Extracellular Matrix: Immunity and Inflammation

  • Amelia Cataldi
  • Viviana di GiacomoEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The extracellular matrix (ECM) is the non-cellular component of any tissues and organs. It provides not only support, tensile strength, and scaffolding for tissues and cells, but also biochemical signals and specialized proteins. The destabilization or alteration of the ECM structural and chemical composition affects growth, morphogenesis, differentiation, migration, communication, survival of all cells as well as inflammation and immune response. Inflammation is a complex defense mechanism characterized by leukocyte migration from the vasculature to control tissue damage induced by pathogenic (bacterial or viral), traumatic, or toxic injury with subsequent deposition of extracellular matrix resulting in tissue repair. At sites of injury, phagocytic cells, namely macrophages and neutrophils, provide innate cell-mediated immunity, and immune cells are influenced in their migration by the topography and composition of the matrix architecture. The physical and biochemical ECM properties are also able to modulate a number of processes in immune cells, especially lymphocytes that can ultimately lead to inefficient immune response. Among the large number of molecules responsible for ECM homeostasis, matrix metalloproteinases, versican, hyaluronan, and thrombospondins are the most involved in inflammation and immunity.


  1. 1.
    Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40:1101–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams JC, Lawler J. The thrombospondins. Cold Spring Harb Perspect Biol. 2011;3(10):a009712.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Agarwal SK. Integrins and cadherins as therapeutic targets in fibrosis. Front Pharmacol. 2014;5:131.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alvarez MJ, Prada F, Salvatierra E, et al. Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity. Cancer Res. 2005;65:5123–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Amălinei C, Căruntu ID, Giuşcă SE, et al. Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol. 2010;51:215–28.PubMedGoogle Scholar
  6. 6.
    Arroyo AG, Iruela-Arispe ML. Extracellular matrix, inhflammation, and the angiogenic response. Cardiovasc Res. 2010;86:226–35.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21:7724–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Aspberg A, Binkert C, Ruoslahti E. The versican C-type lectin domain recognizes the adhesion protein tenascin-R. Proc Natl Acad Sci U S A. 1995;92:10590–4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Aspberg A, Adam S, Kostka G, et al. Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem. 1999;274:20444–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Balbín M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35:252–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Berdiaki A, Zafiropoulos A, Fthenou E, et al. Regulation of hyaluronan and versican deposition by growth factors in fibrosarcoma cell lines. Biochim Biophys Acta. 2008;1780:194–202.PubMedCrossRefGoogle Scholar
  12. 12.
    Bollyky PL, Wu RP, Falk BA, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108:7938–43.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Butler GS, Overall CM. Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol. 2000;63:123–48.CrossRefGoogle Scholar
  15. 15.
    Chong HC, Tan CK, Huang RL, et al. Matricellular proteins: a sticky affair with cancers. J Oncol. 2012;2012:351089.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Clark IM, Swingler TE, Sampieri CL, et al. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40:1362–78.PubMedCrossRefGoogle Scholar
  17. 17.
    Clark RAF, Henson PM. The molecular and cellular biology of wound repair. New York: Plenum Press; 1988.CrossRefGoogle Scholar
  18. 18.
    Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24:830–3.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem. 2002;277:4585–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Day AJ, Sheehan JK. Hyaluronan: polysaccharide chaos to protein organization. Curr Opin Struct Biol. 2001;11:617–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Del Principe D, Lista P, Malorni W, et al. Fibroblast autophagy in fibrotic disorders. J Pathol. 2013;229:208–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Denis MC, Mahmood U, Benoist C, et al. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A. 2004;101:12634–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dubois B, Masure S, Hurtenbach U, et al. Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J Clin Invest. 1999;104:1507–15.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12:308–19.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Edelstam GA, Laurent UB, Lundkvist OE, et al. Concentration and turnover of intraperitoneal hyaluronan during inflammation. Inflammation. 1992;16:459–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Evanko SP, Tammi MI, Tammi RH, et al. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev. 2007;59:1351–65.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Frey H, Schroeder N, Manon-Jensen T, et al. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J. 2013;280:2165–79.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gabison EE, Huet E, Baudouin C, et al. Direct epithelial-stromal interaction in corneal wound healing: role of EMMPRIN/CD147 in MMPs induction and beyond. Prog Retin Eye Res. 2009;28:19–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol. 2014;258:24–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Gill S, Wight TN, Frevert CW, et al. Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec (Hoboken). 2010;293:968–81.CrossRefGoogle Scholar
  35. 35.
    Gomis-Rüth FX. Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 2003;24:157–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Graesser D, Mahooti S, Madri JA. Distinct roles for matrix metalloproteinase-2 and α4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis. J Neuroimmunol. 2000;109:21–131.CrossRefGoogle Scholar
  37. 37.
    Grimbert P, Bouguermouh S, Baba N, et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells-from human CD4+ CD25 T cells in response to inflammation. J Immunol. 2006;177:3534–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A. 1962;48:1014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hadler-Olsen E, Fadnes B, Sylte I, et al. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011;278:28–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Hay ED. Cell biology of extracellular matrix. New York: Plenum Press; 1991.CrossRefGoogle Scholar
  41. 41.
    Hernandez-Barrantes S, Bernardo M, Toth M, et al. Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol. 2002;12:131–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirose J, Kawashima H, Yoshie O, et al. Versican interacts with chemokines and modulates cellular responses. J BiolChem. 2001;276:5228–34.Google Scholar
  43. 43.
    Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999;99:81–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Huang H, Campbell SC, Bedford DF, et al. Peroxisome proliferator-activated receptor γ ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Mol Cancer Res. 2004;2:541–50.PubMedGoogle Scholar
  45. 45.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hynes RO, Yamada KM. Extracellular matrix biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2012.Google Scholar
  47. 47.
    Isenberg JS, Frazier WA, Roberts DD. Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci. 2008;65:728–42.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Isenberg JS, Martin-Manso G, Maxhimer JB, et al. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer. 2009;9:182–94.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Isogai Z, Aspberg A, Keene DR, et al. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem. 2002;277:4565–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91:221–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Joronen KR, Ala-aho ML, Majuri H, et al. Adenovirus mediated intra-articular expression of collagenase-3 (MMP-13) induces inflammatory arthritis in mice. Ann Rheum Dis. 2004;63:656–64.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Joronen K, Kähäri VM, Vuorio E. Temporospatial expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in mouse antigen induced arthritis. Histochem Cell Biol. 2005;124:535–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Karamanos N. Extracellular matrix: pathobiology and signaling. Berlin, Boston: Walter de Gruyter; 2012.CrossRefGoogle Scholar
  55. 55.
    Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13:649–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Kieseier BC, Kiefer R, Clements JM, et al. Matrix metalloproteinase-9 and -7 are regulated in experimental autoimmune encephalomyelitis. Brain. 1998;121:159–66.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim KH, Burkhart K, Chen P, et al. Tissue inhibitor of metalloproteinase–1 deficiency amplifies acute lung injury in bleomycin-exposed mice. Am J Respir Cell Mol Biol. 2005;33:271–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kirk JA, Cingolani OH. Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol. 2016;90:102–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Kudo-Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.PubMedCrossRefGoogle Scholar
  62. 62.
    Kuznetsova SA, Issa P, Perruccio EM, et al. Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci. 2006;119:4499–509.PubMedCrossRefGoogle Scholar
  63. 63.
    Laurent TC, Fraser JR. Hyaluronan. FASEB. 1992;J6:2397–404.CrossRefGoogle Scholar
  64. 64.
    LeBaron RG, Zimmermann DR, Ruoslahti E. Hyaluronate binding properties of versican. J Biol Chem. 1992;267:10003–10.PubMedGoogle Scholar
  65. 65.
    Lelongt B, Bengatta S, Delauche M, et al. Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J Exp Med. 2001;193:793–802.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lee MM, Yoon BJ, Osiewicz K, et al. Tissue inhibitor of metalloproteinase 1 regulates resistance to infection. Infect Immun. 2005;73:661–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee-Sayer SS, Dong Y, Arif AA, et al. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol. 2015;6:150.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Li L, Li H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors. Cancer Biol Ther. 2013;14:796–805.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li Q, Park PW, Wilson CL, et al. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002;111:635–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Lisi S, D’Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunol Lett. 2014;S0165-2478(14):00178-3.Google Scholar
  71. 71.
    Löffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38:191–208.PubMedCrossRefGoogle Scholar
  72. 72.
    Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediat Inflamm. 2011;2011:296069.CrossRefGoogle Scholar
  73. 73.
    Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(ii):a005058.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lundell A, Olin AI, Morgelin M, et al. Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Struct (Camb). 2004;12:1495–506.CrossRefGoogle Scholar
  75. 75.
    Macri L, Silverstein D, Clark RA. Growth factor binding to the pericellularmatrix and its importance in tissue engineering. Adv Drug Deliv Rev. 2007;59:1366–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.PubMedCrossRefGoogle Scholar
  77. 77.
    McDonald JA, Camenisch TD. Hyaluronan: genetic insights into the complex biology of a simple polysaccharide. Glycoconj J. 2002;1:331–9.CrossRefGoogle Scholar
  78. 78.
    Mecham RP. The extracellular matrix: an overview. Berlin: Springer; 2011.CrossRefGoogle Scholar
  79. 79.
    Mittal R, Gonzalez-Gomez I, Prasadarao NV. Escherichia coli K1 promotes the ligation of CD47 with thrombospondin-1 to prevent the maturation of dendritic cells in the pathogenesis of neonatal meningitis. J Immunol. 2010;185:2998–3006.PubMedCrossRefGoogle Scholar
  80. 80.
    Moncada-Pazos A, Obaya AJ, Llamazares M, et al. ADAMTS-12 metalloprotease is necessary for normal inflammatory response. J Biol Chem. 2012;287:39554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Morris DG, Huang X, Kaminski N, et al. Loss of integrin αvβ6-mediated TGF-β activation causes MMP12-dependent emphysema. Nature. 2003;422:169–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Morwood SR, Nicholson LB. Modulation of the immune response by extracellular matrix proteins. Arch Immunol Ther Exp (Warsz). 2006;54:367–74.CrossRefGoogle Scholar
  83. 83.
    Murasawa Y, Watanabe K, Yoneda M, et al. Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem. 2013;288:29170–81.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 2014;1840:2571–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Nygårdas PT, Hinkkanen AE. Up-regulation ofMMP-8 andMMP-9 activity in the BALB/c mouse spinal cord correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2002;128:245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Olin AI, Morgelin M, Sasaki T, et al. The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem. 2001;276:1253–61.PubMedCrossRefGoogle Scholar
  89. 89.
    Owen CA, Hu Z, Lopez-Otin C, et al. Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J Immunol. 2004;172:7791–803.PubMedCrossRefGoogle Scholar
  90. 90.
    Parekh K, Ramachandran S, Cooper J, et al. Tenascin-C, over expressed in lung cancer down regulates effector functions of tumor infiltrating lymphocytes. Lung Cancer. 2005;47:17–29.PubMedCrossRefGoogle Scholar
  91. 91.
    Parks WC, Wilson CW, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617–29.PubMedCrossRefGoogle Scholar
  92. 92.
    Peranzoni E, Rivas-Caicedo A, Bougherara H, et al. Positive and negative influence of the matrix architecture on antitumor immune surveillance. Cell Mol Life Sci. 2013;70:4431–48.PubMedCrossRefGoogle Scholar
  93. 93.
    Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol. 2014;5:101.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Piperi C, Papavassiliou AG. Molecular mechanisms regulating matrix metalloproteinases. Curr Top Med Chem. 2012;12:1095–112.PubMedCrossRefGoogle Scholar
  95. 95.
    Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26:587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Reinhardt DP, Sasaki T, Dzamba BJ, et al. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 1996;271:19489–96.PubMedCrossRefGoogle Scholar
  97. 97.
    Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol. 2012;166:1225–43.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sangaletti S, Colombo MP. Matricellular proteins at the crossroad of inflammation and cancer. Cancer Lett. 2008;267:245–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Sangaletti S, Stoppacciaro A, Guiducci C, et al. Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med. 2003;198:1475–85.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Silini A, Parolini O, Huppertz B, et al. Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Curr Stem Cell Res Ther. 2013;8:6–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10:712–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Stenina-Adognravi O. Thrombospondins: old players, new games. Curr Opin Lipidol. 2013;24:401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.PubMedCrossRefGoogle Scholar
  104. 104.
    Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Striz I, Brabcova E, Kolesar L, et al. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (Lond). 2014;126:593–612.CrossRefGoogle Scholar
  107. 107.
    Takahashi C, Sheng Z, Horan TP, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A. 1998;95:13221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Tezvergil-Mutluay A, Agee KA, Hoshika T, et al. The requirement of zinc and calcium ions for functional MMP activity in demineralized dentin matrices. Dent Mater. 2010;26:1059–67.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Toba H, Cannon PL, Yabluchanskiy A, et al. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis. Am J Physiol Heart Circ Physiol. 2017;312:H375–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Uhlin-Hansen L, Wik T, Kjellen L, et al. Proteoglycan metabolism in normal and inflammatory human macrophages. Blood. 1993;82:2880–9.PubMedGoogle Scholar
  111. 111.
    Van den Steen PE, Opdenakker G, Wormald MR, et al. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim Biophys Acta. 2001;1528:61–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Vandenbroucke RE, Dejonckheere E, Van Hauwermeiren F, et al. Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF. EMBO Mol Med. 2013;5:932–48.PubMedCentralCrossRefGoogle Scholar
  113. 113.
    Vargová V, Pytliak M, Mechírová V. Matrix metalloproteinases. EXS. 2012;103:1–33.PubMedGoogle Scholar
  114. 114.
    Verma S, Kesh K, Ganguly N, et al. Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. J Biol Chem. 2014;5:355–76.Google Scholar
  115. 115.
    Vermaelen KY, Cataldo D, Tournoy K, et al. Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol. 2003;171:1016–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Vigetti D, Karousou E, Viola M, et al. Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta. 2014;1840:2452–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Vigetti D, Rizzi M, Moretto P, et al. Glycosaminoglycans and glucose prevent apoptosis in 4-methylumbelliferone-treated human aortic smooth muscle cells. J Biol Chem. 2011;286:34497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Vigetti D, Genasetti A, Karousou E, et al. Proinflammatory cytokines induce hyaluronan synthesis and monocyte adhesion in human endothelial cells through hyaluronan synthase 2 (HAS2) and the nuclear factor-kappaB (NF-kappaB) pathway. J Biol Chem. 2011;285:24639–45.CrossRefGoogle Scholar
  119. 119.
    Vigetti D, Rizzi M, Viola M, et al. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology. 2009;19:537–46.PubMedCrossRefGoogle Scholar
  120. 120.
    Vincenti MP. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol Biol. 2001;151:121–48.PubMedGoogle Scholar
  121. 121.
    Volk SW, Iqbal SA, Bayat A. Interactions of the extracellular matrix and progenitor cells in cutaneous wound healing. Adv Wound Care (New Rochelle). 2013;2:261–72.CrossRefGoogle Scholar
  122. 122.
    Wang M, Qin X, Mudgett JS, et al. Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc Natl Acad Sci U S A. 1999;96:6885–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wang Y, Herrera AH, Li Y, et al. Regulation of mature ADAM17 by redox agents for l-selectin shedding. J Immunol. 2009;182:2449–57.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wang W, Xu GL, Jia WD, et al. Ligation of TLR2 by versican: a link between inflammation and metastasis. Arch Med Res. 2009;40:321–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Werfel J, Krause S, Bischof AG, et al. How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. PLoS ONE. 2013;8:e76122.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wight TN. The pathobiology of versican. In: Karamanos N, editor. Extracellular matrix: pathobiology and signaling. KG, Berlin: Walter De Gruyter GMBH & Co.; 2012. p. 154–70.Google Scholar
  127. 127.
    Wight TN, Frevert CW, Debley JS, et al. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol. 2017;312:1–14.PubMedCrossRefGoogle Scholar
  128. 128.
    Wight TN, Kang I, Merrilees MJ. Versican and the control of inflammation. Matrix Biol. 2014;35:152–61.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wight TN, Kinsella MG, Evanko SP, et al. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840:2441–51.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wight TN, Potter-Perigo S. The extracellular matrix: an active or passive player in fibrosis. Am J Physio Gastrointest Liver Physiol. 2011;301:G950–5.CrossRefGoogle Scholar
  131. 131.
    Wolf K, Alexander S, Schacht V, et al. Collagen based cell migration models in vitro and in vivo. Semin Cell Dev Biol. 2009;20:931–41.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Wu YJ, La Pierre DP, Wu J, et al. The interaction of versican with its binding partners. Cell Res. 2005;15:483–94.PubMedCrossRefGoogle Scholar
  134. 134.
    Xiao Q, Ge G. Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron. 2012;5:261–73.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211:19–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University G. d’AnnunzioChieti-PescaraItaly

Personalised recommendations