Advertisement

Collaborative Virtual Laboratory Environments with Hardware in the Loop

  • Z. Zhang
  • M. Zhang
  • Y. Chang
  • E.-S. Aziz
  • S. K. Esche
  • C. Chassapis
Chapter

Abstract

Over the last decade, the research community has expanded substantial efforts aiming at designing, agreeing on, and rolling out technical standards and powerful universal development tools that allow the rapid and cost-effective integration of specific experimental devices into standardized remote laboratory platforms. In this chapter, a virtual laboratory system with experimental hardware in the loop is described.

Keywords

Virtual laboratories Remote laboratories Mixed reality environments Virtual engineering environments Human-computer interface  

References

  1. Abe, N. M., & Cardoso, J. R. (1999). A virtual lab for electric motors and drives. IEEE Transactions on Magnetics, 35(3), 1674–1677.CrossRefGoogle Scholar
  2. Aburdene, M. F., Mastascusa, E. J., & Massengale, R. (1991). A proposal for a remotely shared control systems laboratory. In Proceeding of frontiers in education conference, West Lafayette, IN, September 21–24.Google Scholar
  3. Adam, J. A. (1993). Virtual reality is for real. IEEE Spectrum, 30(10), 22–29.CrossRefGoogle Scholar
  4. Adamo-Villani, N., Richardson, J., Carpenter, E., & Moore, G. (2006). A photorealistic 3D virtual laboratory for undergraduate instruction in microcontroller technology. In Proceeding of ACM SIGGRAPH 2006 Educators program, Boston, MA, US, July 30–August 3.Google Scholar
  5. Alexiou, A., Bouras, C., Giannaka, E., Kapoulas, V., Nani, M., & Tsiatsos, T. (2004). Using VR technology to support e-learning: The 3D virtual radiopharmacy laboratory. In Proceedings of the 24th international conference on distributed computing systems workshops, Tokyo, Japan, March 23–26.Google Scholar
  6. Alexiou, A., Bouras, C., & Giannaka, E. (2005). Virtual laboratories in education. In J. P. Courtiat, C. Davarakis, & T. Villemur (Eds.), Technology enhanced learning. IFIP International Federation for Information Processing (Vol. 171). Boston: Springer.Google Scholar
  7. Amazon Lumberyard. (2017). AAA game engine integrated with AWS. Retrieved from https://aws.amazon.com/lumberyard/
  8. Andujar, J. M., Mejías, A., & Marquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492–500.CrossRefGoogle Scholar
  9. Arango, F., Altuger, G., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2008). Piloting a game-based virtual learning environment. Computers in Education Journal, 18(4), 82–91.Google Scholar
  10. Aron, M., Simon, G., & Berger, M. O. (2007). Use of inertial sensors to support video tracking. Computer, 18, 57–68.Google Scholar
  11. Arpaia, P., Baccigalupi, A., Cennamo, F., & Daponte, P. (1997). A remote measurement laboratory for educational experiments. Measurement, 21(4), 157–169.CrossRefGoogle Scholar
  12. Autodesk. (2017a). Make it with Maya computer animation software. Retrieved from http://www.autodesk.com/products/maya/overview
  13. Autodesk. (2017b). 3D modeling, animation, and rendering software. Retrieved from http://www.autodesk.com/products/3ds-max/overview
  14. Autodesk. (2017c). 3DS Max2104. Retrieved from http://docs.autodesk.com/3DSMAX/16/ENU/3ds-Max-Tutorials/index.html
  15. Avradinis, N., Vosinakis, S., & Panayiotopoulos, T. (2000). Using virtual reality techniques for the simulation of physics experiments. In Proceeding of 4th systemics, cybernetics and informatics international conference, Orlando, Florida, US.Google Scholar
  16. Ayache, N. (1995). Medical computer vision, virtual reality and robotics. Image and Vision Computing, 13(4), 295–313.CrossRefGoogle Scholar
  17. Azim, A., & Aycard, O. (2012). Detection, classification and tracking of moving objects in a 3D environment. In Proceeding of the IEEE symposium on intelligent vehicles, Alcal de Henares,Google Scholar
  18. Aziz, E.-S., Esche, S. K., & Chassapis, C. (2006a). An architecture for virtual laboratory experimentation. In Proceedings of the 2006 ASEE annual conference and exposition, Chicago, Illinois, USA, June 18–21.Google Scholar
  19. Aziz, E.-S., Esche, S. K., & Chassapis, C. (2006b). A scalable platform for remote and virtual laboratories. World Transactions on Engineering and Technology Education, 5(3), 445–448.Google Scholar
  20. Aziz, E., Corter, J., Chang, Y., Esche, S., & Chassapis, C. (2012). Evaluation of the learning effectiveness of game-based and hands-on gear train laboratories. In Proceeding of frontiers in education conference (FIE), Seattle, WA, US, October 3–6.Google Scholar
  21. Aziz, E. S., Chang, Y., Esche, S. K., & Chassapis, C. (2014). A multi-user virtual laboratory environment virtual laboratory environment for gear train design. Computer Applications in Engineering Education, 22(4), 788–802.CrossRefGoogle Scholar
  22. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47.CrossRefGoogle Scholar
  23. Baba, S. A., Hussain, H., & Embi, Z. C. (2007). An overview of parameters of game engine. IEEE Multidisciplinary Engineering Education Magazine, 2(3), 10–12.Google Scholar
  24. Balamuralithara, B., & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108–118.CrossRefGoogle Scholar
  25. Barfield, W. (Ed.). (2015). Fundamentals of wearable computers and augmented reality. London: CRC Press.Google Scholar
  26. Bohus, C., Aktan, B., Shor, M. H., & Crowl, L. A. (1995). Running control engineering experiments over the Internet. Oregon State University, Department of Computer Science, Technical Report 95-60-07.Google Scholar
  27. Borghetti, M., Sardini, E., & Serpelloni, M. (2013). Sensorized glove for measuring hand finger flexion for rehabilitation purposes. IEEE Transactions on Instrumentation and Measurement, 62(12), 3308–3314.CrossRefGoogle Scholar
  28. Bottentuit Junior, J. B., & Coutinho, C. P. (2007). Virtual laboratories and M-learning: learning with mobile devices. In Proceedings of the international multi-conference on society, cybernetics, and informatics, Orlando, Florida, US, July 12–15.Google Scholar
  29. Brey, P. (2014). Virtual reality and computer simulation. In ethics and emerging technologies (pp. 315–332). Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  30. Bullet Engine. (2017). Real-time physics simulation. Retrieved from http://bulletphysics.org/wordpress/
  31. Burdea, G., & Coiffet, P. (2003). Virtual reality technology. US: Wiley.Google Scholar
  32. Casini, M., Prattichizzo, D., & Vicino, A. (2001). The automatic control telelab: a remote control engineering laboratory. In Proceedings of the 40th IEEE conference on decision and control, Orlando, Florida, US, December 4–7.Google Scholar
  33. Chang, C., Kodman, D., Esche, S. K., & Chassapis, C. (2006a). Immersive collaborative laboratory simulations using a game engine. In Proceedings of the 2006 ASEE annual conference and exposition, Chicago, Illinois, US, Jun 18–21.Google Scholar
  34. Chang, C., Arango, F., Kodman, D., Esche, S. K., & Chassapis, C. (2006b). Utilization of immersive collaborative student laboratory simulations developed using a game engine. In Proceedings of the ASME international mechanical engineering congress and exposition IMECE’06, Chicago, Illinois, US, November 5–10.Google Scholar
  35. Chang, C., Arango, F., Esche, S. K., & Chassapis, C. (2007). On the assembly of experimental setups in virtual laboratory environments. In Proceedings of the ASME international mechanical engineering congress and exposition IMECE’07, Seattle, Washington, US, November 10–16.Google Scholar
  36. Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2012). A game-based laboratory for gear design. Computers in Education Journal, 22(1), 21–31.Google Scholar
  37. Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2013). A multi-user virtual laboratory environment for gear train design. Computer Applications in Engineering Education, 22(4), 788–802.Google Scholar
  38. Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., Esche, S. K., & Chassapis, C. (2014). A platform for mechanical assembly education using the Microsoft Kinect. In Proceedings of the ASME international mechanical engineering congress & exposition, Quebec, Canada, November 14–20.Google Scholar
  39. Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., & Esche, S. K. (2016a). Evaluation of a video game adaptation for mechanical engineering educational laboratories. In Proceedings of 46th ASEE/IEEE frontiers in education conference, Erie, US.Google Scholar
  40. Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., Esche, S. K., & Chassapis, C. (2016b). Usability evaluation of a virtual educational laboratory platform. Computers in Education Journal, 7(1), 24–26.Google Scholar
  41. Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics – Physics Education Research, 8(1), 010113-1- 010113-12.CrossRefGoogle Scholar
  42. Classic Games. (2017). Meet with confidence. Retrieved from https://www.classicgames.me/super-mario-2d-land.html
  43. Cockburn, A., & McKenzie, B. (2002). Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments. In Proceedings of the SIGCHI conference on human factors in computing systems, Minneapolis, Minnesota, US, April 20–25.Google Scholar
  44. Davidphillips. (2017). http://www.davidphillips.me/3d-art-and-animation.php. Accessed in Feb 2017.
  45. De Meyer, A. (1991). Tech talk: How managers are stimulating global R&D communication. MIT Sloan Management Review, 32(3), 49.Google Scholar
  46. De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., & De Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journal of Archaeological Science, 41, 251–262.CrossRefGoogle Scholar
  47. Deniz, D. Z., Bulancak, A., & Ozcan, G. (2003). A novel approach to remote laboratories. In Proceeding of 33rd annual frontiers in education conference, Westminster, Colorado, November 5–8.Google Scholar
  48. Dilwort, J. (2010). Realistic virtual reality and perception. Philosophical Psychology, 23, 23–42.CrossRefGoogle Scholar
  49. Dorozhkin, D. V., Vance, J. M., Rehn, G. D., & Lemessi, M. (2012). Coupling of interactive manufacturing operations simulation and immersive virtual reality. Virtual Reality, 16(1), 15–23.CrossRefGoogle Scholar
  50. Esche, S. K. (2005). On the integration of remote experimentation into undergraduate laboratories – pedagogical approach. International Journal of Instructional Media, 32(4), 397–407.Google Scholar
  51. Esche, S. K., & Chassapis, C. (1998). An Internet-based remote-access approach to undergraduate laboratory education. In Proceedings of the fall regional conference of the middle atlantic section of ASEE, Washington, DC, US, November 6–7.Google Scholar
  52. Familia, R. (2005). A virtual laboratory for cooperative learning of robotics and mechatronics. In Proceedings of the 6th international conference on information technology based higher education and training, Juan Dolio, Dominican Republic, July 7–9.Google Scholar
  53. Faulkner, G., & Krauss, M. (1996). Guidelines for establishing a virtual reality lab [medical applications]. IEEE Engineering in Medicine and Biology Magazine, 15(2), 86–93.CrossRefGoogle Scholar
  54. Feldman, A., Hybinette, M., & Balch, T. (2012). The multi-iterative closest point tracker: An online algorithm for tracking multiple interacting targets. Journal of Field Robotics, 29(2), 258–276.CrossRefGoogle Scholar
  55. Fiz, I., & Orengo, H. A. (2007). The application of 3D reconstruction techniques in the analysis of ancient Tarraco’s urban topography. In Proceedings of 35th international conference on computer applications and quantitative methods in archaeology, Berlin, Germany, April 2–6.Google Scholar
  56. Freund, E., & Roßmann, J. (2003). Distributed virtual reality: System concepts for cooperative training and commanding in virtual worlds. Journal of Systemics, Cybernetics and Informatics, 1(1), 47–54.Google Scholar
  57. Furness, T. A., & Kocian, D. F. (1986). Putting humans into virtual space. In Proceedings of the 16th conference on aerospace simulation, San Diego, California, US.Google Scholar
  58. Gaggioli, A., & Breinin, R. (2001). In G. Riva & F. Davide (Eds.), Communications through virtual technology, identity community and technology in the Internet age. Amsterdam: IOS Press.Google Scholar
  59. Gertz, M. W., Stewart, D. B., & Khosla, P. K. (1994). A human machine interface for distributed virtual laboratories. IEEE Robotics & Automation Magazine, 1(4), 5–13.CrossRefGoogle Scholar
  60. Griffith, R., Chiprout, E., Zhang, Q. J., & Nakhla, M. (1992). A CAD framework for simulation and optimization of high-speed VLSI interconnections. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(11), 893–906.CrossRefGoogle Scholar
  61. Hahn, H. H., & Spong, M. W. (2000). Remote laboratories for control education. In Proceedings of the 39th IEEE conference on decision and control, Sydney, NSW, Australia; December 12–15.Google Scholar
  62. Harasim, L., Calvert, T., & Groeneboer, C. (1996). Virtual-U™: A web-based environment customized to support collaborative learning and knowledge building in post secondary courses. In Proceedings of the 1996 international conference on learning sciences, Evanston, IL, US.Google Scholar
  63. Havok engine. (2017). Retrieved from http://www.havok.com/
  64. Held, D., Levinson, J., Thrun, S., & Savarese, S. (2016). Robust real-time tracking combining 3D shape, color, and motion. The International Journal of Robotics Research, 35(1–3), 30–49.CrossRefGoogle Scholar
  65. Henty, D. S. (2000). Performance of hybrid message-passing and shared-memory parallelism for discrete element modeling. In Proceedings of the 2000 ACM/IEEE conference on supercomputing, Dallas, Texas, US, November 5–10.Google Scholar
  66. Hibbard, L. S., Grothe, R. A., Arnicar-Sulze, T. L., Dovey-Hartman, B. J., & Page, R. B. (1993). Computed three-dimensional reconstruction of median eminence capillary modules. Journal of Microscopy, 171, 39–56.CrossRefGoogle Scholar
  67. Hirose, M. (1997). Image-based virtual world generation. IEEE Multi Media, 4(1), 27–33.CrossRefGoogle Scholar
  68. Howard, B. M., & Vance, J. M. (2007). Desktop haptic virtual assembly using physically based modelling. Virtual Reality, 11(4), 207–215.CrossRefGoogle Scholar
  69. Hughes, J. F., Van Dam, A., Foley, J. D., & Feiner, S. K. (2014). Computer graphics: Principles and practice. US: Pearson Education.Google Scholar
  70. Hummel, J., Wolff, R., Stein, T., Gerndt, A., & Kuhlen, T. (2012). An evaluation of open source physics engines for use in virtual reality assembly simulations. In Proceeding of international symposium on visual computing, Rethymnon, Crete, Greece, July 16–18.CrossRefGoogle Scholar
  71. Jacobson, J., & Lewis, M. (2005). Game engine virtual reality with CaveUT. Computer, 38(4), 79–82.CrossRefGoogle Scholar
  72. Jara, C. A., Candelas, F. A., Puente, S. T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57(4), 2451–2461.CrossRefGoogle Scholar
  73. Karim, M. A. (Ed.). (1992). Electro-optical displays. Boca Raton: CRC Press.Google Scholar
  74. Kfir, R. E. (2001). Virtual laboratories in education. In Proceedings of the 1st international conference on computer graphics, virtual reality and visualisation. Cape Town, South Africa, November 05–07.Google Scholar
  75. Kocian, D. F. (1997, May 17–18). A visually-coupled airborne systems simulator (VCASS) – An approach to visual simulation. In Proceeding of the IMAGE conference sponsored by air force human resources laboratory. Phoenix: Williams AFB.Google Scholar
  76. Kozak, I., Banerjee, P., Luo, J., & Luciano, C. (2014). Virtual reality simulator for vitreoretinal surgery using integrated OCT data. Clinical Ophthalmology, 2014(8), 669–672.CrossRefGoogle Scholar
  77. Leleve, A., Benmohamed, H., Prevot, P., & Meyer, C. (2003). Remote laboratory-towards an integrated training system. In Proceeding of 4th international conference on information technology based higher education and training, Marrakech, Morocco, July 7–9.Google Scholar
  78. Li, J. R., Khoo, L. P., & Tor, S. B. (2003). Desktop virtual reality for maintenance training: An object oriented prototype system (V-REALISM). Computers in Industry, 52(2), 109–125.CrossRefGoogle Scholar
  79. Lin, F., Ye, L., Duffy, V. G., & Su, C. J. (2002). Developing virtual environments for industrial training. Information Sciences, 140(1), 153–170.CrossRefGoogle Scholar
  80. Livingston, M. A., Rosenblum, L. J., Julier, S. J., Brown, D., Baillot, Y., Swan, I. I., Gabbard, J. L., & Hix, D. (2002). An augmented reality system for military operations in urban terrain. In Proceedings of interservice/industry training, simulation & education conference, Orlando, Florida, December 2–5.Google Scholar
  81. Lu, G., Shark, L. K., Hall, G., & Zeshan, U. (2012). Immersive manipulation of virtual objects through glove-based hand gesture interaction. Virtual Reality, 16(3), 243–252.CrossRefGoogle Scholar
  82. Luciano, C., Banerjee, P., Florea, L., & Dawe, G. (2005). Design of the ImmersiveTouch™: A high-performance haptic augmented virtual reality system. In Proceedings of the 11th international conference on human-computer interaction, Las Vegas, Nevada, USA, Jul 22–27.Google Scholar
  83. Luciano, C., Banerjee, P., & DeFanti, T. (2009). Haptics-based virtual reality periodontal training simulator. Virtual Reality, 13(2), 69–85.CrossRefGoogle Scholar
  84. Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3–32.CrossRefGoogle Scholar
  85. Lustigova, Z., & Lustig, F. (2009). Remote and open laboratory in science education – technological, educational and psychological issues. In Proceeding of the ITI 2009 31st international conference on information technology interfaces, Cavtat/Dubrovnik, Croatia, June 22–25.Google Scholar
  86. Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 7–32.CrossRefGoogle Scholar
  87. Macedonia, M. R., Brutzman, D. P., Zyda, M. J., Pratt, D. R., Barham, P. T., Falby, J., & Locke, J. (1995). NPSNET: a multi-player 3D virtual environment over the Internet. In Proceedings of the symposium on interactive 3D graphics, Monterey, CA, US, April 9–12.Google Scholar
  88. Mahmoud, Q. (2004). Middleware for communications. New York: Wiley.CrossRefGoogle Scholar
  89. Mazzucco, M., Morgan, G., Panzieri, F., & Sharp, C. (2009). Engineering distributed shared memory middleware for java. In On the move to meaningful internet systems. Berlin: Springer.Google Scholar
  90. McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2), 91–108.CrossRefGoogle Scholar
  91. McLellan, H. (2001). Virtual realities. McLellan Wyatt Digital.Google Scholar
  92. Merians, A. S., Jack, D., Boian, R., Tremaine, M., Burdea, G. C., Adamovich, S. V., Recce, M., & Poizner, H. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy, 82(9), 898–915.Google Scholar
  93. Moore’s Law. (2017). Retrieved from http://www.mooreslaw.org/
  94. Moosmann, F., & Stiller, C. (2013). Joint self-localization and tracking of generic objects in 3D range data. In Proceeding of the IEEE international conference on robotics and automation, Karlsruhe, Germany, May 6–10.Google Scholar
  95. Nah, F. F. H., Eschenbrenner, B., & DeWester, D. (2011). Enhancing brand equity through flow and telepresence: A comparison of 2D and 3D virtual worlds. MIS Quarterly, 35(3), 731–747.CrossRefGoogle Scholar
  96. Nandwana, T. P. (2016). Virtual reality and augmented reality: The next best thing to being there. Retrieved from http://www.carriermanagement.com/features/2016/05/25/154815.htm
  97. National Instruments. (2017). What is data acquisition? Retrieved from http://www.ni.com/data-acquisition/what-is/
  98. Nelson, B., Ketelhut, D. J., Clarke-Midura, J., Bowman, C., & Dede, C. (2005). Design-based research strategies for developing a scientific inquiry curriculum in a multi-user virtual environment. Educational Technology, 45(1), 21–27.Google Scholar
  99. Noor, A. K., & Wasfy, T. M. (2001). Simulation of physical experiments in immersive virtual environments. Engineering Computations, 18(3/4), 515–538.CrossRefGoogle Scholar
  100. NVidia. (2017). PhysX games. Retrieved from http://www.geforce.com/hardware/technology/physx
  101. Obeysekare, U., Grinstein, F. F., & Patnaik, G. (1997). The visual interactive desktop laboratory. IEEE Computational Science and Engineering, 4(1), 63–71.CrossRefGoogle Scholar
  102. ODE. (2017). Open dynamics engine. Retrieved from http://www.ode.org/
  103. Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve. Science Education, 96(1), 21–47.Google Scholar
  104. Parallel Computing. (2017). Introduction to parallel computing. Retrieved from https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
  105. Patnode, J. (2012). Character modeling with Maya and ZBrush: Professional polygonal modeling techniques. Oxford: CRC Press.CrossRefGoogle Scholar
  106. Petrovskaya, A., & Thrun, S. (2008). Model based vehicle tracking for autonomous driving in urban environments. In Proceedings of robotics: Science and systems IV, Zurich, Switzerland, June 25–28.Google Scholar
  107. Pukhov, A. (1999). Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). Journal of Plasma Physics, 61(3), 425–433.CrossRefGoogle Scholar
  108. Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 33–147.CrossRefGoogle Scholar
  109. Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford, N. B., & Bliss, C. M. (2005). Development of an environmental virtual field laboratory. Computers & Education, 45(1), 21–34.CrossRefGoogle Scholar
  110. Rohrig, C., & Jochheim, A. (1999). The virtual lab for controlling real experiments via internet. In Proceedings of the 1999 IEEE international symposium on computer aided control system design, Hawaii, USA, August 22–27.Google Scholar
  111. Rolland, J. P., Davis, L., & Baillot, Y. (2001). A survey of tracking technology for virtual environments. Fundamentals of Wearable Computers and Augmented Reality, 1(1), 67–112.Google Scholar
  112. Ryde, J., & Hu, H. (2010). 3D mapping with multi-resolution occupied voxel lists. Autonomous Robots, 28(2), 169–185.CrossRefGoogle Scholar
  113. Rzepa, H. S., & Tonge, A. P. (1998). VChemLab: A virtual chemistry laboratory. The storage, retrieval, and display of chemical information using standard internet tools. Journal of Chemical Information and Computer Sciences, 38(6), 1048–1053.CrossRefGoogle Scholar
  114. Salzmann, M., Urtasun, R., & Fua, P. (2008). Local deformation models for monocular 3D shape recovery. In Proceeding of the IEEE conference on computer vision and pattern recognition, Anchorage, AK, US, June 23–28.Google Scholar
  115. Sarris, N., & Strintzis, M. G. (Eds.). (2005). 3D modeling and animation: Synthesis and analysis techniques for the human body. USA: IGI Global.Google Scholar
  116. Sears, A. L., & Watkins, S. E. (1996). A multimedia manual on the World Wide Web for telecommunications equipment. IEEE Transactions on Education, 39(3), 342–348.CrossRefGoogle Scholar
  117. Sharma, S., Azeemuddin, S., & Anwar, M. (2011). A self learning VLSI lab along with web-based platform to design schematics and layouts. In Proceeding of IEEE international conference on technology for education, Chennai, India, July 14–16.Google Scholar
  118. SIS. (2017). The scholars’ international school. Retrieved from http://www.scholarsqatar.com/virtual-lab/
  119. Smedley, T. M., & Higgins, K. (2005). Virtual technology: Bringing the world into the special education classroom. Intervention in School and Clinic, 41(2), 114–119.CrossRefGoogle Scholar
  120. Song, P., Yu, H., & Winkler, S. (2008). Vision-based 3D finger interactions for mixed reality games with physics simulation. In Proceedings of the 7th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, Fusionopolis, Singapore, December 8–9.Google Scholar
  121. Steam. (2017). Steam support. Retrieved from https://support.steampowered.com/kb_article.php?ref=7285-QDGB-1502
  122. Taylor, K., & Trevelyan, J. (1995). Australia’s telerobot on the web. In Proceedings of 26th international symposium on industrial robots, Singapore, October 4–6.Google Scholar
  123. Thorn, A. (2010). Game engine design and implementation. Chapter 1. Sudbury: Jones & Bartlett Publishers.Google Scholar
  124. Thornton, C., & Boulay, B. (1998). Artificial intelligence: Strategies, applications, and models through search (2nd ed.). London: Routledge.Google Scholar
  125. Tokamak. (2017). Tokamak physics. Retrieved from http://www.tokamakphysics.com/
  126. Toledo. (2017). College of business and innovation. Retrieved from https://www.utoledo.edu/business/InfoTech/ITLabs.html
  127. Trenholme, D., & Smith, S. P. (2008). Computer game engines for developing first-person virtual environments. Virtual Reality, 12(3), 181–187.CrossRefGoogle Scholar
  128. True Axis. (2017). Authentic skateboarding game. Retrieved from http://www.trueaxis.com/
  129. Valera, A., Díez, J. L., Vallés, M., & Albertos, P. (2005). Virtual and remote control laboratory development. IEEE Control Systems, 25(1), 35–39.CrossRefGoogle Scholar
  130. Valve Developer Community. (2017). SKD installation. Retrieved from https://developer.valvesoftware.com/wiki/SDK_Installation
  131. Varol, A., Shaji, A., Salzmann, M., & Fua, P. (2012). Monocular 3D reconstruction of locally textured surfaces. IEEE Transactions of Pattern Analysis and Machine Intelligence, 34(6), 1118–1130.CrossRefGoogle Scholar
  132. Verma, S. P., & Lin, K. S. (1989). System for automatically reading utility meters from a remote location. U.S. Patent 4,833,618.Google Scholar
  133. Verschaffel, L., de Corte, E., de Jong, T., & Elen, J. (Eds.). (2010). Use of representations in reasoning and problem solving: Analysis and improvement. London: Routledge.Google Scholar
  134. Vosniakos, G. C., Ziaaie-Moayyed, M., & Mamalis, A. G. (1997). Design of a system for computer-aided engineering of manufacturing facilities. Computer Integrated Manufacturing Systems, 10(1), 1–7.CrossRefGoogle Scholar
  135. Werghi, N., Fisher, R., Robertson, C., & Ashbrook, A. (1999). Object reconstruction by incorporating geometric constraints in reverse engineering. Computer-Aided Design, 31(6), 363–399.CrossRefGoogle Scholar
  136. Wikipedia. (2017). Dota 2. Retrieved from https://en.wikipedia.org/wiki/Dota_2
  137. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240.CrossRefGoogle Scholar
  138. Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 021–1035.CrossRefGoogle Scholar
  139. Zhang, Z., Zhang, M., Tumkor, S., Chang, Y., Esche, S. K., & Chassapis, C. (2013a). Integration of physical devices into game-based virtual reality. International Journal of Online Engineering, 9(5), 25–38.CrossRefGoogle Scholar
  140. Zhang, Z., Zhang, M., Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2013b). Real-time 3D model reconstruction and interaction using Kinect for a game-based virtual laboratory. In Proceedings of ASME international mechanical engineering congress & exposition, San Diego, CA, US, November 15–21.Google Scholar
  141. Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2014). An efficient method for creating virtual spaces for virtual reality. In Proceedings of ASME 2014 international mechanical engineering congress and exposition, November 14–20, 2014, Montreal, QC, Canada.Google Scholar
  142. Zhang, M., Zhang, Z., Chang, Y., Esche, S. K., & Chassapis, C. (2015a). Kinect-based universal range sensor and its application in educational laboratories. International Journal of Online Engineering, 11(2), 26–35.CrossRefGoogle Scholar
  143. Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2015b). A smart method for developing game-based virtual laboratories. In Proceedings of ASME international mechanical engineering congress and exposition, Houston, Texas, US, November 13–19.Google Scholar
  144. Zhang, M., Zhang, Z., Chang, Y., & Esche, S. K. (2015c). Simultaneous tracking and reconstruction of objects and its application in educational robotics laboratories. In Proceedings of the ASEE annual conference & exposition, Seattle, Washington, US, June 14–17.Google Scholar
  145. Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2016). A virtual laboratory system with biometric authentication and remote proctoring based on facial recognition. In Proceedings of the ASEE annual conference & exposition, New Orleans, LA, US, June 26–29.Google Scholar
  146. Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Z. Zhang
    • 1
  • M. Zhang
    • 3
  • Y. Chang
    • 4
  • E.-S. Aziz
    • 2
  • S. K. Esche
    • 2
  • C. Chassapis
    • 2
  1. 1.Department of Mechanical Engineering TechnologyCUNY New York City College of TechnologyBrooklynUSA
  2. 2.Department of Mechanical EngineeringStevens Institute of TechnologyHobokenUSA
  3. 3.Department of Mechanical and Industrial EngineeringSouthern Illinois University EdwardsvilleEdwardsvilleUSA
  4. 4.Department of Computer ScienceStevens Institute of TechnologyHobokenUSA

Personalised recommendations