Nanobotany pp 103-129 | Cite as

Protein Capping and Nanoparticles

  • Nadia Ghaffar
  • Shagufta Naz


Nanoparticles have distinct properties and these properties are rapidly revolutionizing the biomedical applications. Despite of development in nanoscience, there is quite little understanding about the interaction of nanomaterials with living systems for the safe and proficient application. It is believed that in a biological medium, proteins interact with nanoparticles and compete for the surface of nanoparticles leading to formation of protein capping which modify the physicochemical properties of nanoparticles. The biological fluid observes nanoparticles with modified surface hence composition of capping proteins become responsible for the further cellular response. In this chapter, we present different factors which are responsible for variations in corona composition such as physicochemical properties of NPs (e.g., size, shape, surface charge, composition, surface functional groups, coatings and hydrophilicity/hydrophobicity) and influence of biological environment. Aside from that impact of ignored issues at bionano interface like administration route, temperature, cell observer, plasma concentration and plasma gradient effect will also be discussed.


  1. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2014) Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nanoparticles 8(6):5515–5526Google Scholar
  3. Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007a) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23:12318–12321CrossRefPubMedGoogle Scholar
  4. Asuri P, Iseult L, Kenneth AD (2007b) Protein nanoparticles interaction. J Nanosci Nanotechnol 7:1675CrossRefPubMedGoogle Scholar
  5. Bardhan M, Mandal G, Ganguly T (2009) Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. J Appl Phys 106:034701CrossRefGoogle Scholar
  6. Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles, differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299:56–69CrossRefPubMedGoogle Scholar
  7. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632CrossRefPubMedGoogle Scholar
  8. Cedervall T, Lynch I, Foy M, Berggad T, Donnelly S, Cagney G, Linse S, Dawson K (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756CrossRefGoogle Scholar
  9. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055CrossRefPubMedGoogle Scholar
  10. Chakraborti S, Chatterjee T, Joshi P, Poddar A, Bhattacharyya B, Singh SP, Gupta V, Chakrabarti P (2009) Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir 26:3506–3513CrossRefGoogle Scholar
  11. Chatterjee T, Chakraborti S, Joshi P, Singh SP, Gupta V, Chakrabarti P (2010) The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. FEBS J 277:4184–4194CrossRefPubMedGoogle Scholar
  12. Cox MC, Barnham KJ, Frenkiel TA, Hoeschele JD, Mason AB, He QY (1999) Identification of platination sites on human serum transferrin using 13C and 15N NMR spectroscopy. JBIC J Biol Inorg Chem 4(5):621–631CrossRefPubMedGoogle Scholar
  13. Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101CrossRefPubMedGoogle Scholar
  14. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44CrossRefPubMedGoogle Scholar
  15. Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF (2013) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322CrossRefPubMedGoogle Scholar
  16. Ditto AJ, Shah PN, Yun YH (2009) Non-viral gene delivery using nanoparticles. Expert Opin Drug Deliv 6(11):1149–1160CrossRefPubMedGoogle Scholar
  17. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood, effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5:106–117CrossRefPubMedGoogle Scholar
  18. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315CrossRefPubMedGoogle Scholar
  19. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: it’s interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754CrossRefPubMedGoogle Scholar
  20. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdorster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–610CrossRefPubMedGoogle Scholar
  21. Gasser M, Rothen-Rutishauser B, Krug HF, Gehr P, Nelle M, Yan B, Wick P (2010) The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry. J Nanobiotech 8:1477–3155CrossRefGoogle Scholar
  22. Gessner A, Waicz R, Lieske A, Paulke B, Mader K, Muller RH (2000) Nanoparticles with decreasing surface hydrophobicities, influence on plasma protein adsorption. Int J Pharm 196(2):245–249CrossRefPubMedGoogle Scholar
  23. Gessner A, Lieske A, Paulke BR, Müller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170CrossRefPubMedGoogle Scholar
  24. Gessner A, Lieske A, Paulke B, Muller R (2003) Functional groups on polystyrene model nanoparticles. Influence on protein adsorption. J Biomed Mater Res A 65:319–326CrossRefPubMedGoogle Scholar
  25. Ghavami M, Saffar S, Abd Emamy B, Peirovi A, Shokrgozar MA, Serpooshan V (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3(4):1119–1126CrossRefGoogle Scholar
  26. Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R (2008) Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin 40:777–782CrossRefPubMedGoogle Scholar
  27. Goppert TM, Muller RH (2005a) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186CrossRefPubMedGoogle Scholar
  28. Goppert TM, Muller RH (2005b) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain, comparison of plasma protein adsorption patterns. J Drug Target 13:179–187CrossRefPubMedGoogle Scholar
  29. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S (2000) Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG), influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerf 18(3–4):301–313CrossRefGoogle Scholar
  30. Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5(5):471–480CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlback B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticles corona. FEBS J 276:3372–3381CrossRefPubMedGoogle Scholar
  32. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3(2):418–424CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefPubMedGoogle Scholar
  34. Jansch M, Stumpf P, Graf C, Ruhl E, Müller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428:125–133CrossRefPubMedGoogle Scholar
  35. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20:11594–11599CrossRefPubMedGoogle Scholar
  36. Kathiravan A, Paramaguru G, Renganathan R (2009) Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. J Mol Struct 934:129–137CrossRefGoogle Scholar
  37. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2009) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–379CrossRefGoogle Scholar
  39. Laurent S, Burtea C, Thirifays C, Hafeli UO, Mahmoudi M (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7(1):29997CrossRefGoogle Scholar
  40. Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M (2013) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interface Sci 392:431–445CrossRefPubMedGoogle Scholar
  41. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRefPubMedGoogle Scholar
  42. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticles uptake efficiency. J Am Chem Soc 135(4):1438–1444CrossRefPubMedGoogle Scholar
  43. Liang XJ, Meng H, Wang YZ, He HY, Meng J, Lu J (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci 107(16):7449–7454CrossRefPubMedGoogle Scholar
  44. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914CrossRefPubMedGoogle Scholar
  45. Linse S, Sara L, Celia C, Wei FX, Iseult L, Stina L, Eva T, Sheena ER, Kenneth AD (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A 104:8691CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu S, Sui Y, Guo K, Yin Z, Gao X (2012) Spectroscopic study on the interaction of pristine C60 and serum albumins in solution. Nanoscale Res Lett 7:433CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles. Conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20:10639–10647CrossRefPubMedGoogle Scholar
  48. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270CrossRefPubMedGoogle Scholar
  49. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47CrossRefGoogle Scholar
  50. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011a) Protein nanoparticle interactions, opportunities and challenges. Chem Rev 111(9):5610–5637CrossRefPubMedGoogle Scholar
  51. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S (2011b) Superparamagnetic iron oxide nanoparticles, promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2(3):118–140CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011c) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46CrossRefPubMedGoogle Scholar
  53. Mahmoudi M, Shokrgozar MA, Sardari S, Moghadam MK, Vali H, Laurent S, Stroeve P (2011d) Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3:1127–1138CrossRefPubMedGoogle Scholar
  54. Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR (2013) Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7(8):6555–6562CrossRefPubMedGoogle Scholar
  55. Mahmoudi M, Lohse SE, Murphy CJ, Fathizadeh A, Montazeri A, Suslick KS (2014a) Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett 14(1):6–12CrossRefPubMedGoogle Scholar
  56. Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C (2014b) Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 32(4):679–692CrossRefPubMedGoogle Scholar
  57. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein − nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491CrossRefPubMedGoogle Scholar
  58. Miclaus T, Bochenkov VE, Ogaki R, Howard KA, Sutherl DS (2014) Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett 14(4):2086–2093CrossRefPubMedGoogle Scholar
  59. Mishra SR, Zhang B, Si Z, Yang L, Jiang W, Yan B (2009) Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells. J Phys Chem C 113:5390–5395CrossRefGoogle Scholar
  60. Moghimi SM, Muir I, Illum L, Davis SS, Kolb-Bachofen V (1993) Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1179(2):157–165CrossRefGoogle Scholar
  61. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona, relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534CrossRefPubMedGoogle Scholar
  62. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557CrossRefPubMedGoogle Scholar
  63. Palocci C, Laura C, Iole V, Enrico C, Marco D, Ilaria F, Maria V (2007) Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Biomacromolecules 8:3047CrossRefPubMedGoogle Scholar
  64. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC (2012) PEGylated PRINT nanoparticles, the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12(10):5304–5310CrossRefPubMedPubMedCentralGoogle Scholar
  65. Petersdorf R (1974) Chap 12. Chills and fever. In: Wintrob MM, Thorn GW, Adams RD, Braaunwald E, Isselbacher KJ, Petersdorf RG (eds) Harrison’s principles of internal medicine, 7th edn. McGraw-Hill, New York, pp 58–60Google Scholar
  66. Ragnaill MN, Brown M, Bramini M, Callanan S, Lynch I (2011) Internal benchmarking of a human blood–brain barrier cell model for screening of nanoparticle uptake and transcytosis. Eur J Pharm Biopharm 77(3):360–367CrossRefPubMedGoogle Scholar
  67. Rahman M, Laurent S, Tawil N, Yahia L H, Mahmoudi M (2013). Nanoparticle and protein corona. In Protein-nanoparticle interactions. Springer, New York, 11:21–44CrossRefGoogle Scholar
  68. Rhoades R, Pflanzer RG (1989) Human physiology, 4th edn. Saunders College Publication, Fort WorthGoogle Scholar
  69. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surfaceinduced conformational changes. J Am Chem Soc 127(22):8168–8173CrossRefPubMedGoogle Scholar
  70. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580CrossRefPubMedGoogle Scholar
  71. Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–530CrossRefPubMedGoogle Scholar
  72. Sarkar R, Shankara N, Lars OP, Fernando D, Andy M, Samir KP (2007) Direct conjugation of semiconductor Nanocrystals to a globular protein to study protein-folding intermediates. J Phys Chem B 111:12294CrossRefPubMedGoogle Scholar
  73. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23):3926–3933CrossRefPubMedPubMedCentralGoogle Scholar
  74. Slack SM, Horbett TA (1995) The Vroman effect. ACS Symp Ser 602:112–128CrossRefGoogle Scholar
  75. Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A (2011) Proteomic characterization of engineered nanomaterial–protein interactions in relation to surface reactivity. ACS Nano 5:4300–4309CrossRefPubMedGoogle Scholar
  76. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E (2010) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167CrossRefPubMedGoogle Scholar
  78. Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B (2010) An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 26:8336–8346CrossRefPubMedGoogle Scholar
  79. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Nanoscale Res Lett 6:12–21Google Scholar
  80. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807CrossRefGoogle Scholar
  81. Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477CrossRefPubMedGoogle Scholar
  82. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-xii, and fibrinogen in plasma at interfaces. Blood 55:156–159Google Scholar
  83. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768CrossRefPubMedGoogle Scholar
  84. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799CrossRefPubMedGoogle Scholar
  85. Wangoo N, Suri CR, Shekhawat G (2008) Interaction of gold nanoparticles with protein, a spectroscopic study to monitor protein conformational changes. Appl Phys Lett 92:133104CrossRefGoogle Scholar
  86. Word JM, Schiller T, Yan BJ (1999) Topological analysis and interactive visualization of biological networks and protein structures. Mol Biol 285:1711CrossRefGoogle Scholar
  87. Worrall JWE, Verma A, Yan HH, Rotello VM (2006) Cleaning of nanoparticle inhibitors via proteolysis of adsorbed proteins. Chem Commun 0:2338–2340CrossRefGoogle Scholar
  88. Yang JM, Yang H, Lin L (2011) Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5(6):5067–5071CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nadia Ghaffar
    • 1
  • Shagufta Naz
    • 2
  1. 1.Department of BotanyLahore College for Women UniversityLahorePakistan
  2. 2.Department of BiotechnologyLahore College for Women UniversityLahorePakistan

Personalised recommendations