Advertisement

Materials that Move

  • Murat BengisuEmail author
  • Marinella Ferrara
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Kinetic materials range from well-known shape memory alloys to more “exotic” materials such as ferrogels and shape memory ceramics. The common characteristic of all these smart materials is their ability to undergo a predetermined shape change as a response to an external stimulus such as light, electricity, humidity, or heat. The shape change can be reversible or irreverbible. This chapter attempts to categorize kinetic materials according to two features: based on the material type (e.g. alloys, polymers, gels) and based on the stimulus they respond to (e.g. thermoresponsive, magnetostrictive, or electroactive). After explaining these categories, details of the most important kinetic materials are discussed. This chapter focuses mainly on the mechanismas that lead to a shape with an explanation of the underlying material science principles. Some key terms are defined and important properties of shape memory materials (alloys and polymers) are listed. A brief history on the discovery and development of certain kinetic materials is also presented.

Supplementary material

Illustrating Technology – Cappadocia window display (mp4 21.1 MB)

Shape memory sock shoes 20160705E (mp4 10.7 MB)

Single sized shoes 20160310 (mp4 8.64 MB)

Shape memory effect in 3D printed heart shaped PLA (mp4 2.45 MB)

The shape memory effect in PLA filament for 3D printing (small strain) (mp4 3.64 MB)

Shape memory effect in 3D printed PLA snake (mp4 6.08 MB)

428299_1_En_2_MOESM7_ESM.mp4 (3.4 mb)
Testing the shape memory effect in 3D printed PLA spring (II) (mp4 3.35 MB)

3D printed PLA staples with self-tightening function (mp4 11.4 MB)

References

  1. Arndt, K. F., Schmidt, T., Richter, A., & Kuckling, D. (2004). High response smart gels: Synthesis and application. In Macromolecular Symposia (Vol. 207, No. 1, pp. 257–268). Wiley VCH Verlag.CrossRefGoogle Scholar
  2. Bar-Cohen, Y. (2002). Electroactive polymers as artificial muscles: A review. Journal of Spacecraft and Rockets, 39(6), 822–827.CrossRefGoogle Scholar
  3. Behl, M., Langer, R., & Lendlein, A. (2007). Intelligent materials: Shape-memory polymers. Intelligent Materials, 301–316.Google Scholar
  4. Behl, M., & Lendlein, A. (2010). Overview of shape-memory polymers. In L. J & D. S (Eds.), Shape-memory polymers and multifunctional composites. Boca Raton: CRC Press.Google Scholar
  5. Bengisu, M. (2001). Engineering ceramics. Heidelberg: Springer.CrossRefGoogle Scholar
  6. Bengisu, M. (2016). Illustrating technology. https://www.youtube.com/watch?v=nMBayqVVFEE.
  7. Bhandari, B., Lee, G. Y., & Ahn, S. H. (2012). A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 13(1), 141–163.CrossRefGoogle Scholar
  8. Calleja, G., Jourdan, A., Ameduri, B., & Habas, J. P. (2013). Where is the glass transition temperature of poly (tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. European Polymer Journal, 49(8), 2214–2222.CrossRefGoogle Scholar
  9. Chopra, I., & Sirohi, J. (2013). Smart structures theory. Cambridge: Cambridge University Press.Google Scholar
  10. Christian, J. W. (2002). The theory of transformations in metals and alloys. Oxford: Pergamon.Google Scholar
  11. Chun, B. C., Cha, S. H., Chung, Y. C., & Cho, J. W. (2002). Enhanced dynamic mechanical and shape-memory properties of a poly (ethylene terephthalate)–poly (ethylene glycol) copolymer crosslinked by maleic anhydride. Journal of Applied Polymer Science, 83(1), 27–37.CrossRefGoogle Scholar
  12. Citerin, J., & Kheddar, A. (2008). Electro-active polymer actuators for tactile displays. In Sense of touch and its rendering: Progress in haptics research (Vol. 45, pp. 131–154).Google Scholar
  13. Claeyssen, F., Lhermet, N., LeLetty, R., & Bouchilloux, P. (1997). Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258(1–2), 61–73.CrossRefGoogle Scholar
  14. Clark, N. A. (2013). Soft-matter physics: Ferromagnetic ferrofluids. Nature, 504(7479), 229–230.CrossRefGoogle Scholar
  15. Concept Zero (2017) A Brief History of ferrofluid. https://www.czferro.com/blog/2014/10/27/history-of-ferrofluids. Accessed September 22, 2017.
  16. Duclos, T. G., Carlson, J. D., Chrzan, M. J., & Coulter, J. P. (1992). Electrorheological fluids—Materials and applications. In Intelligent structural systems (pp. 213–241). Netherlands: Springer.Google Scholar
  17. Duerig, T. W., Melton, K. N., Stöckel, D., & Wayman, C. M. (1990). Engineering aspects of shape memory alloys. London: Butterworth-Heinemann.Google Scholar
  18. Duff, A. W. (1896). The viscosity of polarized dielectrics. Physical Review (Series I), 4(1), 23.CrossRefGoogle Scholar
  19. Dynalloy. (2016). Technical characteristics of Flexinol. http://www.dynalloy.com/tech_sheets.php. Accessed November 23, 2017.
  20. Ferrotec (2017) Magnetic liquid technology. https://ferrofluid.ferrotec.com/technology. Accessed September 21, 2017.
  21. Gaudenzi, P. (2009). Smart structures: Physical behaviour, mathematical modelling and applications. New Jersey: WileyGoogle Scholar
  22. Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers. New York: Springer International Publishing.CrossRefGoogle Scholar
  23. Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Li, J. H., Wang, Y. F., et al. (2012). pH-induced shape-memory polymers. Macromolecular Rapid Communications, 33(12), 1055–1060.CrossRefGoogle Scholar
  24. Hathaway, K. B., & Clark, A. E. (1993). Magnetostrictive materials. MRS Bulletin, 18(4), 34–41.CrossRefGoogle Scholar
  25. Hodgson, D. E., Ming, W. H., & Biermann, R. J. (1990). Shape memory alloys. US: In ASM Handbook: ASM International.Google Scholar
  26. Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13(7–8), 54–61.CrossRefGoogle Scholar
  27. Huang, W. M., Zhao, Y., Wang, C. C., Ding, Z., Purnawali, H., Tang, C., & Zhang, J. L. (2012). Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. Journal of Polymer Research, 19(9).Google Scholar
  28. Irie, M. (1998). Shape memory polymers. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 203–219). Cambridge: Cambridge University Press.Google Scholar
  29. Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.CrossRefGoogle Scholar
  30. Janocha, H. (1999). Adaptronics and smart structures. Springer-Verlag Berlin Heidelberg.Google Scholar
  31. Jee, S. C. (2010). Development of morphing aircraft structure using SMP (No. AFIT/GSE/ENV/10-M02). Air Force Institute of Technology. Wright-Patterson AFB OH School of Engineering.Google Scholar
  32. Jenner, A. G., & Lord, D. G. (2003). Magnetostriction. In K. Worden, W. A. Bullough, & J. Haywood (Eds.), Smart technologies (pp. 171–192). Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  33. Jiang, H. Y., & Schmidt, A. M. (2010). The structural variety of shape-memory polymers. In J. Leng, & S. Du (Ed.), Shape-memory polymers and multifunctional composites (pp. 21–64). Boca Raton: CRC Press.CrossRefGoogle Scholar
  34. Jinlian, H. U. (2007). Shape memory polymers and textiles. Netherlands: ElsevierGoogle Scholar
  35. Jolly, M. R. (1999, November 30–December 02). Properties and applications of magnetorheological fluids. Paper presented at the 3rd Symposium on Smart Materials held at the 1999 MRS Fall Meeting, Boston, Ma.Google Scholar
  36. Jones, R. W. (2009, December). Artificial muscles: Dielectric electroactive polymer-based actuation. In Computer and Electrical Engineering, 2009. ICCEE’09. Second International Conference on (Vol. 2, pp. 209–216). IEEE.Google Scholar
  37. Kim, H. C., Yoo, Y. I., & Lee, J. J. (2009). Two-way shape memory effect induced by repetitive compressive loading cycles. Smart Materials and Structures, 18(9), 1–10.Google Scholar
  38. Kim, B., & Peppas, N. A. (2002). Synthesis and characterization of pH-sensitive glycopolymers for oral drug delivery systems. Journal of Biomaterials Science-Polymer Edition, 13(11), 1271–1281.CrossRefGoogle Scholar
  39. Klesa, J. (2009). Experimental evaluation of the properties of Veriflex shape memory polymer. In Konference Studentské Tvurci ˇCinnosti (STC’09).Google Scholar
  40. König, W. (1885). Bestimmung einiger Reibungscoëfficienten und Versuche über den Einfluss der Magnetisirung und Electrisirung auf die Reibung der Flüssigkeiten. Annalen der Physik, 261(8), 618–625.CrossRefGoogle Scholar
  41. Kretzer, M. (2016). Information materials: Smart materials for adaptive architecture. New York: Springer.Google Scholar
  42. Kumar, P. K., & Lagoudas, D. C. (2008). Introduction to shape memory materials. In D. C. Lagoudas (Ed.), Shape memory materials, modeling and engineering applications (pp. 1–51). New York: Springer.Google Scholar
  43. Lai, A., Du, Z. H., Gan, C. L., & Schuh, C. A. (2013). Shape memory and superelastic ceramics at small scales. Science, 341(6153), 1505–1508.CrossRefGoogle Scholar
  44. Lendlein, A., Schmidt, A. M., Schroeter, M., & Langer, R. (2005). Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates. Journal of Polymer Science Part A: Polymer Chemistry, 43, 1369.CrossRefGoogle Scholar
  45. Leo, D. J. (2007). Engineering analysis of smart material systems. New Jersey: Wiley.CrossRefGoogle Scholar
  46. Lexcellent, C. (2013). Shape-memory alloys handbook. New Jersey: Wiley.CrossRefGoogle Scholar
  47. Li, F. K., Hou, J. N., Zhu, W., Zhang, X., Xu, M., Luo, X. L., et al. (1996). Crystallinity and morphology of segmented polyurethanes with different soft-segment length. Journal of Applied Polymer Science, 62(4), 631–638.CrossRefGoogle Scholar
  48. Li, F. K., Zhu, W., Zhang, X., Zhao, C. T., & Xu, M. (1999). Shape memory effect of ethylene-vinyl acetate copolymers. Journal of Applied Polymer Science, 71(7), 1063–1070.CrossRefGoogle Scholar
  49. Li, G. (2015). Self-healing composites: Shape memory polymer-based structures: Self-healing composites (pp. 1–370). New Jersey: Wiley.Google Scholar
  50. Lubrizol. (2016). TecoflexTM TPU Material data sheet. https://www.lubrizol.com/en/Life-Sciences/Products/Tecoflex-TPU. Accessed June 07, 2017.
  51. Luo, X. L., Zhang, X. Y., Wang, M. T., Ma, D. H., Xu, M., & Li, F. K. (1997). Thermally stimulated shape-memory behavior of ethylene oxide ethylene terephthalate segmented copolymer. Journal of Applied Polymer Science, 64(12), 2433–2440.CrossRefGoogle Scholar
  52. Mavroidis, C. (2002). Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1), 1–32.CrossRefGoogle Scholar
  53. McClung, A. J. W., Tandon, G. P., & Baur, J. W. (2013). Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mechanics of Time-Dependent Materials, 17(1), 39–52.CrossRefGoogle Scholar
  54. Meng, H., & Li, G. Q. (2013). A review of stimuli-responsive shape memory polymer composites. Polymer, 54(9), 2199–2221.CrossRefGoogle Scholar
  55. Meng, Q. H., & Hu, J. L. (2009). A review of shape memory polymer composites and blends. Composites Part A-Applied Science and Manufacturing, 40(11), 1661–1672.CrossRefGoogle Scholar
  56. Meng, Y., Jiang, J. S., & Anthamatten, M. (2016). Body temperature triggered shape-memory polymers with high elastic energy storage capacity. Journal of Polymer Science Part B-Polymer Physics, 54(14), 1397–1404.CrossRefGoogle Scholar
  57. Morgan, N. B. (2004). Medical shape memory alloy applications—The market and its products. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 378(1–2), 16–23.CrossRefGoogle Scholar
  58. Morgan, N. B., & Friend, C. B. (2003). In K. Worden, W. A. Bullough & J. Haywood (Eds.), Smart technologies (pp. 109–139). US: World Scientific.Google Scholar
  59. Odenbach, S. (2003). Ferrofluids—magnetically controlled suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1), 171–178.CrossRefGoogle Scholar
  60. Oguro, K., Kawami, Y. & Takenaka H. (1992) Bending of an Ion-conducting polymer film electrode composite by an electric stimulus at low voltage. Trans. J. Micro-Machine Society, 5, 27–30.Google Scholar
  61. Ohm, C., Brehmer, M., & Zentel, R. (2012). Applications of liquid crystalline elastomers. Liquid Crystal Elastomers: Materials and Applications, 250, 49–93.CrossRefGoogle Scholar
  62. Olabi, A. G., & Grunwald, A. (2008). Design and application of magnetostrictive materials. Materials and Design, 29(2), 469–483.CrossRefGoogle Scholar
  63. Papell, S. S. (1965). Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles U.S. (Patent No. 3,215,572). Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  64. Peelamedu, S. M. (2003). Piezoelectric effect and its applications. In R. G. Driggers (Ed.), Encyclopedia of optical engineering, (pp. 2093–2111). US: Marcel Dekker.Google Scholar
  65. Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836–839.CrossRefGoogle Scholar
  66. Pretsch, T. (2010). Review on the functional determinants and durability of shape memory polymers. Polymers, 2(3), 120–158.CrossRefGoogle Scholar
  67. Quincke, G. (1897). Die Klebrigkeit isolierender Flüssigkeiten im constanten electrischen Felde. Annalen der Physik, 298(9), 1–13.CrossRefGoogle Scholar
  68. Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167–1167.CrossRefGoogle Scholar
  69. Ratna, D., & Karger-Kocsis, (2008). Recent advances in shape memory polymers and composites: A review. Journal Materials Science, 43, 254–269.CrossRefGoogle Scholar
  70. Reyes-Morel, P. E., Cherng, J. S., & Chen, I. W. (1988). Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals. 2. pseudoelasticity and shape memory effect. Journal of the American Ceramic Society, 71(8), 648–657.CrossRefGoogle Scholar
  71. Rousseau, I. A. (2008). Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polymer Engineering & Science, 48(11), 2075–2089.CrossRefGoogle Scholar
  72. Scherer, C., & Figueiredo Neto, A. M. (2005). Ferrofluids: Properties and applications. Brazilian Journal of Physics, 35(3A), 718–727.CrossRefGoogle Scholar
  73. Schetky, L. M. (2007). Shape-memory alloys as multifunctional materials. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent Materials (pp. 317–338). Cambridge: RCS Publishing.CrossRefGoogle Scholar
  74. Schlaak, H. F., Jungmann, M., Matysek, M., Lotz, P. (2005). Novel multilayer electrostatic solid state actuators with elastic dielectric. In Y. Bar-Cohen (Ed.), SPIE (Vol. 5759, pp. 121–133).Google Scholar
  75. Schmidt, C., Sarwaruddin Chowdhury, A. M., Neuking, K., & Eggeler, G. (2011). Thermo-mechanical behaviour of Shape Memory Polymers, eg, Tecoflex® by 1WE method: SEM and IR analysis. Journal of Polymer Research, 18(6), 1807–1812.CrossRefGoogle Scholar
  76. Segalman, D. J., Witkowski, W. R., Adolf, D. B., Shahinpoor, M. (1992). Theory and application of electrically controlled polymeric gels. International Journal of Smart Material and Structures, 1, 95–100.CrossRefGoogle Scholar
  77. Sheng, P., & Wen, W. (2012). Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annual Review of Fluid Mechanics, 44, 143–174.CrossRefGoogle Scholar
  78. Stanway, R. (2004). Smart fluids: current and future developments. Materials Science and Technology, 20(8), 931–939.CrossRefGoogle Scholar
  79. Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. In Proceedings of Shape Memory Alloys for Power Systems EPRI (pp. 1–13), Palo Alto, CA.Google Scholar
  80. Sun, L., Huang, W. M., Wang, C. C., Ding, Z., Zhao, Y., Tang, C., et al. (2014). Polymeric shape memory materials and actuators. Liquid Crystals, 41(3), 277–289.CrossRefGoogle Scholar
  81. Tobushi, H., Hayashi, S., & Kojima, S. (1992). Mechanical-properties of shape memory polymer of polyurethane series—(basic characteristics of stress-strain-temperature relationship). JSME International Journal Series I-Solid Mechanics Strength of Materials, 35(3), 296–302.CrossRefGoogle Scholar
  82. Turner, T. L. (2001). Thermomechanical response of shape memory alloy hybrid composites (Report NASA/TM-2001-210656). Langley Research Center, Hampton, Virginia. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010024159.pdf. Accessed November 23, 2017.
  83. Uchino, K. (1986). Piezoelectric and electrostrictive actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 33(6), 806–806.Google Scholar
  84. Uchino, K. (1998). Shape memory ceramics. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 184–202). Cambridge: Cambridge University Press.Google Scholar
  85. Wang, X. J., & Gordaninejad, F. (2007). Magnetorheological materials and their applications. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent materials (pp. 339–385). Cambridge: RCS Publishing.CrossRefGoogle Scholar
  86. Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y., & Purnawali, H. (2012). Cooling-/water-responsive shape memory hybrids. Composites Science and Technology, 72(10), 1178–1182.CrossRefGoogle Scholar
  87. Wen, W. J., Huang, X. X., & Sheng, P. (2008). Electrorheological fluids: Structures and mechanisms. Soft Matter, 4(2), 200–210.CrossRefGoogle Scholar
  88. Winslow, W. M. (1949). Induced Fibration of Suspensions. Journal of Applied Physics, 20(12), 1137–1140.CrossRefGoogle Scholar
  89. Xiao, X. L., Kong, D. Y., Qiu, X. Y., Zhang, W. B., Liu, Y. J., Zhang, S., Leng, J. S. (2015). Shape memory polymers with high and low temperature resistant properties. Scientific Reports, 5.Google Scholar
  90. Xie, T. (2011). Recent advances in polymer shape memory. Polymer, 52(22), 4985–5000.CrossRefGoogle Scholar
  91. Yamada, Y., & Kuwabara, T. (2007). Materials for springs. Berlin: Springer Science & Business Media.Google Scholar
  92. Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9–12), 2079–2095.CrossRefGoogle Scholar
  93. Yang, J. H., Chun, B. C., Chung, Y. C., & Cho, J. H. (2003). Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 44(11), 3251–3258.CrossRefGoogle Scholar
  94. Zhang, Y. L., Jin, X. J., Hsu, T. Y., Zhang, Y. F., & Shi, J. L. (2001). Shape-memory effect in Ce-Y-TZP ceramics. Shape Memory Materials and Its Applications, 394–3, 573–576.Google Scholar
  95. Zhao, Q., Behl, M., & Lendlein, A. (2013). Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 9(6), 1744–1755.CrossRefGoogle Scholar
  96. Zrinyi, M. (2000). Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science 278(2), 98–103.CrossRefGoogle Scholar
  97. Zrinyi, M. (2007). Magnetic polymeric gels as intelligent artificial muscles. In M. Zrinyi, M. Shahinpoor, & H. J. Schneider (Eds.), Intelligent materials (pp. 282–300). Cambridge: RCS Publishing.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Industrial Designİzmir University of EconomicsİzmirTurkey
  2. 2.Department of DesignPolitecnico di MilanoMilanItaly

Personalised recommendations