Mining ENADE Data from the Ulbra Network Institution

  • Heloise Acco Tives Leão
  • Edna Dias Canedo
  • Marcelo Ladeira
  • Fabiano Fagundes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


The National Institute of Educational Research and Studies (INEP) provides ENADE data for Higher Education Institutions (IES) from Brazil. This data is a rich source of support in improving the quality of education offered by these IES, but requires the application of data mining techniques to achieve the standards of the learning process and thus achieve improved academic performance of students in different courses. This paper aims to present the steps of mining the data provided by INEP, which will enable the identification of standards for the IES analyzed, as well as serve as a guide for other IES that wish to follow a similar process.


Data mining CRISP-DM Association algorithm Apriori 


  1. 1.
    U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996). CrossRefGoogle Scholar
  2. 2.
    S. Jang, K. Park, Y. Kim, H. Cho, T. Yoon, Comparison of h5n1, h5n8, and h3n2 using decision tree and apriori algorithm. J. Biosci. Med. 3(06), 49 (2015)Google Scholar
  3. 3.
    L.A. da Silva, S.M. Peres, C. Boscarioli, Introdução à mineração de dados: com aplicações em R (Elsevier Brasil, Rio de Janeiro, 2017)Google Scholar
  4. 4.
    G. Mobasher, A. Shawish, O. Ibrahim, Educational data mining rule based recommender systems, in CSEDU 2017—Proceedings of the 9th International Conference on Computer Supported Education, vol. 1 (Porto, Portugal, April 21–23, 2017), pp. 292–299. [Online].
  5. 5.
    V. Kumar, A. Chadha, Mining association rules in students assessment data. Int. J. Comput. Sci. Issues 9(5), 211–216 (2012)Google Scholar
  6. 6.
    R. Agrawal, T. Imieliński, and A. Swami, Mining association rules between sets of items in large databases, in 93 Proceedings of the 1993 ACM SIGMOD international conference on Management of data, vol. 22, no. 2 (ACM, 1993), pp. 207–216Google Scholar
  7. 7.
    S.R. Librelotto, P.M. Mozzaquatro, Análise dos algoritmos de mineração j48 e apriori aplicados na detecção de indicadores da qualidade de vida e saúde, Revista Interdisciplinar de Ensino, Pesquisa e Extensão, vol. 1, no. 1 (2014)Google Scholar
  8. 8.
    P. Kalgotra, R. Sharda, Progression analysis of signals: Extending CRISP-DM to stream analytics, in 2016 IEEE International Conference on Big Data, BigData 2016 (Washington, DC, USA, December 5–8, 2016), pp. 2880–2885 [Online].
  9. 9.
    J.M. Luna, F. Padillo, M. Pechenizkiy, S. Ventura, Apriori versions based on mapreduce for mining frequent patterns on big data. IEEE Trans. Cybern. (2017)Google Scholar
  10. 10.
    C. Woo Kim, S.H. Ahn, T. Yoon, Comparison of flavivirus using datamining-apriori, k-means, and decision tree algorithm, in 2017 19th International Conference on Advanced Communication Technology (ICACT) (IEEE, 2017), pp. 454–457Google Scholar
  11. 11.
    S. Ougiaroglou, G. Paschalis, Association rules mining from the educational data of ESOG web-based application, in Artificial Intelligence Applications and Innovations—AIAI 2012 International Workshops: AIAB, AIeIA, CISE, COPA, IIVC, ISQL, MHDW, and WADTMB, Halkidiki, Greece, September 27–30, 2012, Proceedings, Part II (2012), pp. 105–114Google Scholar
  12. 12.
    R. Wirth, J. Hipp, Crisp-dm: towards a standard process model for data mining, in Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (2000), pp. 29–39Google Scholar
  13. 13.
    R.M. Hoed, Análise da evasão em cursos superiores: o caso da evasão em cursos superiores da área de Computação, Dissertação, Universidade de Brasília, 2016. [Online],

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Heloise Acco Tives Leão
    • 1
  • Edna Dias Canedo
    • 1
  • Marcelo Ladeira
    • 1
  • Fabiano Fagundes
    • 2
  1. 1.Computer Science DepartmentUniversity of Brasília (UnB)BrasíliaBrazil
  2. 2.Computer Science DepartmentCentro Universitário Luterano (ULBRA) de PalmasPalmasBrazil

Personalised recommendations