Advertisement

Emerging Technologies in Cartilage Repair

  • Mats Brittberg
Chapter

Abstract

It has been almost 60 years since Pridie described subchondral drilling technology in 1959 and 30 years since the first human chondrocyte implantation was performed in cartilage repair in 1987. The techniques of today still consist of repairing defects in cartilage and subchondral bone with fibrocartilaginous tissue. The dream scenario is to find a method that regenerates the defect area, meaning that the repair would be identical in structure to the surrounding native cartilage. However, none of the existing or developing techniques are even close to producing cartilage regeneration, even though many companies use the word ‘regeneration’ when presenting their method of cartilage repair. Emerging technologies are still mainly just modifications of old techniques with improvements in the repair tissue filling and structure, as well as allowing arthroscopic and one-stage procedures. In this chapter, biological, synthetic, and small metal implants are discussed, and techniques that will be used more in the near future are also presented and discussed. We note that some interesting biological techniques involving the use of growth factors will be added to the orthopedic tool box if they are successful in randomized trials.

Keywords

Emerging technologies Cartilage repair Cartilage tissue engineering Chondrocyte implantation Growth factors Synthetic implants Small metal implants Scaffolds Cartilage regeneration 

References

  1. 1.
    Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade. 1999;28(1):26–32. Article in GermanPubMedGoogle Scholar
  2. 2.
    Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage. 2010;1(1):65–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. Knee Surg Sports Traumatol Arthrosc. 2017 Aug;25(8):2494–2501.Google Scholar
  5. 5.
    Kon E, Filardo G, Venieri G, Perdisa F, Marcacci M. Tibial plateau lesions. Surface reconstruction with a biomimetic osteochondral scaffold: results at 2 years of follow-up. Injury. 2014;45(Suppl 6):S121–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci U S A. 2012;109(25):10012–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N. Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1452–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Méthot S, Vehik K, Restrepo A. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6(2):62–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Comblain F, Rocasalbas G, Gauthier S, Henrotin Y. Chitosan: a promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng. 2017;28(s1):S209–15.PubMedGoogle Scholar
  11. 11.
    Goldshmid R, Cohen S, Shachaf Y, Kupershmit I, Sarig-Nadir O, Seliktar D, Wechsler R. Steric interference of adhesion supports in-vitro chondrogenesis of mesenchymal stem cells on hydrogels for cartilage repair. Sci Rep. 2015;5:12607.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med. 2015;8(4):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1170–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bonasia DE, Martin JA, Marmotti A, Amendola RL, Buckwalter JA, Rossi R, Blonna D, Adkisson HD 4th, Amendola A. Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production. Am J Sports Med. 2011;39(11):2355–61.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Solursh M. Cartilage stem cells: regulation of differentiation. Connect Tissue Res. 1989;20(1–4):81–9. ReviewCrossRefPubMedGoogle Scholar
  16. 16.
    Puelacher WC, Kim SW, Vacanti JP, Schloo B, Mooney D, Vacanti CA. Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices. Int J Oral Maxillofemoral Surg. 1994;23:49–5.CrossRefGoogle Scholar
  17. 17.
    Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007;1(3):170–8. ReviewCrossRefGoogle Scholar
  18. 18.
    de Windt TS, Hendriks JA, Zhao X, Vonk LA, Creemers LB, Dhert WJ, Randolph MA, Saris DB. Concise review: unraveling stem cell cocultures in regenerative medicine: which cell interactions steer cartilage regeneration and how? Stem Cells Transl Med. 2014;3(6):723–33.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dijkstra K, Hendriks J, Karperien M, Vonk LA, Saris DB. Arthroscopic airbrush-assisted cell spraying for cartilage repair – Design, development and characterization of custom-made arthroscopic spray nozzles. Tissue Eng Part C Methods. 2017;23:505–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A, Gatenholm P, Enejder A, Simonsson S. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7(1):658.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    O’Reilly A, Kelly DJ. A computational model of osteochondral defect repair following implantation of stem cell-laden multiphase scaffolds. Tissue Eng Part A. 2017;23(1–2):30–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Messner K, Gillquist J. Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials. 1993;14(7):513–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Lange J, Follak N, Nowotny T, Merk H. Results of SaluCartilage implantation for stage IV chondral defects in the knee joint area. Unfallchirurg. 2006;109(3):193–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Sciarretta FV.5 to 8 years follow-up of knee chondral defects treated by PVA-H hydrogel implant. Eur Rev Med Pharmacol Sci. 2013 Nov;17(22):3031–8.Google Scholar
  25. 25.
    Baumhauer JF, Singh D, Glazebrook M, Blundell C, De Vries G, Le IL, Nielsen D, Pedersen ME, Sakellariou A, Solan M, Wansbrough G, Younger AS, Daniels T, for and on behalf of the CARTIVA Motion Study Group. Prospective, randomized, multi-centered clinical trial assessing safety and efficacy of a synthetic cartilage implant versus first metatarsophalangeal arthrodesis in advanced hallux rigidus. Foot Ankle Int. 2016;37(5):457–69.CrossRefPubMedGoogle Scholar
  26. 26.
    Dinesh N, McNicholas M, Hart A, Miles J, Bobić V. Partial resurfacing of the knee with the BioPoly implant: interim report at 2 years. JBJS Open Access. 2017;22:e0011.Google Scholar
  27. 27.
    Becher C, Huber R, Thermann H, Paessler HH, Skrbensky G. Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. 2008;16(1):56–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Laursen JO, Lind M. Treatment of full-thickness femoral cartilage lesions using condyle resurfacing prosthesis. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):746–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Manda K, Ryd L, Eriksson A. Finite element simulations of a focal knee resurfacing implant applied to localized cartilage defects in a sheep model. J Biomech. 2011;44(5):794–801.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28(2):354–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar R, Griffin M, Butler PE. A review of current regenerative medicine strategies that utilize nanotechnology to treat cartilage damage. Open Orthop J. 2016;10:862–76.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shahid M, Kundra R. Platelet-rich plasma (PRP) for knee disorders. EFORT Open Rev. 2017;2(1):28–34.  https://doi.org/10.1302/2058-5241.2.160004. eCollection 2017 JanCrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Krishnan L, Priddy LB, Esancy C, Li MT, Stevens HY, Jiang X, Tran L, Rowe DW, Guldberg RE. Hydrogel-based delivery of rhBMP-2 improves healing of large bone defects compared with autograft. Clin Orthop Relat Res. 2015;473(9):2885–97.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kiyozuka Y, Miyazaki H, Yoshizawa K, Senzaki H, Yamamoto D, Inoue K, Bessho K, Okubo Y, Kusumoto K, Tsubura A. An autopsy case of malignant mesothelioma with osseous and cartilaginous differentiation: bone morphogenetic protein-2 in mesothelial cells and its tumor. Dig Dis Sci. 1999;44(8):1626–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Epstein NE. Basic science and spine literature document bone morphogenetic protein increases cancer risk. Surg Neurol. 2015;5(Suppl 15):S552–60.Google Scholar
  36. 36.
    James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C. A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng Part B Rev. 2016 Aug;22(4):284–97.CrossRefGoogle Scholar
  37. 37.
    Jiang Y, Chen LK, Zhu DC, Zhang GR, Guo C, Qi YY, Ouyang HW. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A. 2010;16(5):1621–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. Int Orthop. 2007;31:773–81.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hayashi M, Muneta T, Ju YJ, Mochizuki T, Sekiya I. Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther. 2008;10:R118.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Frisbie DD, Kawcak CE, Werpy NM, Park RD, McIlwraith CW. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res. 2007;68:290–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MM. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011;29(6):913–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.CrossRefPubMedGoogle Scholar
  44. 44.
    O’Shaughnessey K, Matuska A, Hoeppner J, Farr J, Klaassen M, Kaeding C, Lattermann C, King W, Woodell-May J. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors. J Orthop Res. 2014;32(10):1349–55.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bendinelli P, Matteucci E, Dogliotti G, et al. Molecular basis of anti-inflammatory action of platelet rich plasma on human chondrocytes: mechanisms of NF-kB inhibition via HGF. J Cell Physiol. 2010;225:757–66.CrossRefGoogle Scholar
  46. 46.
    Carmona JU. Autologous platelet concentrates as a treatment of horses with osteoarthritis: a preliminary pilot study. J Equine Vet Sci. 2007;27:167–70.CrossRefGoogle Scholar
  47. 47.
    Kon E. 2013. PRP intra-articular injection and viscosupplementation as therapeutic treatments for early osteoarthritis: multicentre retrospective cohort study in 150 patients at 6 months follow up. 14th ESSKA Congress. Oslo Norway; June 9–12, 2010. p. 16–102.Google Scholar
  48. 48.
    Adis Insight. Trial: a randomized, placebo-controlled, patient and investigator blinded, proof of concept study investigating the safety, tolerability and preliminary efficacy of multiple intra-articular LNA043 injections in regenerating the articular cartilage of the knee in patients with articular cartilage lesions; 2017. http://adisinsight.springer.com/trials/700285116
  49. 49.
    Jungmann PM, Welsch GH, Brittberg M, Trattnig S, Braun S, Imhoff AB, Salzmann GM. Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity. Cartilage. 2017;8(3):272–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Karlsson C, Brantsing C, Svensson T, Brisby H, Asp J, Tallheden T, Lindahl A. Differentiation of human mesenchymal stem cells and articular chondrocytes: analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res. 2007;25(2):152–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Smeriglio P, Lai JH, Dhulipala L, Behn AW, Goodman SB, Smith RL, Maloney WJ, Yang F, Bhutani N. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels. Tissue Eng Part A. 2015;21(1–2):147–55.CrossRefPubMedGoogle Scholar
  52. 52.
    Chang HX, Yang L, Li Z, Chen G, Dai G. Age-related biological characterization of mesenchymal progenitor cells in human articular cartilage. Orthopedics. 2011;34(8):e382–8.PubMedGoogle Scholar
  53. 53.
    Jeuken RM, Roth AK, Peters RJ, van Donkelaar CC, Thies JC, van Rhijn LW, Emans PJ. Polymers in cartilage defect repair: Current status and future prospects. Polymers. 2016;8:219–49.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthopedics, Kungsbacka HospitalKungsbackaSweden
  2. 2.Cartilage Research Unit, University of GothenburgGothenburgSweden

Personalised recommendations