Advertisement

Nanobotany pp 37-65 | Cite as

Classification of Green Nanoparticles

  • Beenish Zia Butt
Chapter

Abstract

The recent technological advancement in nanotechnology has opened new avenues for research and progress in the field of science. The synthesis of nanoparticles from consistent and eco-friendly methods is an imperative aspect. Fabrication of metallic nanoparticles is a growing area for research because of its potentiality in the relevance and development of advanced technologies. The development and accomplishment of new technologies have led to new era, the nano-revolution which reveals the use of plants for the synthesis of green nanoparticles. Though, the nanoparticles can be produced through various usual methods but the biological methods of synthesizing are excellent and competent more than the chemical and physical methods. Green synthesis of nanoparticles using plants has appeared as substitute to overcome the drawbacks of conventional techniques. Exploitation of plants towards fabrication of nanoparticles is rising as advantageous technique with the presence of great variety of biological molecules that can act as capping and reducing agents and consequently enhances the rate of metal reduction and stabilization of nanoparticles. Hence, the present study predicts on biofabrication of nanoparticles from plants which are emerging as nanofactories.

References

  1. Allahverdiyev AM et al (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amarnath K et al (2012) Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Coll Surf B Biointerfaces 92:254–261CrossRefGoogle Scholar
  3. Anastas PT, Warner JC (1998) Principles of green chemistry. Green chemistry. Theory Pract:29–56Google Scholar
  4. Ashoori R (1996) Electrons in artificial atoms. Nature 379:413–419CrossRefGoogle Scholar
  5. Awwad AM, Salem NM (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2(4):125–128CrossRefGoogle Scholar
  6. Balamurugan M, Saravanan S, Soga T (2014) Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract. E-J Surf Sci Nanotech 12:363–367CrossRefGoogle Scholar
  7. Bankar A et al (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll Surf A Physicochem Eng Aspects 368(1):58–63CrossRefGoogle Scholar
  8. Baskaralingam V et al (2012) Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus. Nanotech Develop 2(1):3CrossRefGoogle Scholar
  9. Bencherif SA et al (2009) Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30(29):5270–5278PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berry CC, Curtis AS (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phy D Appl Phy 36(13):198CrossRefGoogle Scholar
  11. Bhau B et al (2015) Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv Mater Lett 6:55–58CrossRefGoogle Scholar
  12. Bhosale R, et al. (2014) Innovative eco-friendly approaches for green synthesis of silver nanoparticles. Int J Pharm Sci Nanotech7:2328–2337Google Scholar
  13. Boudad H et al (2001) Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm 218(1):113–124PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buhleier E, Wehner W, Vögtle F (1978) Cascade and nonskid chain like syntheses of molecular cavity topologies. Chemischer Informationsdienst 9(25)Google Scholar
  15. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12(3):323–328PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chandran K, Song S, Yun SI (2014) Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab J Chem  https://doi.org/10.1016/j.arabjc.2014.11.041
  18. Cheng L et al (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215–2222PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chu C et al (1988) J Trauma Inj Infect. Crit Care 28:1488–1492Google Scholar
  20. Coll JL (2011) Cancer optical imaging using fluorescent nanoparticles. Nanomed 6(1):7–10CrossRefGoogle Scholar
  21. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotech 21(10):1166–1170CrossRefGoogle Scholar
  22. Connor EE et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, WeinheimCrossRefGoogle Scholar
  24. Cox DN, Bastiaans K (2007) Understanding Australian consumers’ perceptions of selenium and motivations to consume selenium enriched foods. Food Quality Pref 18(1):66–76CrossRefGoogle Scholar
  25. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanome D7:1189–1202Google Scholar
  26. Daniel SK et al (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopar Res 15(1):1–10Google Scholar
  27. Dhuper S, Panda D, Nayak P (2012) Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends J Nanotech App 13(2):16–22Google Scholar
  28. Dobrucka R (2016) Synthesis and structural characteristic of platinum nanoparticles using herbal Bidens Tripartitus extract. J Inorg Organometall Polymers Mat 26(1):219–225CrossRefGoogle Scholar
  29. Edison TJI, Sethuraman M (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357CrossRefGoogle Scholar
  30. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135PubMedPubMedCentralCrossRefGoogle Scholar
  31. Elumalai E et al (2010) Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Arch Appl Sci Res 2(6):76–81Google Scholar
  32. Ganeshkumar M et al (2012) Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: preparation, characterization and toxicity studies in zebrafish embryo model. Mat Res Bull 47(9):2113–2119CrossRefGoogle Scholar
  33. Ganeshkumar M et al (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Coll Surf B Biointerfaces 106:208–216CrossRefGoogle Scholar
  34. Gardea-Torresdey JL et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361CrossRefGoogle Scholar
  35. Geetha N et al (2012) Biofabrication of silver nanoparticles using leaf extract of Chromolaena Odorata (L.) King and Robinson. An international conference on nuclear energy. Environm Biol Sci 8:56–59Google Scholar
  36. Gerhardt LC, Jell G, Boccaccini A (2007) Titanium dioxide (TiO2) nanoparticles filled poly (D, L lactid acid)(PDLLA) matrix composites for bone tissue engineering. J Mat Sci Mat Med 18(7):1287–1298CrossRefGoogle Scholar
  37. Gong P et al (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotech 18(28):285604CrossRefGoogle Scholar
  38. Gonzalez A, Noguez C (2007) Influence of morphology on the optical properties of metal nanoparticles. J Comp Theoretical Nanosci 4(2):231–238CrossRefGoogle Scholar
  39. Gulrajani M et al (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108(1):614–623CrossRefGoogle Scholar
  40. Hanley C et al (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotech 19(29):295103CrossRefGoogle Scholar
  41. Hayashi H et al (2004) pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules 37(14):5389–5396CrossRefGoogle Scholar
  42. Honary S et al (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7:999–1005Google Scholar
  43. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28CrossRefGoogle Scholar
  44. Huang J et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechology 18(10):105104CrossRefGoogle Scholar
  45. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501PubMedPubMedCentralCrossRefGoogle Scholar
  46. Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotech 12(1):1CrossRefGoogle Scholar
  47. Janka J, Maldarelli F (2004) Prion diseases: update on mad cow disease, variant creutzfeldt-jakob disease, and the transmissible spongiform encephalopathies. Curr Inf Dis Rep 6(4):305–315CrossRefGoogle Scholar
  48. Jayandran M, Haneefa MM, Balasubramanian V (2015) Green synthesis and characterization of manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J Appl Pharm Sci 5(12):105–110CrossRefGoogle Scholar
  49. Jayaseelan C et al (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  50. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mat Sci 40(20):5407–5411CrossRefGoogle Scholar
  51. Jia L et al (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotech 20(38):385601CrossRefGoogle Scholar
  52. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie Int Ed 48(30):5418–5429CrossRefGoogle Scholar
  53. Kalaiselvi A et al (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectro Chimica Acta Part A Mol Biomol Spec 135:116–119CrossRefGoogle Scholar
  54. Kale A et al (2013) Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotech 24(4):045603CrossRefGoogle Scholar
  55. Kaler A et al (2011) Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii. J Bionanosci 5(1):53–58CrossRefGoogle Scholar
  56. Kang X et al (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid. Talanta 74(4):879–886PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kavitha K et al (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2(6):66–76Google Scholar
  58. Kaviya S et al (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A Mol Biomol Spect 79(3):594–598CrossRefGoogle Scholar
  59. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kl N et al (2014) Green synthesis and characterization of silver nanoparticles from aqueous extract of Basella alba and their in-vitro antioxidant potentials. Int J Pharm Pharmaceut Sci 6(10):393–396Google Scholar
  61. Kong H et al (2014) Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 65:155–162PubMedPubMedCentralCrossRefGoogle Scholar
  62. Koo B et al (2012) Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett 12(5):2429–2435PubMedPubMedCentralCrossRefGoogle Scholar
  63. Krishnaraj C et al (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotech Rep 4:42–49CrossRefGoogle Scholar
  64. Kulkarni VD, Kulkarni PS (2013) Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud 1(3):1–4Google Scholar
  65. Kulkarni N, Muddapur U (2014) Biosynthesis of metal nanoparticles: a review. J of Nanotech 2014:1–8CrossRefGoogle Scholar
  66. Kumar V, Yadav SK (2009) Plant mediated synthesis of silver and gold nanoparticles and their applications. J Chem Tech Biotech 84(2):151–157CrossRefGoogle Scholar
  67. Kumar A et al (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mat 7(3):236–241CrossRefGoogle Scholar
  68. Kumar VG et al (2011) Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Coll Surf B: Biointerfaces 87(1):159–163CrossRefGoogle Scholar
  69. Kumar P et al (2012) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed Eng 4(1):12–16CrossRefGoogle Scholar
  70. Kumar KM et al (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochimica Acta Part A Mol Biomol Spectrosc 102:128–133CrossRefGoogle Scholar
  71. Latha N, Gowri M (2014) Bio synthesis and characterisation of Fe3O4 nanoparticles using Caricaya Papaya leaves extract. Synthesis 12:17Google Scholar
  72. Lee H, Lee G, Na RJ, Jung HY, Jae YS, Beom SK (2011) Biological synthesis of copper nanoparticles using plant extract. NSTI Nanotech 3(1):371–374Google Scholar
  73. Li YP et al (2001) PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers. J Control Release 71(3):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li L et al (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Env Sci Tech 36(5):405–431CrossRefGoogle Scholar
  75. Li S et al (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotech 18(40):405101CrossRefGoogle Scholar
  76. Lynch N et al (2006) PANDAS (Paediatric autoimmune neuropsychiatric disorder associated with streptococcal infection). Irish Med J 99(5):155–155Google Scholar
  77. Majumder D (2012) Bioremediation: copper nanoparticles from electronic-waste. Intl J Eng Sci Tech 4(10)Google Scholar
  78. Manokari M, Shekhawat MS (2016) Green synthesis of zinc oxide nanoparticles using plant extracts of Leucas aspera (Willd.) L. Int J Biol Pap 1(1):22–27Google Scholar
  79. Marimuthu S et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasit Res 108(6):1541–1549CrossRefGoogle Scholar
  80. Marshall AT et al (2007) Accumulation of gold nanoparticles in Brassica juncea. Int J Phytoremediation 9(3):197–206PubMedPubMedCentralCrossRefGoogle Scholar
  81. McKenzie LC, Hutchison JE (2004) Green nanoscience. Chim Oggi 22(9):30–33Google Scholar
  82. Melchert WR, Reis BF, Rocha FR (2012) Green chemistry and the evolution of flow analysis. A review. Ana Chim Acta 714:8–19CrossRefGoogle Scholar
  83. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556CrossRefGoogle Scholar
  84. Mishra V, Sharma R, Nakuleshawar D, Gupta K (2014) A review on green synthesis of nanoparticles and evaluation of antimicrobial activity. Inter J Green Herb Chem 3(1):81–94Google Scholar
  85. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotech Adv 31(2):346–356CrossRefGoogle Scholar
  86. Mody VV et al (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282PubMedPubMedCentralCrossRefGoogle Scholar
  87. Molina MA, Ramos JL, Espinosa M (2006) Urgel, a two partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Env Microbiol 8(4):639–647CrossRefGoogle Scholar
  88. Mukherjee P et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  89. Mukunthan K, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotech 4(2):71–79CrossRefGoogle Scholar
  90. Murray CB, Kagan C, Bawendi M (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mat Sci 30(1):545–610CrossRefGoogle Scholar
  91. Murugan K, et al. (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol153:129–138PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859–862CrossRefGoogle Scholar
  93. Naika HR et al (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Uni Sci 9(1):7–12CrossRefGoogle Scholar
  94. Nanjwade BK et al (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38(3):185–196PubMedPubMedCentralCrossRefGoogle Scholar
  95. Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:1–7CrossRefGoogle Scholar
  96. Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+ 2] cycloaddition of azides and alkynes at room temperature. J Coll Interface Sci 457:141–147CrossRefGoogle Scholar
  97. Nath D, Banerjee P (2013) Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol 36(3):997–1014PubMedPubMedCentralCrossRefGoogle Scholar
  98. Noorjahan C et al (2015) Green synthesis and characterization of zinc oxide nanoparticles from neem (Azadirachta indicia). Int J Sci Eng Tech Res 4(30):5751–5753Google Scholar
  99. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 01(06):228–234Google Scholar
  100. Pandey S et al (2012) Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Arch Appl Sci Res 4(2):1135–1141Google Scholar
  101. Parak WJ et al (2003) Biological applications of colloidal nanocrystals. Nanotechology 14(7):R15CrossRefGoogle Scholar
  102. Park Y et al (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotech 5(3):69–78CrossRefGoogle Scholar
  103. Passam HC et al (2007) A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. Eur J Plant Sci Biotech 1(1):1–21Google Scholar
  104. Pattanayak M, Nayak P (2013) Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. Int J Plant Ani Env Sci 3(1):68–78Google Scholar
  105. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Phys E Low-Dimen Sys Nanostr 42(5):1417–1424CrossRefGoogle Scholar
  106. Pillai RK et al (2012) Vermifugal activity of biofabricated silver nanoparticles. Res J Recent Sci 1:47–51Google Scholar
  107. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):1–10CrossRefGoogle Scholar
  108. Prasad T et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nut 35(6):905–927CrossRefGoogle Scholar
  109. Prasad KS et al (2013) Biosynthesis of se nanoparticles and its effect on UV-induced DNA damage. Coll Surf B: Biointerfaces 103:261–266CrossRefGoogle Scholar
  110. Premanathan M et al (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotech Biol Med 7(2):184–192CrossRefGoogle Scholar
  111. Ramamurthy Ch, Sampath KS P Arunkumar, M Suresh Kumar, V Sujatha, K Premkumar, C Thirunavukkarasu (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36(8):1131–1139PubMedPubMedCentralCrossRefGoogle Scholar
  112. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Amr Chem Soc 125(46):13940–13941CrossRefGoogle Scholar
  113. Ravishankar RV, Jamuna B (2011) Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens, communicating current research and technological advances. Formatex Badajoz, pp 197–209Google Scholar
  114. Rogers JV et al (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3(4):129CrossRefPubMedCentralGoogle Scholar
  115. Roopan SM et al (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochimica Acta Part A Mol Biomol Spect 98:86–90CrossRefGoogle Scholar
  116. Roya K, Sarkar C, Ghosh C (2015) Single-step novel biosynthesis of silver nanoparticles using Cucumis sativus fruit extract and study of its photcatalytic and antibacterial activity. Digest J Nanomat Biostr 10(1):107Google Scholar
  117. Safaepour M et al (2009) Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J Med Biotech 1(2):111–115Google Scholar
  118. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis Miller leaf extract: structure and optical properties. Mat Res Bull 46(12):2560–2566CrossRefGoogle Scholar
  119. Santhoshkumar T et al (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asi Pac J Ttrop Med 7(12):968–976CrossRefGoogle Scholar
  120. Sarathi P, Thilagavathi G (2009) Synthesis and characterization of titanium dioxide nano-particles and their applications to textiles for microbe resistance. J Textile Apparel Tech Manag 6(2)Google Scholar
  121. Sathishkumar M et al (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mat 171(1):400–404CrossRefGoogle Scholar
  122. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934–975CrossRefGoogle Scholar
  123. Senthil M, Ramesh C (2017) Biogenic synthesis of Fe3O4 nanoparticles using Tridax Procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Digest J Nanomat Biostr 7(4)Google Scholar
  124. Sepeur S (2008) Nanotechnology: technical basics and applications. Vincentz Network GmbH & Co KG, HannoverGoogle Scholar
  125. Shah S et al (2014) Green synthesis of iron nanoparticles using plant extracts. Int J Biol Pharm Res 5:549–552Google Scholar
  126. Shah M et al (2015) Green synthesis of metallic nanoparticles via biological entities. Mat 8(11):7278–7308Google Scholar
  127. Shankar SS et al (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mat Chem 13(7):1822–1826CrossRefGoogle Scholar
  128. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1):83–96PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sharma D et al (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519(3):1224–1229CrossRefGoogle Scholar
  130. Sharma G et al (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Mol 19(3):2761–2770CrossRefGoogle Scholar
  131. Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Invent 3(8):6–28Google Scholar
  132. Si S, Mandal TK (2011) Tryptophan based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem A Eur J 13(11):3160–3168CrossRefGoogle Scholar
  133. Singh M et al (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomat Biostr 3(3):115–122Google Scholar
  134. Singh C et al (2011) A green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Dig J Nanomat Biostr 6(2):535–542Google Scholar
  135. Singh A, Singh S, Singh N (2014) Scientia research library. J Appl Chem 2(2):77–82Google Scholar
  136. Slomkowski S et al (2011) Terminology of polymers and polymerization processes in dispersed systems (IUPAC recommendations 2011). Pure Appl Chem 83(12):2229–2259CrossRefGoogle Scholar
  137. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138CrossRefGoogle Scholar
  138. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164PubMedPubMedCentralCrossRefGoogle Scholar
  139. Soundarrajan C et al (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35(5):827–833PubMedPubMedCentralCrossRefGoogle Scholar
  140. Srinivasan M, Rajabi M, Mousa SA (2015) Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials 5(4):1690–1703PubMedPubMedCentralCrossRefGoogle Scholar
  141. Subhankari I, Nayak P (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Tech 2(1):14–17Google Scholar
  142. Sumit S, Nayak P (2012) Green synthesis of gold nanoparticles using various extract of plants and spices. Int J Sci Innov Discov 2(3):325–350Google Scholar
  143. Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett 8(8):447–451Google Scholar
  144. Szabó T, Németh J, Dékány I (2003) Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties. Coll Surf A Physicochem Eng Asp 230(1):23–35CrossRefGoogle Scholar
  145. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotech Biol Med 6(2):257–262CrossRefGoogle Scholar
  146. Thakor A et al (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11(10):4029–4036PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tian J et al (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2(1):129–136PubMedPubMedCentralCrossRefGoogle Scholar
  148. Tomar A, Garg G (2013) Short review on application of gold nanoparticles. Global J Pharm 7(1):34–38Google Scholar
  149. Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotech 4(3):033001CrossRefGoogle Scholar
  150. Trouiller B et al (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vadlapudi V et al (2014) Synthesis of green metallic nanoparticles (NPs) and applications. Oriental J Chem 29(4):1589–1595CrossRefGoogle Scholar
  152. Valodkar M et al (2011) Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mat Chem Phys 128(1):83–89CrossRefGoogle Scholar
  153. Van Dijken A et al (2000) Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Luminescence 90(3):123–128CrossRefGoogle Scholar
  154. Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2(2):163–168CrossRefGoogle Scholar
  155. Velayutham K et al (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111(6):2329–2337PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wen Z, Liu J, Li J (2008) Core/shell pt/c nanoparticles embedded in mesoporous carbon as a methanol tolerant cathode catalyst in direct methanol fuel cells. Adv Mat 20(4):743–747CrossRefGoogle Scholar
  157. Wheate NJ et al (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39(35):8113–8127PubMedPubMedCentralCrossRefGoogle Scholar
  158. Yang X et al (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598CrossRefGoogle Scholar
  159. Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218(1):75–80PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zheng B et al (2013) Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J Coll Interface Sci 396:138–145CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Beenish Zia Butt
    • 1
  1. 1.Department of BotanyUniversity of PunjabLahorePakistan

Personalised recommendations