Stochastic Differential Equation Models with Time-Varying Parameters

  • Meng ChenEmail author
  • Sy-Miin Chow
  • Michael D. Hunter


Self-organization occurs when a system shows distinct shifts in dynamics due to variations in the parameters that govern the system. Relatedly, many human dynamic processes with self-organizing features comprise subprocesses that unfold across multiple time scales. Incorporating time-varying parameters (TVPs) into a dynamic model of choice provides one way of representing self-organization as well as multi-time scale processes. Extant applications involving models with TVPs have been restricted to formulation in discrete time. Related work for representing TVPs in continuous-time models remains scarce. We propose a stochastic differential equation (SDE) modeling framework with TVPs as a way to capture self-organization in continuous time. We present several examples of SDEs with TVPs, including a stochastic damped oscillator model with hypothesized functional shifts in both set points and damping. Furthermore, we discuss plausible models that may be used to approximate changes in the TVPs in the absence of further knowledge concerning their true change mechanisms.


  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory, (pp. 267–281). Budapest: Akademiai Kiado. Google Scholar
  2. Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1–39). New York: Academic.Google Scholar
  3. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. New York: Wiley.
  4. Bertenthal, B. (2007). Dynamical systems: It is about time! In S. Boker & M. Wenger (Eds.), Data analytic techniques for dynamical systems. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  5. Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in recently bereaved widows: A dynamical systems approach. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 59(4), 158–167. CrossRefGoogle Scholar
  6. Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33(4), 479–507. CrossRefGoogle Scholar
  7. Bonsall, M. B., Wallace-Hadrill, S. M. A., Geddes, J. R., Goodwin, G. M., & Holmes, E. A. (2011). Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder. In Proceedings of the Royal Society of London B: Biological Sciences. CrossRefGoogle Scholar
  8. Bosma, H. A. & Kunnen, E. S. (Eds.). (2011). Identity and emotion: Development through self-organization. Cambridge: Cambridge University Press.Google Scholar
  9. Bringmann, L., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22(3), 409–425. CrossRefGoogle Scholar
  10. Browne, M. W., & Du Toit, S. H. (1991). Models for learning data. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 47–68). Washington, DC: American Psychological Association. CrossRefGoogle Scholar
  11. Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2), 283–321. CrossRefGoogle Scholar
  12. Chow, S.-M., Hamaker, E. J., Fujita, F., & Boker, S. M. (2009). Representing time-varying cyclic dynamics using multiple-subject state-space models. British Journal of Mathematical and Statistical Psychology, 62, 683–716. MathSciNetCrossRefGoogle Scholar
  13. Chow, S.-M., Lu, Z., Sherwood, A., & Zhu, H. (2016). Fitting nonlinear ordinary differential equation models with random effects and unknown initial conditions using the Stochastic Approximation Expectation Maximization (SAEM) algorithm. Psychometrika, 81, 102–134. MathSciNetCrossRefGoogle Scholar
  14. Chow, S.-M., Nesselroade, J. R., Shifren, K., & McArdle, J. J. (2004). Dynamic structure of emotions among individuals with Parkinson’s disease. Structural Equation Modeling, 11, 560–582. MathSciNetCrossRefGoogle Scholar
  15. Chow, S. M., Ou, L., Ciptadi, A., Prince, E. B., You, D., Hunter, M. D., & Messinger, D. S. (2018). Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching. Psychometrika, 83(2), 476–510.MathSciNetCrossRefGoogle Scholar
  16. Chow, S.-M., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005). Emotion as a thermostat: Representing emotion regulation using a damped oscillator model. Emotion, 5(2), 208–225. CrossRefGoogle Scholar
  17. Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011). Dynamic factor analysis models with time-varying parameters. Multivariate Behavioral Research, 46, 303–339. CrossRefGoogle Scholar
  18. Deboeck, P. R., Boker, S. M., & Bergeman, C. S. (2008). Modeling individual damped linear oscillator processes with differential equations: Using surrogate data analysis to estimate the smoothing parameter. Multivariate Behavioral Research, 43, 497–523. CrossRefGoogle Scholar
  19. Del Negro, M., & Otrok, C. (2008). Dynamic Factor Models with Time-Varying Parameters: Measuring Changes in International Business Cycles (Staff Reports No. 326). New York: Federal Reserve Bank of New York.Google Scholar
  20. Fahrmeir, L., & Wagenpfeil, S. (1997). Penalized likelihood estimation and iterative Kalman smoothing for non-Gaussian dynamic regression models. Computational Statistics & Data Analysis, 24(3), 295–320. CrossRefGoogle Scholar
  21. Gander, M. J., & Vandewalle, S. (2007). Analysis of the parareal time-parallel time-integration method. SIAM Journal on Scientific Computing, 29(2), 556–578. MathSciNetCrossRefGoogle Scholar
  22. Gottlieb, G., Cairns, R., Elder, J., & Costello, E. (1996). Developmental psychobiological theory. Developmental Science, 63–77.
  23. Grimm, K. J., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural Equation Modeling, 16(4), 676–701. MathSciNetCrossRefGoogle Scholar
  24. Hamaker, E. L., & Grasman, R. P. P. P. (2012). Regime switching state-space models applied to psychological processes: Handling missing data and making inferences. Psychometrika, 77(2), 400–422. MathSciNetCrossRefGoogle Scholar
  25. Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.Google Scholar
  26. Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., & King, A. A. (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences, 112 (3), 719–724. MathSciNetCrossRefGoogle Scholar
  27. Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422. CrossRefGoogle Scholar
  28. Julier, S. J., Uhlmann, J. K., & Durrant-Whyte, H. F. (1995). A new approach for filtering nonlinear systems. In Proceedings of the American control conference (pp. 1628–1632). Seattle, WA.
  29. Kelso, S. (1995a). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: The MIT Press.Google Scholar
  30. Kelso, S. (1995b). How nature handles complexity. In Dynamic patterns: The self-organization of brain and behavior (Chap. 1). Cambridge, MA: The MIT Press.Google Scholar
  31. Kiehl, M. (1994). Parallel multiple shooting for the solution of initial value problems. Parallel Computing, 20(3), 275–295. MathSciNetCrossRefGoogle Scholar
  32. Kim, J., Nakamura, T., Kikuchi, H., Sasaki, T., & Yamamoto., Y. (2013). Covariation of depressive mood and locomotor dynamics evaluated by ecological momentary assessment in healthy humans. PLoS ONE, 8(9), e74979. CrossRefGoogle Scholar
  33. Kitagawa, G. (1998). A self-organizing state-space model. Journal of the American Statistical Association, 93(443), 1203–1215. Google Scholar
  34. Kormylo, J., & Jain, V. (1974). Two-pass recursive digital filter with zero phase shift. IEEE Transactions on Acoustics, Speech, and Signal Processing, 22(5), 384–387. CrossRefGoogle Scholar
  35. Krone, T., Albers, C. J., & Timmerman, M. E. (2016). Bayesian dynamic modelling to assess differential treatment effects on panic attack frequencies. Statistical Modelling, 16(5), 343–359. MathSciNetCrossRefGoogle Scholar
  36. Kulikov, G., & Kulikov, M. (2014). Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Transactions on Automatic Control, 59(1), 273–279. MathSciNetCrossRefGoogle Scholar
  37. Kulikova, M. V., & Kulikov, G. Y. (2014). Adaptive ODE solvers in extended Kalman filtering algorithms. Journal of Computational and Applied Mathematics, 262, 205–216. MathSciNetCrossRefGoogle Scholar
  38. Larson, R., Raffaelli, M., Richards, M. H., Ham, M., & Jewell, L. (1990). Ecology of depression in late childhood and early adolescence: A profile of daily states and activities. Journal of Abnormal Psychology, 99(1), 92–102. CrossRefGoogle Scholar
  39. Lewis, M. D., & Ferrari, M. (2001). Cognitive-emotional self-organization in personality development and personal identity. In H. A. Bosma & E. S. Kunnen (Eds.), Identity and emotion: Development through self-organization (pp. 177–198). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  40. Liening, S. H., Stanton, S. J., Saini, E. K., & Schultheiss, O. C. (2010). Salivary testosterone, cortisol, and progesterone: two-week stability, interhormone correlations, and effects of time of day, menstrual cycle, and oral contraceptive use on steroid hormone levels. Physiology & Behavior, 99(1), 8–16. CrossRefGoogle Scholar
  41. MacCallum, R. C. (2003). Working with imperfect models. Multivariate Behavioral Research, 38(1), 113–139. Retrieved from (PMID: 26771126) CrossRefGoogle Scholar
  42. Magnusson, D., & Cairns, R. B. (1996). Developmental science: Toward a unified framework. In R. B. Cairns, J. Elder Glen H., & E. J. Costello (Eds.), Developmental science. (pp. 7–30). New York, NY: Cambridge University Press.Google Scholar
  43. Marceau, K., Ram, N., Houts, R. M., Grimm, K. J., & Susman, E. J. (2011). Individual differences in boys’ and girls’ timing and tempo of puberty: Modeling development with nonlinear growth models. Developmental Psychology, 47(5), 1389–1409. CrossRefGoogle Scholar
  44. McCarthy, D. E., Minami, H., Yeh, V. M., & Bold, K. W. (2015). An experimental investigation of reactivity to ecological momentary assessment frequency among adults trying to quit smoking. Addiction, 110(10), 1549–1560. Retrieved from (ADD-14-0754.R2) CrossRefGoogle Scholar
  45. Molenaar, P. C. M. (1994). Dynamic latent variable models in developmental psychology. In A. von Eye & C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 155–180). Thousand Oaks, CA: Sage Publications.Google Scholar
  46. Molenaar, P. C. M., & Newell, K. M. (2003). Direct fit of a theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56, 199–214. MathSciNetCrossRefGoogle Scholar
  47. Molenaar, P. C. M., Sinclair, K. O., Rovine, M. J., Ram, N., & Corneal, S. E. (2009). Analyzing developmental processes on an individual level using nonstationary time series modeling. Developmental Psychology, 45(1), 260–271. CrossRefGoogle Scholar
  48. Nesselroade, J. R. (1991). The warp and woof of the developmental fabric. In R. Downs, L. Liben, & D. Palermo (Eds.), Visions of development, the environment, and aesthetics: The legacy of Joachim F. Wohlwill (pp. 213–240). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  49. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  50. Newtson, D. (1993). The dynamics of action and interaction. In L. B. Smith & E. Thelen (Eds.), A dynamic systems approach to development: Applications (pp. 241–264). Cambridge, MA: MIT Press.Google Scholar
  51. Newtson, D., Hairfield, J., Bloomingdale, J., & Cutino, S. (1987). The structure of action and interaction. Social Cognition, 5(3), 191–237. CrossRefGoogle Scholar
  52. Nowak, A., & Lewenstein, M. (1994). Dynamical systems: A tool for social psychology? In R. Vallacher & A. Nowak (Eds.), Dynamical systems in social psychology (Chap. 2). San Diego, CA: Academic.Google Scholar
  53. Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical Ornstein–Uhlenbeck model for continuous repeated measurement data. Psychometrika, 74(3), 395–418. MathSciNetCrossRefGoogle Scholar
  54. Ou, L., Hunter, M. D., & Chow, S.-M. (2016). dynr: Dynamic modeling in R. [Computer software manual].Google Scholar
  55. Ou, L., Hunter, M. D., & Chow, S.-M. (2017). What’s for dynr: A package for linear and nonlinear dynamic modeling in R (manuscript submitted for publication).Google Scholar
  56. Oud, J. H. L. (2007a). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 19–39). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  57. Oud, J. H. L. (2007b). Continuous time modeling of reciprocal relationships in the cross-lagged panel design. In S. Boker & M. Wenger (Eds.), Data analytic techniques for dynamical systems (pp. 87–129). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  58. Oud, J. H. L., & Jansen, R. A. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. MathSciNetCrossRefGoogle Scholar
  59. Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel data. Statistica Neerlandica, 62, 4–28. MathSciNetCrossRefGoogle Scholar
  60. Pagan, A. (1980). Some identification and estimation results for regression models with stochastically varying coefficients. Journal of Econometrics, 13, 341–363. MathSciNetCrossRefGoogle Scholar
  61. Powell, S. R., & Chau, P. M. (1991). A technique for realizing linear phase IIR filters. IEEE Transactions on Signal Processing, 39(11), 2425–2435.CrossRefGoogle Scholar
  62. R Core Team. (2016). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Google Scholar
  63. Ram, N., & Gerstorf, D. (2009). Time structured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes. Psychology and Aging, 24, 778–791. CrossRefGoogle Scholar
  64. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. MathSciNetCrossRefGoogle Scholar
  65. Schweppe, F. C. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, IT-11, 61–70. MathSciNetCrossRefGoogle Scholar
  66. Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32. CrossRefGoogle Scholar
  67. Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its applications. New York: Springer. CrossRefGoogle Scholar
  68. Silk, J. S., Forbes, E. E., Whalen, D. J., Jakubcak, J. L., Thompson, W. K., Ryan, N. D., et al. (2011). Daily emotional dynamics in depressed youth: A cell phone ecological momentary assessment study. Journal of Experimental Child Psychology, 110(2), 241–25. CrossRefGoogle Scholar
  69. Stock, J., & Watson, M. (2008). Forecasting in dynamic factor models subject to structural instability. In J. Castle & N. Shephard (Eds.), The methodology and practice of econometrics, a Festschrift in honour of Professor David F. Hendry. Oxford: Oxford University Press.CrossRefGoogle Scholar
  70. Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis (Vol. 12). : Springer Science & Business Media.Google Scholar
  71. Tarvainen, M. P., Georgiadis, S. D., Ranta–aho, P. O., & Karjalainen, P. A. (2006). Time–varying analysis of heart rate variability signals with Kalman smoother algorithm. Physiological Measurement, 27, 225–239. CrossRefGoogle Scholar
  72. The National Institute of Mental Health. (2016). Bipolar disorder. Retrieved April 22, 2017, from
  73. Turvey, M. (1990). Coordination. American Psychologist, 45(8), 938–953. doi: 10.1037/0003-066X.45.8.938CrossRefGoogle Scholar
  74. Vallacher, R. R., & Nowak, A. (Eds.). (1994). Dynamical systems in social psychology. San Diego, CA: Academic.Google Scholar
  75. Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology 66, 103–126. MathSciNetCrossRefGoogle Scholar
  76. Wan, E., & Van der Merwe, R. (2001). The unscented Kalman filter. In S. Haykins (Ed.), Kalman filtering and neural networks (pp. 221–280). New York: Wiley. CrossRefGoogle Scholar
  77. Weiss, A. A. (1985). The stability of the AR(1) process with an AR(1) coefficient. Journal of Time Series Analysis, 6, 181–186. MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Human Development and Family StudiesPennsylvania State UniversityUniversity ParkUSA
  2. 2.School of PsychologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations