Advertisement

Multi-scaling Agroclimatic Classification for Decision Support Towards Sustainable Production

  • Nicolas R. Dalezios
  • Kostas Mitrakopoulos
  • Basil Manos
Chapter
Part of the Multiple Criteria Decision Making book series (MCDM)

Abstract

Agriculture is highly affected by environmental conditions and the assessment of the agroclimatic potential is necessary for sustainability and productivity. The climate is among the most important factors that determine the agricultural potentialities of a region and the suitability of a region for a specific crop, whereas the yield is determined by weather conditions. In this chapter the first objective is to identify sustainable production zones in Thessaly by conducting contemporary agroclimatic classification based on remote sensing and GIS. The agroclimatic conditions of agricultural areas have to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production optimization. Thus, a quantitative understanding of the climate of a region is essential for developing improved farming systems. The second objective derives from the first; it develops a decision support system (DSS) by using multi-criteria analysis combining different criteria to a utility function under a set of constraints concerning different categories of agroclimatic, social, cultural and economic conditions and so we can achieve an optimum agricultural production plan. In order to support the realization of the proposed production zoning and DSS in real-time, a Sensor Web service platform is proposed to be implemented based on the Sensor Web technologies, which extracts Real-time environmental and agronomic data.

Keywords

Agroclimatic classification Production zones Agroclimatic indices Decision support system Multi-criteria analysis Web production platforms 

Notes

Acknowledgements

The conventional meteorological data was provided by the National Meteorological Service. The satellite data was provided by NASA-NOAA from the USA. The rainfall maps were provided by EU-JRC at Ispra-Varese, Italy. The technical and economic coefficients of crops in each Prefecture resulted from the Regional Authority of Thessaly and from the Department of Agriculture and Veterinary of each Prefecture. Additional data have been provided by the Department of Agricultural Economics of Aristotle University of Thessaloniki, and from the National Agricultural Research Foundation (NAGREF—National Agricultural Research Foundation, n.d.).

References

  1. Al-Bakri, J. T., & Taylor, J. C. (2003). Application of NOAA–AVHRR for monitoring vegetation conditions and biomass in Jordan. Journal of Arid Environments, 54, 579–593.CrossRefGoogle Scholar
  2. Amador, F., Sumpsi, M. J., & Romero, C. (1998). A non-interactive methodology to assess farmers’ utility functions: An application to large farms in Andalusia, Spain. European Review of Agricultural Economics, 25, 92–109.CrossRefGoogle Scholar
  3. Arneth, A., Brown, C., & Rounsevell, M. D. A. (2014). Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 4(7), 550–557.CrossRefGoogle Scholar
  4. Badini, O., Stocle, C. O., & Franz, E. H. (1997). Application of crop simulation modeling and GIS to agroclimatic assessment in Burkina Faso. Agriculture, Ecosystems and Environment, 64, 233–244.CrossRefGoogle Scholar
  5. Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & Viaggi, D. (2007). The impact of water and agricultural policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93(1–3), 90–114.CrossRefGoogle Scholar
  6. Bartolini, F., Gallerani, V., Raggi, M., & Viaggi, D. (2007). Implementing the water framework directive: Contract design and the cost of measures to reduce nitrogen pollution from agriculture. Environmental Management, 40(4), 567–577.CrossRefGoogle Scholar
  7. Becker, F., & Li, Z. (1990). Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11, 369–393.CrossRefGoogle Scholar
  8. Berbel, J., & Rodriguez, A. O. (1998). An MCDM approach to production analysis: An application to irrigated farms in southern Spain. European Journal of Operational Research, 107, 108–118.CrossRefGoogle Scholar
  9. Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8, 289–302.CrossRefGoogle Scholar
  10. Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data. USDA Soil Conservation Service, Technical Paper, No. 96, 48 pp.Google Scholar
  11. Botts, M. (2012). OGC® SensorML: Model and XML encoding standard. Open Geospatial Consortium 12-000. Retrieved from https://portal.opengeospatial.org/files/?artifact_id=55939
  12. Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., et al. (2011). New generation sensor web enablement. Sensors, 11(3), 2652–2699.CrossRefGoogle Scholar
  13. Bröring, A., Stasch, C., & Echterhoff, J. (2012). OGC® sensor observation service interface standard. Open Geospatial Consortium, 12-006. Retrieved from https://portal.opengeospatial.org/files/?artifact_id=47599.
  14. Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, J. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDri): An integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing, 45(1), 16–46.CrossRefGoogle Scholar
  15. Bruce, J. P. (1994). Natural disaster reduction and global change. AMS Bulletin, 75(10), 1831–1835.Google Scholar
  16. Chen, P. P. (1976). The entity-relationship model–toward a unified view of data. ACM Transactions on Database Systems, 1(1), 9–36.CrossRefGoogle Scholar
  17. Dalezios, N. R. (2015, November). AGROMETEOROLOGY: Analysis and simulation (in Greek). KALLIPOS: Libraries of Hellenic Universities (also e-book), 481 pp. ISBN: 978-960-603-134-2.Google Scholar
  18. Dalezios, N. R., Blanta, A., Spyropoulos, N. V., & Tarquis, A. M. (2014). Risk identification of agricultural drought for sustainable agroecosystems. NHESS, 14, 2435–2448.Google Scholar
  19. Dalezios, N. R., Spyropoulos, N. V., & Eslamian, S. (2017). Remote sensing in drought quantification and assessment (Chapter 21). In S. Eslamian & F. Eslamian (Eds.), Handbook of drought and water scarcity (HDWS) (Vol. 1, pp. 377–396). Boca Raton, FL: Taylor and Francis.CrossRefGoogle Scholar
  20. Danalatos, N. (2007). An introduction in crop production simulation. Volos, Greece: University of Thessaly Press.Google Scholar
  21. Dilley, M., & Heyman, B. N. (1995). ENSO and disaster: Droughts, floods and El Niño-Southern Oscillation warm events. Disasters, 19(2), 181–193.CrossRefGoogle Scholar
  22. EC COM 672. (2010, November 18). The CAP towards 2020: Meeting the food, natural resources and territorial challenges of the future. Brussels.Google Scholar
  23. Echterhoff, J., & Everding, T. (2008). OpenGIS® sensor event service interface specification (proposed). Open Geospatial Consortium 08-133. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=29576
  24. Eitzinger, J., Utset, A., Trnka, M., Zalud, Z., Nikolaev, M., & Uskov, I. (2007). Weather and climate and optimization of farm technologies at different input levels. In M. V. K. Sivakumar & R. Motha (Eds.), Managing weather and climate risks in agriculture (Vol. 554). Berlin: Springer. ISBN 3540727442.Google Scholar
  25. ESA. (2014). Sentinel. Earthonline – ESA. Retrieved April 6, 2014, from https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-1
  26. European Commission. (2009). Consultation on the future “EU 2020” strategy. Brussels: Commission of the European Communities.Google Scholar
  27. Gomez-Limon, J. A., & Berbel, J. (2000). Multi-criterion analysis of derived water demand functions: A Spanish case study. Agricultural Systems, 63, 49–72.CrossRefGoogle Scholar
  28. Gomez-Limon, J. A., & Riesgo, L. (2004). Irrigation water pricing: Differential impacts on irrigated farms. Agricultural Economics, 31(1), 47–66.CrossRefGoogle Scholar
  29. Gomez-Limon, J. A., & Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69, 1062–1075.CrossRefGoogle Scholar
  30. Gomez-Limon, J. A., Arriaza, M., & Berbel, J. (2002). Conflicting implementation of agricultural and water policies in irrigated areas in the EU. Journal of Agricultural Economics, 53, 259–277.CrossRefGoogle Scholar
  31. Gong, J., Geng, J., & Chen, Z. (2015). Real-time GIS data model and sensor web service platform for environmental data management. International Journal of Health Geographics, 14, 2. Retrieved from http://www.ij-healthgeographics.com/content/14/1/2 CrossRefGoogle Scholar
  32. Gong, J., Wu, H., Gao, W., Yue, P., & Zhu, X. (2009). Geospatial service Web (Chapter 13). In D. Li, J. Shan, & J. Gong (Eds.), Geospatial technology for earth observation (1st ed., pp. 355–379). New York: Springer. Retrieved from http://www.barnesandnoble.com/w/geospatial-technology-for-earth-observation-deren-li/1117115908?ean=9781441900500 Google Scholar
  33. Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., & Yang, J. (1991). Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sensing of Environment, 35, 257–277.CrossRefGoogle Scholar
  34. Hatcher, G., & Maher, N. (2000). Real-time GIS for marine applications. In D. J. Wright & D. J. Barlett (Eds.), Marine and coastal geographical information systems (pp. 137–147). New York: Taylor & Francis.Google Scholar
  35. Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.Google Scholar
  36. IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Special Report of IPCC, 582 p.Google Scholar
  37. IPCC. (2013). Climate change 2013. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 1535 p.Google Scholar
  38. Janjic, Z. I. (2001). A nonhydrostatic model based on a new approach. Meteorology and Atmospheric Physics, 82, 271–285. https://doi.org/10.1007/s00703-001-0587-6.CrossRefGoogle Scholar
  39. Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  40. Kioutsioukis, I., Melas, D., & Zerefos, C. (2010). Statistical assessment of changes in climate extremes over Greece (1955–2002). International Journal of Climatology, 30(11), 1723–1737.CrossRefGoogle Scholar
  41. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100.CrossRefGoogle Scholar
  42. Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82, 1949–1964.CrossRefGoogle Scholar
  43. Malheiro, A. C., Santos, J. A., Fraga, H., & Pinto, J. G. (2010). Climate change scenarios applied to viticultural zoning in Europe. Climate Research, 83, 163–177.CrossRefGoogle Scholar
  44. Manos, B., Bournaris, T., Kamruzzaman, M., Begum, A. A., & Papathanasiou, J. (2006). The regional impact of irrigation water pricing in Greece under alternative scenarios of European policy: A multicriteria analysis. Regional Studies, 40(9), 1055–1068.CrossRefGoogle Scholar
  45. Manos, B., Begum, A. A., Kamruzzaman, M., Nakou, I., & Papathanasiou, J. (2007). Fertilizer Price Policy, the environment and farms behavior. Journal of Policy Modeling, 29(1), 87–97.CrossRefGoogle Scholar
  46. Manos, B., Bournaris, T., Papathanasiou, J., & Chatzinikolaou, P. (2008). Evaluation of tobacco cultivation alternatives under the EU common agricultural policy (CAP). Journal of Policy Modeling, 31(2), 225–238.CrossRefGoogle Scholar
  47. Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010a). A multicriteria model for planning agricultural regions within a context of groundwater rational management. Journal of Environmental Management, 91, 1593–1600.CrossRefGoogle Scholar
  48. Manos, B., Papathanasiou, J., Bournaris, T., & Voudouris, K. (2010b). A DSS for sustainable development and environmental protection of agricultural region. Environmental Monitoring and Assessment, 164(1–4), 43–52.CrossRefGoogle Scholar
  49. Manos, B., Bournaris, T., & Chatzinikolaou, P. (2011). Impact assessment of CAP policies on social sustainability in rural areas: An application in Northern Greece. Operational Research, 11(1), 77–92.CrossRefGoogle Scholar
  50. Mavi, H. S., & Tupper, G. J. (2004). Agrometeorology: Principles and applications of climate studies in agriculture (364 p.). Australia: Food Products Press.Google Scholar
  51. McVicar, T. R., & Jupp, D. L. B. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia. A review. Agricultural Systems, 57(3), 399–468.CrossRefGoogle Scholar
  52. Nastos, P., Dalezios, N. R., & Ulbrich, U. (Eds.). (2016). Advances in meteorological hazards and extreme events. Special Issue of NHESS.Google Scholar
  53. Niemeyer, S. (2008). New drought indices. Options Méditerranéennes. Série A: Séminaires Méditerranéens, 80, 267–274.Google Scholar
  54. Olesen, J. E., & Bindi, B. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.CrossRefGoogle Scholar
  55. Pereira, L. S. (2017). Water, agriculture and food: Challenges and issues. Water Resources Management, 31, 2985–2999.CrossRefGoogle Scholar
  56. Politi, N., Nastos, P. T., Sfetsos, A., Vlachgiannis, D., Dalezios, N. R., Gounaris, N., Cardoso, M. R., & Soares, M. M. P. (2016). Comparison and evaluation of WRF model physics parameterizations over the domain of Greece. Proceedings, COMECAP2016. AUTH, Thessaloniki, Greece, September 19–21 (in CD).Google Scholar
  57. Schut, P. OpenGIS® web processing service. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=24151
  58. Simonis, I., & Echterhoff, J. (2009). Sensor planning service implementation standard. Open Geospatial Consortium 09-000. Retrieved from http://portal.opengeospatial.org/files/?artifact_id=38478
  59. Sivakumar, M. V. K., Motha, R. P., & Das, H. P. (Eds.). (2005). Natural disaster and extreme events in agriculture (367 p.). Berlin: Springer. ISBN-10 3-540-22490-4.Google Scholar
  60. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G., (2006). A description of the advanced research WRF version 3. NCAR tech. note TN-475_STR, 113 p.Google Scholar
  61. Soares, P. M. M., Cardoso, R. M., Miranda, P. M. A., Medeiros, J., Belo-Pereira, M., & Espirito-Santo, F. (2012). WRF high resolution dynamical downscaling of ERA-interim for Portugal. Climate Dynamics, 39, 2497–2522. https://doi.org/10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  62. Steinemann, A., Hayes, M. A., & Cavalcanti, L. (2005). Drought indicators and triggers. In D. A. Wilhite (Ed.), Drought and water crises: Science technology and management issues (pp. 71–90). New York: Marcer Dekker.Google Scholar
  63. Sumpsi, M. J., Amador, F., & Romero, C. (1997). On farmers objectives: A multi-criteria approach. European Journal of Operational Research, 96, 64–71.CrossRefGoogle Scholar
  64. Tarquis, A. M., Gobin, A., Ulbrich, U., & Dalezios, N. R. (Eds.). (2013). Weather related hazards and risks in agriculture. Special Issue of NHESS journal.Google Scholar
  65. Thenkabail, P. S., Gamage, M. S. D. N., & Smakhtin, V. U. (2004). The use of remote sensing data for drought assessment and monitoring in Southwest Asia. Research Report, International Water Management Institute, No. 85, 1–25.Google Scholar
  66. Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.CrossRefGoogle Scholar
  67. Tsiros, E. C. (2009). Satellite methodologies of agroclimatic-hydroclimatic zoning for agricultural production. Ph.D. Thesis, School of Agricultural Sciences, University of Thessaly, Volos, Greece, 259 p.Google Scholar
  68. Tsiros E., Domenikiotis, C., Kanellou, E., & Dalezios, N. R. (2008). Identification of water limited growth environment zones using NOAA/AVHRR data (pp. 150–155). In 4th International Conference on Information and Communication Technologies in Bio and Earth Sciences HAICTA 2008, Athens, Greece, September 18–20.Google Scholar
  69. Tsiros, E., Domenikiotis, C., & Dalezios, N. R. (2009). Sustainable production zoning for agroclimatic classification using GIS and remote sensing. IDŐJÁRÁS, 113(1–2), 55–68.Google Scholar
  70. UNESCO. (1979). Map of the world distribution of Arid regions: Explanatory note. Man and the Biosphere. Technical Notes 7, Paris.Google Scholar
  71. Van De Griend, A. A., & Owe, M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing, 14, 1119–1131.CrossRefGoogle Scholar
  72. Van Dijk, A., Callis, S. L., & Sakamoto, C. M. (1987). Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Journal of Photogrammetric Engineering and Remote Sensing, 63, 1059–1067.Google Scholar
  73. Van Westen, C. J. (2013). Remote sensing and GIS for natural hazards assessment and disaster risk management. In J. F. Shroder (Ed.), Treatise on geomorphology (Vol. 3, pp. 259–298). San Diego: Academic Press.CrossRefGoogle Scholar
  74. Waseem, M., Ajimal, M., & Kim, T.-W. (2015). Development of a new composite drought index for multivariate drought assessment. Journal of Hydrology, 527, 30–37.CrossRefGoogle Scholar
  75. Weiss, J. L., Gutzler, D. S., Coonrod, J. E., & Dahm, C. N. (2004). Seasonal and inter-annual relationships between vegetation and climate in central New Mexico, USA. Journal of Arid Environment, 57, 507–534.CrossRefGoogle Scholar
  76. Yassoglou, N. J. (2004). Soil associations map of Greece. Greek National Committee for Combating Desertification. Athens: Agricultural University of Athens Press.Google Scholar
  77. Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19, 333–349.CrossRefGoogle Scholar
  78. Zittis, G., Hadjinicolaou, P., & Lelieveld, J. (2014). Comparison of WRF model physics parameterizations over the MENA-CORDEX domain. American Journal of Climate Change, 3, 490–511. https://doi.org/10.4236/ajcc.2014.35042 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nicolas R. Dalezios
    • 1
  • Kostas Mitrakopoulos
    • 1
  • Basil Manos
    • 2
  1. 1.Department of Civil EngineeringUniversity of ThessalyVolosGreece
  2. 2.Department of Agricultural EconomicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations