The Use of the Analytic Network Process for the Analysis of Public Goods Supply from Agricultural Systems: Advances and Challenges Ahead

  • Stefano Targetti
  • Anastasio J. Villanueva
  • Carlos Parra-López
  • Davide Viaggi
Part of the Multiple Criteria Decision Making book series (MCDM)


This chapter aims to review and summarize potentials and limitations of the use of the Analytic Network Process in the context of the evaluation of public goods provision from agricultural systems. The chapter provides a description and a step-by-step explanation of the method, and presents insights from three recent papers using the Analytic Network Process to analyze public goods supply from agricultural systems. The papers were selected to show a range of diversified and complementary approaches to the problem and the possibility to integrate stakeholders in the different phases of the evaluation process. The first paper presents a comparison between three rural landscapes and provides a discussion of the role of different economic actors in supplying private- and public-type services. The second paper presents an integrated approach to support the policy-making aimed at a more efficient provision of public goods from a specific farming system. The third paper presents a farm level assessment of multifunctional performance considering a range of different farming practices and techniques. These studies provide evidence of the usefulness of the method to support policy-making and understand the relation between farmers’ decision-making and the provision of public goods. The results are also discussed, pointing out the strengths and weaknesses of the method in this type of analysis as well as pathways for methodological refinements and integration possibilities with other techniques with a particular attention toward the ex-ante and ex-post participation of stakeholders.


ANP Public goods Ecosystem services Farm management Rural development Stakeholders Agricultural policy 



This chapter is derived in part from articles published in: the Journal of Environmental Planning and Management 2015 copyright Taylor & Francis, available online:; Land Use Policy 2014 copyright Elsevier available online:; Agricultural Systems 2014 copyright Elsevier available online:


  1. Bartolini, F., Gallerani, V., & Viaggi, D. (2011). What do agro-environmental measures actually promote? An investigation on AES objectives for the EU 2000–2006 rural development program. Spanish Journal of Agricultural Research, 9(1), 7–21.CrossRefGoogle Scholar
  2. Bennett, E. M. (2017). Research frontiers in ecosystem service science. Ecosystems, 20, 31–37.CrossRefGoogle Scholar
  3. CAP. (2009). Documento de reflexión: Ley del Olivar. Seville: Consejería de Agricultura y Pesca (CAP). Available at:
  4. CAP. (2012). Evolución macromagnitudes agrarias provinciales. 2005–2010. Seville: Consejería de Agricultura y Pesca (CAP). Available at:
  5. Carmona-Torres, C., Parra-López, C., Hinojosa-Rodríguez, A., & Sayadi, S. (2014). Farm-level multifunctionality associated with farming techniques in olive growing: An integrated modeling approach. Agricultural Systems, 127, 97–114.CrossRefGoogle Scholar
  6. Carmona-Torres, C., Parra-López, C., Sayadi, S., & Chirosa-Ríos, M. (2016). A public/private benefits framework for the design of polices oriented to sustainability in agriculture: An application to olive growing. Land Use Policy, 58, 54–69.CrossRefGoogle Scholar
  7. Cervelli, E., Pindozzi, S., Capolupo, A., et al. (2016). Ecosystem services and bioremediation of polluted areas. Ecological Engineering, 87, 139–149.CrossRefGoogle Scholar
  8. de Groot, R., Alkemade, S. R., Braat, L., et al. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7(3), 260–272.CrossRefGoogle Scholar
  9. EC (European Commission). (2012). Economic analysis of the olive sector. Brussels: European Commission.Google Scholar
  10. FAO. (2011). FAOSTAT webpage.
  11. Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108, 165–169.CrossRefGoogle Scholar
  12. Funtowicz, S., & Ravetz, J. R. (1993). Espistemología política Ciencia con la gente. Buenos Aires: Centro Editor de América Latina.Google Scholar
  13. Gass, S. I., & Rapcsák, T. (1998). A note on synthesizing group decisions. Decision Support Systems, 1(22), 59–63.CrossRefGoogle Scholar
  14. Gómez Calero, J. A. (2009). Sostenibilidad de la producción de olivar en Andalucía. Seville: Consejería de Agricultura y Pesca.Google Scholar
  15. Gómez-Limón, J. A., & Arriaza, M. (2011). Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía. Málaga: Analistas Económicos de Andalucía.Google Scholar
  16. Gómez-Limón, J. A., & Atance, I. (2004). Identification of public objectives related to agricultural sector support. Journal of Policy Modeling, 26, 1045–1071.CrossRefGoogle Scholar
  17. Gómez-Limón, J. A., Arriaza, M., & Villanueva, A. J. (2013). Typifying irrigated areas to support policy design and implementation: The case of the Guadalquivir river basin. Irrigation and Drainage, 62(3), 322–329.CrossRefGoogle Scholar
  18. Gowdy, J., & Erickson, J. D. (2005). The approach of ecological economics. Cambridge Journal of Economics, 29, 207–222.CrossRefGoogle Scholar
  19. Guzmán Álvarez, J. R. (2004). El palimpsesto cultivado. Historia de los paisajes del olivar andaluz. Seville: Consejería de Agricultura y Pesca.Google Scholar
  20. Haines-Young, R. H., & Potschin, M. B. (2010). The links between biodiversity, ecosystem services and human well-being. In D. G. Raffaelli & C. L. J. Frid (Eds.), Ecosystem ecology: A new synthesis (pp. 110–139). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Hanley, N., Banerjee, S., Lennox, G. D., & Armsworth, P. R. (2012). How should we incentivize private landowners to ‘produce’ more biodiversity? Oxford Review of Economic Policy, 28(1), 93–113.CrossRefGoogle Scholar
  22. Harker, P. T., & Vargas, L. G. (1987). The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Management Science, 33(11), 1383–1403.CrossRefGoogle Scholar
  23. Hart, K., Baldock, D., Weingarten, P., et al. (2011). What tools for the European agricultural policy to encourage the provision of public goods? Brussels: European Parliament.Google Scholar
  24. Hinojosa-Rodríguez, A., Parra-López, C., Carmona-Torres, C., et al. (2014). Certified quality systems and farming practices in olive growing: The case of integrated production in Andalusia. Renewable Agriculture and Food Systems, 29, 291–309.CrossRefGoogle Scholar
  25. Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409, 3578–3594.CrossRefGoogle Scholar
  26. Hülle, J., Kaspar, R., & Möller, K. (2013). Analytic network process – An overview of applications in research and practice. International Journal of Operational Research, 16(2), 172–213.CrossRefGoogle Scholar
  27. Kahraman, C., Ertay, T., & Buyukozkan, G. (2006). A fuzzy optimization model for QFD planning process using analytic network approach. European Journal of Operational Research, 171, 390–411.CrossRefGoogle Scholar
  28. Karsak, E. E., Sozer, S., & Alptekin, S. E. (2003). Product planning in quality function deployment using a combined analytic network process and goal programming approach. Computers & Industrial Engineering, 44, 171–190.CrossRefGoogle Scholar
  29. Knoeri, K., Binder, C. R., & Althaus, H. J. (2011). An agent operationalization approach for context specific agent-based modelling. Journal of Artificial Societies and Social Simulation, 14(2), 4.CrossRefGoogle Scholar
  30. Kuhnert, P. M., Martin, T. G., & Griffiths, S. P. (2010). A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecology Letters, 13, 900–914.CrossRefGoogle Scholar
  31. Lee, J. W., & Kim, S. H. (2000). Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research, 27, 367–382.CrossRefGoogle Scholar
  32. Lipscomb, J., Parmigiani, G., & Hasselblad, V. (1998). Combining expert judgment by hierarchical modeling: An approach to physician staffing. Management Science, 44(2), 149–161.CrossRefGoogle Scholar
  33. Madureira, L., Santos, J. L., Ferreira, A., & Guimarães, H. (2013). Feasibility study on the valuation of public goods and externalities in EU agriculture. Luxembourg: Publications Office of the European Union.Google Scholar
  34. MARM. (2010). Anuario de Estadística 2010 [Statistics Yearbook 2010]. Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino (MARM). Available at:
  35. Martinez-Alier, J., Munda, G., & O’Neill, J. (1998). Weak comparability of values as a foundation for ecological economics. Ecological Economics, 26, 277–286.CrossRefGoogle Scholar
  36. MEA, Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.Google Scholar
  37. Meade, L. M., & Sarkis, J. (1999). Analyzing organizational project alternatives for agile manufacturing processes: An analytical network approach. International Journal of Production Research, 37(2), 241–261.CrossRefGoogle Scholar
  38. Nekhay, O., Arriaza, M., & Boerboom, L. (2009). Evaluation of soil erosion risk using analytic network process and GIS: A case study from Spanish mountain olive plantations. Journal of Environmental Management, 90(10), 3091–3104.CrossRefGoogle Scholar
  39. Novo, P., Faccioli, M., & Byg, A., et al. (2017). Guidelines and report on initial interviews and workshops (Deliverable 2.3). PROVIDE Project (No. 633838), Brussels.Google Scholar
  40. Novo, P., Slee, B., & Byg, A., et al. (2015) Conceptual paper on the ‘unpacked’ notion of public goods (Deliverable 2.2). PROVIDE Project (No. 633838), Brussels.Google Scholar
  41. OECD, Organisation for Economic Co-operation and Development. (2001). Multifunctionality: Towards an analytical framework. Paris: OECD Publications Service.Google Scholar
  42. OECD, Organisation for Economic Co-operation Development. (2003). Multifunctionality in agriculture: The policy implications. Paris: OECD Publishing.Google Scholar
  43. Parks, S., & Gowdy, J. (2013). What have economists learned about valuing nature? A review essay. Ecosystem Services, 3, e1–e10.CrossRefGoogle Scholar
  44. Parra-López, C. (2003). Sistemas de producción ecológica, integrada y convencional en olivar: Estudio de difusión de innovaciones y evaluación multifuncional [Organic, integrated and conventional agricultural systems in olive grove: A diffusion of innovations analysis and multifunctional assessment]. PhD Thesis University of Córdoba, Spain.Google Scholar
  45. Parra-López, C., & Calatrava-Requena, J. (2006). Comparison of farming techniques actually implemented and their rationality in organic and conventional olive groves in Andalusia. Biological Agriculture & Horticulture, 24, 35–59.CrossRefGoogle Scholar
  46. Parra-López, C., Calatrava-Requena, J., & de-Haro-Giménez, T. (2008a). A systemic comparative assessment of the multifunctional performance of alternative olive systems in Spain within an AHP-extended framework. Ecological Economics, 64, 820–834.CrossRefGoogle Scholar
  47. Parra-López, C., Groot, J. C. J., Carmona-Torres, C., & Rossing, W. A. H. (2008b). Integrating public demands into model-based design for multifunctional agriculture: An application to intensive Dutch dairy landscapes. Ecological Economics, 67, 538–551.CrossRefGoogle Scholar
  48. Porter, J., Costanza, R., Sandhu, H., et al. (2009). The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio, 38(4), 186–193.CrossRefGoogle Scholar
  49. Ramanathan, R., & Ganesh, L. S. (1994). Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members’ weightages. European Journal of Operational Research, 79, 249–265.CrossRefGoogle Scholar
  50. Reig, E., Aznar, J., & Estruch, V. (2010). A comparative analysis of the sustainability of rice cultivation technologies using the analytic network process. Spanish Journal of Agricultural Research, 8(2), 273–284.CrossRefGoogle Scholar
  51. Renting, H., Rossing, W. A. H., Groot, J. C. J., et al. (2009). Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework. Journal of Environmental Management, 90(2), S112–S123.CrossRefGoogle Scholar
  52. Roy, B., & Słowinski, R. (2013). Questions guiding the choice of a multicriteria decision aiding method. EURO Journal on Decision Processes, 1, 69–97.CrossRefGoogle Scholar
  53. SEGIRA. (2010). Study on employment, growth and innovation in rural areas: Main report. Report Prepared for DG Agriculture and Rural Development. Available at:
  54. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  55. Saaty, T. L. (2005). Theory and applications of the analytic network process: Decision making with benefits, opportunities, costs, and risks. Pittsburgh: RWS Publications.Google Scholar
  56. Saaty, T. L. (2008a). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.CrossRefGoogle Scholar
  57. Saaty, T. L. (2008b). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales – Serie A: Matematicas, 102(2), 251–318.Google Scholar
  58. Saaty, T. L. (2013). The modern science of multi-criteria decision making and its practical applications: The AHP/ANP approach. Operations Research, 61(5), 1101–1118.CrossRefGoogle Scholar
  59. Saaty, T. L., & Takizawa, M. (1986). Dependence and independence: From linear hierarchies to nonlinear networks. European Journal of Operational Research, 26, 229–237.CrossRefGoogle Scholar
  60. Schaller L, Kantelhardt J, Viaggi D, et al. (2015) Agricultural landscapes as a driver for socio-economic benefits in rural regions – Empirical results of the EU project ‘CLAIM’. Paper presented at the 29th International Congress of Agricultural Economists, University of Milan, Milan, 8–14 August 2015.Google Scholar
  61. Sipahi, S., & Timor, M. (2010). The analytic hierarchy process and analytic network process: An overview of applications. Management Decision, 48(5), 775–808.CrossRefGoogle Scholar
  62. Spangenberg, J. H., & Settele, J. (2010). Precisely incorrect? Monetising the value of ecosystem services. Ecological Complexity, 7, 327–337.CrossRefGoogle Scholar
  63. van Zanten, B. T., Verburg, P. H., Espinosa, M., et al. (2014). European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agronomy for Sustainable Development, 34(2), 309–325.CrossRefGoogle Scholar
  64. Viladomiu, L., & Rosell, J. (2004). Olive oil production and the rural economy of Spain. In F. Brouwer (Ed.), Sustaining agriculture and the rural economy: Governance, policy and multifunctionality. Cheltenham: Edward Elgar Publishing.Google Scholar
  65. Villanueva, A. J., Gómez-Limón, J. A., Arriaza, M., & Nekhay, O. (2014). Analysing the provision of agricultural public goods: The case of irrigated olive groves in southern Spain. Land Use Policy, 38, 300–313.CrossRefGoogle Scholar
  66. Villanueva, A. J., Targetti, S., Schaller, L., et al. (2015). Assessing the role of economic actors in the production of private and public goods in three EU agricultural landscapes. Journal of Environmental Planning and Management, 58(12), 2113–2136.CrossRefGoogle Scholar
  67. Villanueva, A. J., Gómez-Limón, J. A., & Rodríguez-Entrena, M. (2017a). Valoración de la oferta de bienes públicos por parte de los sistemas agrarios: El caso del olivar de montaña en Andalucía. Economía Agraria y Recursos Naturales, 17(1), 25–57.CrossRefGoogle Scholar
  68. Villanueva, A. J., Rodríguez-Entrena, M., & Gómez-Limón, J. A., et al. (2017b). Report on selection of valuation tools and guidelines (Deliverable 4.1). PROVIDE Project (No. 633838), Brussels.Google Scholar
  69. Vinodh, S., Sai Balagi, T. S., & Patil, A. (2016). A hybrid MCDM approach for agile concept selection using fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 83(9), 1979–1987.CrossRefGoogle Scholar
  70. Young, O. R., Lambin, E. F., Alcock, F., et al. (2006). A portfolio approach to analyzing complex human-environment interactions: Institutions and land change. Ecology and Society, 11(2), 31.CrossRefGoogle Scholar
  71. Zander, P., Groot, J. C. J., Josien, E., et al. (2008). Farm models and economic valuation in the context of multifunctionality: A review of approaches from France, Germany, The Netherlands and Portugal. International Journal of Agricultural Resources, Governance and Ecology, 7, 339–360.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Targetti
    • 1
  • Anastasio J. Villanueva
    • 2
  • Carlos Parra-López
    • 3
  • Davide Viaggi
    • 4
  1. 1.Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic
  2. 2.Water, Environmental and Agricultural Resources Economics (WEARE) Research Group, Universidad de CórdobaCórdobaSpain
  3. 3.Department of Food Chain EconomicsInstitute of Agricultural and Fisheries Research and Training, Centro Camino de PurchilGranadaSpain
  4. 4.Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly

Personalised recommendations