Advertisement

Intraoperative Navigation: Techniques and Systems in Craniofacial Trauma

  • Harald Essig
Chapter

Abstract

Intraoperative navigation in its present form is the result of technical advances that have taken place over more than three decades. These started with the need to find anatomical targets accurately, to define surgical pathways without harming neighboring structures and, especially in cranio-maxillofacial surgery, to intraoperatively control the position of bony structures and implants. The introduction of navigation has resulted in a paradigm shift: surgical procedures must be planned preoperatively based on medical three-dimensional (3D) imaging, and the desired outcome must be defined in advance. After registering the patient’s anatomy with 3D imaging and devising a preoperative plan, navigation can be applied until the preplanned outcome is achieved. Quality assessment includes evaluation of intraoperative or postoperative 3D images and the virtual surgical plan.

References

  1. Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46(542):148–9.PubMedGoogle Scholar
  2. Andrews JC, et al. Stereolithographic model construction from CT for assessment and surgical planning in congenital aural atresia. Am J Otol. 1994;15(3):335–9.PubMedGoogle Scholar
  3. Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–6.CrossRefPubMedGoogle Scholar
  4. Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22(1):135–56.CrossRefPubMedGoogle Scholar
  5. Blumer M, et al. Influence of mirrored computed tomograms on decision-making for revising surgically treated orbital floor fractures. J Oral Maxillofac Surg. 2015;73(10):1982.e1–9.CrossRefGoogle Scholar
  6. Donlon WC, Young P, Vassiliadis A. Three-dimensional computed tomography for maxillofacial surgery: report of cases. J Oral Maxillofac Surg. 1988;46(2):142–7.CrossRefPubMedGoogle Scholar
  7. Dubois L, et al. Predictability in orbital reconstruction. A human cadaver study, part III: Implant-oriented navigation for optimized reconstruction. J Craniomaxillofac Surg. 2015a;43(10):2050–6.CrossRefPubMedGoogle Scholar
  8. Dubois L, et al. Predictability in orbital reconstruction: A human cadaver study. Part II: Navigation-assisted orbital reconstruction. J Craniomaxillofac Surg. 2015b;43(10):2042–9.CrossRefPubMedGoogle Scholar
  9. Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg. 2006;35(12):1081–95.CrossRefPubMedGoogle Scholar
  10. Ellis E. Intraoperative CT scanning in maxillofacial trauma: what is its role? Int J Oral Maxillofac Surg. 2015;44:e5.CrossRefGoogle Scholar
  11. Essig H, et al. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy. Radiat Oncol. 2011;6:159.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Essig H, et al. Referencing of markerless CT data sets with cone beam subvolume including registration markers to ease computer-assisted surgery - a clinical and technical research. Int J Med Robot. 2013;9(3):e39–45.CrossRefPubMedGoogle Scholar
  13. Essig H, et al. Patient-specific biodegradable implant in pediatric craniofacial surgery. J Craniomaxillofac Surg. 2017;45(2):216–22.CrossRefPubMedGoogle Scholar
  14. Eufinger H, et al. Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery. J Craniomaxillofac Surg. 1998;26(6):373–8.CrossRefPubMedGoogle Scholar
  15. Ewers R, et al. [Occlusal splint for the transmission, fixation and control of planned bite relations in progenia operations]. ZWR. 1977;86(12):630–2.Google Scholar
  16. Gellrich NC, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110(6):1417–29.PubMedGoogle Scholar
  17. Hassfeld S, Muhling J, Zoller J. Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 1995;24(1 Pt 2):111–9.CrossRefPubMedGoogle Scholar
  18. Heissler E, et al. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg. 1998;27(5):334–8.CrossRefPubMedGoogle Scholar
  19. Hinzpeter R, et al. Imaging algorithms and CT protocols in trauma patients: survey of Swiss emergency centers. Eur Radiol. 2017;27(5):1922–8.CrossRefPubMedGoogle Scholar
  20. Hoffmann J, et al. Validation of 3D-laser surface registration for image-guided cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2005;33(1):13–8.CrossRefPubMedGoogle Scholar
  21. Kermer C, et al. Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998;26(3):136–9.CrossRefPubMedGoogle Scholar
  22. Kosugi Y, et al. An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng. 1988;35(2):147–52.CrossRefPubMedGoogle Scholar
  23. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.PubMedGoogle Scholar
  24. Luebbers HT, et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2008;36(2):109–16.CrossRefPubMedGoogle Scholar
  25. Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990;3(3):200–3.CrossRefPubMedGoogle Scholar
  26. Marmulla R, et al. [Precision of computer-assisted systems in profile reconstructive interventions on the face]. Mund Kiefer Gesichtschir. 1997;1(Suppl 1):S65–7.Google Scholar
  27. Marsh JL, Vannier MW. The “third” dimension in craniofacial surgery. Plast Reconstr Surg. 1983;71(6):759–67.CrossRefPubMedGoogle Scholar
  28. Metzger MC, et al. Comparison of 4 registration strategies for computer-aided maxillofacial surgery. Otolaryngol Head Neck Surg. 2007;137(1):93–9.CrossRefPubMedGoogle Scholar
  29. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398(4):501–14.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Paraskevopoulos D, et al. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev. 2010;34(2):217–28.CrossRefPubMedGoogle Scholar
  31. Roscoe L. Stereolithography interface specification. America-3D Systems Inc.; 1988. p. 27.Google Scholar
  32. Santler G, et al. Stereolithography versus milled three-dimensional models: comparison of production method, indication, and accuracy. Comput Aided Surg. 1998;3(5):248–56.CrossRefPubMedGoogle Scholar
  33. Schmelzeisen R, et al. Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury. 2004;35(10):955–62.CrossRefPubMedGoogle Scholar
  34. Schwestka R, et al. Control of vertical position of the maxilla in orthognathic surgery: clinical application of the sandwich splint. Int J Adult Orthodon Orthognath Surg. 1990;5(2):133–6.PubMedGoogle Scholar
  35. Spiegel EA, et al. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.CrossRefPubMedGoogle Scholar
  36. Villalobos H, Germano IM. Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg. 1999;4(1):45–9.CrossRefPubMedGoogle Scholar
  37. Wagner M, Essig H. Intraoperative 3-D-Bildgebung als Ergänzung oder Ersatz der intraoperativen Navigation? Der MKG-Chirurg. 2017;10(3):190–6.CrossRefGoogle Scholar
  38. Wagner ME, et al. Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J Craniomaxillofac Surg. 2015;43(8):1340–7.CrossRefPubMedGoogle Scholar
  39. Watzinger F, et al. Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg. 1997;25(4):198–202.CrossRefPubMedGoogle Scholar
  40. Widmann G, et al. Use of a surgical navigation system for CT-guided template production. Int J Oral Maxillofac Implants. 2007;22(1):72–8.PubMedGoogle Scholar
  41. Zachow S. Computational planning in facial surgery. Facial Plast Surg. 2015;31(5):446–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University Clinic for Oral-Maxillofacial Surgery, Universitätspital–ZürichZürichSwitzerland

Personalised recommendations