Recursive Partitioning in Continuous Time Analysis

  • Andreas M. BrandmaierEmail author
  • Charles C. Driver
  • Manuel C. Voelkle


Building models fully informed by theory is challenging when data sets are large and strong assumptions about all variables of interest and their interrelations cannot be made. Machine learning-inspired approaches have been gaining momentum in modeling such “big” data because they offer a systematic approach to searching for potential interrelationships among variables. In practice, researchers may often start with a small model strongly guided by theory. In a second step, however, they quickly face the challenge of selecting among additional variables as to whether they should be included in or omitted from the model. This situation calls for both a confirmatory statistical modeling approach and an exploratory statistical learning approach to data analysis within a single framework. Structural equation model (SEM) trees, a combination of SEM and decision trees (also known as classification and regression trees), offer a principled solution to this selection problem. SEM trees hierarchically split empirical data into homogeneous groups sharing similar data patterns by recursively selecting optimal predictors of these differences from a potentially large set of candidate variables. SEM forests are an extension of SEM trees, consisting of ensembles of SEM trees, each built on a random sample of the original data. By aggregating over ensembles of SEM trees (SEM forests), we obtain measures of variable importance that are more robust than measures from single trees. In the present chapter, we combine SEM trees and SEM-based continuous time modeling. The resulting approach of continuous time SEM trees will be illustrated by exploring dynamics in perceptual speed using data from the COGITO study.



We thank John J. Prindle, John J. McArdle, Timo von Oertzen, and Ulman Lindenberger who have each played essential roles in the development of SEM trees and forests. We would also like to thank Florian Schmiedek, Annette Brose, and Ulman Lindenberger for sharing the COGITO data with us. We are grateful to Julia Delius for her helpful assistance in language and style editing.

Supplementary material (1 kb)
(ZIP 135kb)


  1. Ammerman, B. A., Jacobucci, R., Kleiman, E. M., Muehlenkamp, J. J., & McCloskey, M. S. (2017). Development and validation of empirically derived frequency criteria for NSSI disorder using exploratory data mining. Psychological Assessment, 29(2), 221–231. CrossRefGoogle Scholar
  2. Brandmaier, A. M., & Prindle, J. J. (2017). semtree: Recursive partitioning for structural equation models [Computer software manual]. Retrieved from (R package version 0.9.11)
  3. Brandmaier, A. M., Prindle, J. J., McArdle, J. J., & Lindenberger, U. (2016). Theory-guided exploration with structural equation model forests. Psychological Methods, 21(4), 566–582. CrossRefGoogle Scholar
  4. Brandmaier, A. M., Ram, N., Wagner, G. G., & Gerstorf, D. (2017). Terminal decline in well-being: The role of multi-indicator constellations of physical health and psychosocial correlates. Developmental Psychology, 53(5), 996–1012. CrossRefGoogle Scholar
  5. Brandmaier, A. M., von Oertzen, T., Ghisletta, P., Hertzog, C., & Lindenberger, U. (2015). Lifespan: A tool for the computer-aided design of longitudinal studies. Frontiers in Psychology, 6, 272. CrossRefGoogle Scholar
  6. Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013a). Exploratory data mining with structural equation model trees. In J. J. McArdle & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behavioral sciences (pp. 96–127). New York: Routledge.Google Scholar
  7. Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013b). Structural equation model trees. Psychological Methods, 18(1), 71–86. CrossRefGoogle Scholar
  8. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. CrossRefGoogle Scholar
  9. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth International.zbMATHGoogle Scholar
  10. Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396. CrossRefGoogle Scholar
  11. Driver, C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modeling with r package ctsem. Journal of Statistical Software, 77(5), 1–35. CrossRefGoogle Scholar
  12. Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15, 3133–3181.MathSciNetzbMATHGoogle Scholar
  13. Ferrer, E., & McArdle, J. J. (2010). Longitudinal modeling of developmental changes in psychological research. Current Directions in Psychological Science, 19(3), 149–154. CrossRefGoogle Scholar
  14. Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. Journal of Machine Learning Research, 16, 3905–3909.MathSciNetzbMATHGoogle Scholar
  15. Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). A comparison of methods for uncovering sample heterogeneity: Structural equation model trees and finite mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 24(2), 270–282. MathSciNetCrossRefGoogle Scholar
  16. Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N., & Stone, A. A. (2004). A survey method for characterizing daily life experience: The day reconstruction method. Science, 306(5702), 1776–1780. CrossRefGoogle Scholar
  17. Kuroki, Y. (2014). Identifying diverse pathways to cognitive decline in later life using genetic and environmental factors. Unpublished doctoral dissertation, University of Southern California.Google Scholar
  18. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. Nesselroade & R. Cattell (Eds.), Handbook of multivariate experimental psychology (Vol. 2, pp. 561–614). New York: Plenum Press.CrossRefGoogle Scholar
  19. McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58(1), 110–133. CrossRefGoogle Scholar
  20. Mehl, M. R., & Conner, T. S. (2012). Handbook of research methods for studying daily life. New York: Guilford Press.Google Scholar
  21. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107–122. CrossRefGoogle Scholar
  22. Morgan, J. N., & Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Association, 58(302), 415–434. CrossRefGoogle Scholar
  23. Muthén, B., & Curran, P. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2(4), 371–402. CrossRefGoogle Scholar
  24. Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., et al. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. MathSciNetCrossRefGoogle Scholar
  25. Nesselroade, J. R., Gerstorf, D., Hardy, S. A., & Ram, N. (2007). Focus article: Idiographic filters for psychological constructs. Measurement: Interdisciplinary Research & Perspectives, 5(4), 217–235. Google Scholar
  26. Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). New York: Springer.CrossRefGoogle Scholar
  27. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. MathSciNetCrossRefGoogle Scholar
  28. Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. Google Scholar
  29. Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27. Google Scholar
  30. Stan Development Team. (2016). Stan modeling language users guide and reference manual [Computer software manual] (version 2.9.0)Google Scholar
  31. Therneau, T., Atkinson, B., & Ripley, B. (2015). rpart: Recursive partitioning and regression trees [Computer software manual]. Retrieved from (R package version 4.1-10)
  32. Tucker, L. (1966). Learning theory and multivariate experiment: Illustration by determination of generalized learning curves. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 476–501). Chicago: Rand McNally.Google Scholar
  33. Usami, S., Hayes, T., & Mcardle, J. J. (2017). Fitting structural equation model trees and latent growth curve mixture models in longitudinal designs: The influence of model misspecification. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 585–598. MathSciNetCrossRefGoogle Scholar
  34. Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176–192. CrossRefGoogle Scholar
  35. Walls, T. A., & Schafer, J. L. (2006). Models for intensive longitudinal data. Oxford: Oxford University Press.CrossRefGoogle Scholar
  36. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andreas M. Brandmaier
    • 1
    Email author
  • Charles C. Driver
    • 1
  • Manuel C. Voelkle
    • 2
  1. 1.Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations