Makes Religion Happy or Makes Happiness Religious? An Analysis of a Three-Wave Panel Using and Comparing Discrete and Continuous-Time Techniques

  • Heiner MeulemannEmail author
  • Johan H. L. Oud


The reciprocal effects of religiosity and life satisfaction are examined in a three-wave panel study of German former high school students at ages 30, 43 and 56. Religiosity is measured as church attendance and Christian belief such that three measures are followed up over three time points. Analyses by structural equation modelling in discrete time and continuous time are compared. According to both methods, church attendance has the strongest autoregression/auto-effect, followed by Christian worldview, and next by life satisfaction; furthermore, all cross-regressions/cross-effects are slightly negative. The answer to both questions in the title is therefore negative. In contrast to the cross-regressions in the discrete-time analysis, the continuous-time analysis reveals significance of all negative cross-effects and reverses the strength order of the cross-effects between the two dimensions of religiosity. Continuous-time analysis also enables to compute and display the complete autoregression and cross-regression functions as well as the development of means and variances of the three variables across continuous time.


  1. Abele, A., Spurk, D., & Volmer, J. (2011). The construct of career success: Measurement issues and an empirical example. Zeitschrift für Arbeitsmarktforschung, 43, 195–206. Google Scholar
  2. Angraini, Y., Toharudin, T., Folmer, H., & Oud, J. H. L. (2014). The relationships between individualism, nationalism, ethnocentrism, and authoritarianism in Flanders: A continuous time-structural equation modeling approach. Multivariate Behavioral Research, 49, 41–53. CrossRefGoogle Scholar
  3. Becker, S. O., Nagler, M., & Woessmann, L. (2017). Education and religious participation: city-level evidence from Germany’s secularization period 1890–1930. Journal of Economic Growth, 22, 273–311. CrossRefGoogle Scholar
  4. Berger, P. (1967). The sacred canopy: Elements of a theory of religion. New York: Doubleday.Google Scholar
  5. Bergstrom, A. R. (1966). Nonrecursive models as discrete approximations to systems of stochastic differential equations. Econometrica, 34, 173–182. MathSciNetCrossRefGoogle Scholar
  6. Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects: A structural equations approach. Social Forces, 89, 1–34. CrossRefGoogle Scholar
  7. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. Scott Long (Eds.), Testing structural equation models. Newbury Park, CA: Sage.Google Scholar
  8. Davie, G. (2010). Vicarious religion: A response. Journal of Contemporary Religion, 25, 261–266. CrossRefGoogle Scholar
  9. Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modelling with R-Package ctsem. Journal of Statistical Software, 77(5), 1–35. CrossRefGoogle Scholar
  10. Felling, A., Peters, J., & Schreuder, O. (1987). Religion im Vergleich: Bundesrepublik Deutschland und Niederlande. Frankfurt am Main: Peter Lang.Google Scholar
  11. Headey, B., Scup, J., Gucci, I., & Wagner, G. G. (2008). Authentic Happiness Theory Supported by Impact of Religion on Life Satisfaction: A Longitudinal Analysis for Germany. IZA Discussion Paper No. 3915.Google Scholar
  12. Levin, J. S., & Taylor, R. J. (1998). Panel analyses of religious involvement and well-being in African Americans: Contemporaneous vs. longitudinal effects. Journal for the Scientific Study of Religion, 37, 695–709. CrossRefGoogle Scholar
  13. Lim, C., & Putnam, R. D. (2010). Religion, social networks and life satisfaction. American Sociological Review, 75, 914–933. CrossRefGoogle Scholar
  14. Meulemann, H. (2017). Macht Religion glücklich-oder Glück religiös? In K. Birkelbach & H. Meulemann (Eds.), Lebensdeutung und Lebensplanung in der Lebensmitte (pp. 49–72). Wiesbaden: Springer. CrossRefGoogle Scholar
  15. Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). New York: Springer.CrossRefGoogle Scholar
  16. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199–215. MathSciNetCrossRefGoogle Scholar
  17. Oud, J. H. L., & Voelkle, M. C. (2014). Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling. Quality & Quantity, 48, 3271–3288. CrossRefGoogle Scholar
  18. Regnerus, M. D., & Smith, C. (2005). Selection effects in studies of religious influence. Review of Religious Research, 47, 23–50. CrossRefGoogle Scholar
  19. SAS Institute Inc. (2013). SAS/STAT®13.1 User’s Guide: The CALIS procedure. Cary, NC: SAS Institute Inc.Google Scholar
  20. Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66, 103–126. MathSciNetCrossRefGoogle Scholar
  21. Vuchinich, S., Bank, L., & Patterson, G. R. (1992). Parenting, peers, and the stability of antisocial behavior in preadolescent boys. Developmental Psychology, 38, 510–521. CrossRefGoogle Scholar
  22. Weber, A. (2017). Lebenszufriedenheit im Lebensverlauf: Allgemein, privat und beruflich. In K. Birkelbach & H. Meulemann (Eds.), Lebensdeutung und Lebensplanung in der Lebensmitte (pp. 19–48). Wiesbaden: Springer. CrossRefGoogle Scholar
  23. Wothke, W. (2009). Longitudinal multigroup modeling with missing data. In T. D. Little, K. H. Schnabel, & J. Baumert (Eds.), Modelling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 219–240). Mahwah, NJ: Erlbaum.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Sociology and Social PsychologyUniversity of CologneCologneGermany
  2. 2.Behavioural Science InstituteUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations