedy AT (2015) Malaria: a master lock for deadly parasites. Nature 522:158–159.  https://doi.org/10.1038/522158a CrossRefPubMedGoogle Scholar
  74. Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, Richard D, Corbin JE, Beeson JG, Cowman AF (2010) Complement receptor 1 is the host erythrocyte receptor for plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci U S A 107:17327–17332.  https://doi.org/10.1073/pnas.1008151107 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tham W-H, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB, Lopaticki S, Atkinson JP, Barlow PN, Cowman AF (2011) Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood 118:1923–1933.  https://doi.org/10.1182/blood-2011-03-341305 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tham W-H, Healer J, Cowman AF (2012) Erythrocyte and reticulocyte binding-like proteins of plasmodium falciparum. Trends Parasitol 28:23–30.  https://doi.org/10.1016/j.pt.2011.10.002 CrossRefPubMedGoogle Scholar
  77. Thathy V, Moulds JM, Guyah B, Otieno W, Stoute JA (2005) Complement receptor 1 polymorphisms associated with resistance to severe malaria in Kenya. Malar J 4:54.  https://doi.org/10.1186/1475-2875-4-54 CrossRefPubMedPubMedCentralGoogle Scholar
  78. van Dooren GG, Kennedy AT, McFadden GI (2012) The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 17:634–656.  https://doi.org/10.1089/ars.2012.4539 CrossRefPubMedGoogle Scholar
  79. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, Chen L, Lampe M, Tham W-H, Wilson D, Nebl T, Marapana D, Triglia T, Wong W, Rogers KL, Cowman AF (2016) Essential role of the PfRh5/PfRipr/CyRPA complex during plasmodium falciparum invasion of erythrocytes. Cell Host Microbe 20:60–71.  https://doi.org/10.1016/j.chom.2016.06.004 CrossRefPubMedGoogle Scholar
  80. Waisberg M, Cerqueira GC, Yager SB, Francischetti IMB, Lu J, Gera N, Srinivasan P, Miura K, Rada B, Lukszo J, Barbian KD, Leto TL, Porcella SF, Narum DL, El-Sayed N, Miller LH, Pierce SK (2012) Plasmodium falciparum merozoite surface protein 1 blocks the proinflammatory protein S100P. Proc Natl Acad Sci U S A 109:5429–5434.  https://doi.org/10.1073/pnas.1202689109 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NWM, Harvey KL, Fowkes FJI, Barlow PN, Rayner JC, Wright GJ, Cowman AF, Crabb BS (2015) Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during plasmodium falciparum invasion of erythrocytes. PLoS Pathog 11:e1004670.  https://doi.org/10.1371/journal.ppat.1004670 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, Crabb BS, Cowman AF (2014) Conditional expression of apical membrane antigen 1 in plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol 16:642–656.  https://doi.org/10.1111/cmi.12287 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740.  https://doi.org/10.1038/nri2620 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander T. Kennedy
    • 1
    • 2
  • Christoph Q. Schmidt
    • 3
  • Wai-Hong Tham
    • 1
    • 2
  1. 1.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  2. 2.Department of Medical BiologyUniversity of MelbourneParkvilleAustralia
  3. 3.Institute of Pharmacology of Natural Products and Clinical PharmacologyUlm UniversityUlmGermany

Personalised recommendations