Advertisement

Activin Receptor Modulation

  • Anna Mies
  • Amit Verma
  • Uwe Platzbecker
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Conventional treatment regimen of lower-risk MDS with erythropoiesis-stimulating agents often fails to induce sustained erythroid improvement in these patients that frequently harbor defects in late-stage erythroblasts downstream of erythropoietin action. Thus, alternative treatment options that would achieve sustainable transfusion independence are needed.

In this chapter, we will discuss activin receptor ligand traps as novel therapeutic strategies for low-risk MDS subgroups that were recently shown to alleviate anemia by specifically inhibiting aberrant TGF-β signaling and thereby promoting erythroid differentiation.

Notes

Acknowledgments

This work was supported by the José Carreras Foundation (DJCLS R13/15) and a grant from the German Research Foundation (SFB655) (UP).

Disclosures

The authors declare no conflict of interest.

References

  1. 1.
    Malcovati L, Cazzola M. Refractory anemia with ring sideroblasts. Best Pr Res Clin Haematol. 2013;26:377–85.CrossRefGoogle Scholar
  2. 2.
    Jabbour E, Kantarjian HM, Koller C, Taher A. Red blood cell transfusions and iron overload in the treatment of patients with myelodysplastic syndromes. Cancer. 2008;112:1089–95.  https://doi.org/10.1002/cncr.23280.CrossRefPubMedGoogle Scholar
  3. 3.
    Fenaux P, Ades L. How we treat lower-risk myelodysplastic syndromes. Blood. 2013;121:4280–6.  https://doi.org/10.1182/blood-2013-02-453068.CrossRefPubMedGoogle Scholar
  4. 4.
    Hellström-Lindberg E. Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br J Haematol. 1995;89:67–71.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moyo V, Lefebvre P, Duh MS, et al. Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: a meta-analysis. Ann Hematol. 2008;87:527–36.  https://doi.org/10.1007/s00277-008-0450-7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Greenberg PL, Sun Z, Miller KB, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: Results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009;114:2393–400.  https://doi.org/10.1182/blood-2009-03-211797.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jädersten M, Montgomery SM, Dybedal I, et al. Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood. 2005;106:803–11.  https://doi.org/10.1182/blood-2004-10-3872.CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia-Manero G. Myelodysplastic syndromes: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89:97–108.  https://doi.org/10.1002/ajh.23642.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.  https://doi.org/10.1016/S1470-2045(09)70003-8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prébet T, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29:3322–7.  https://doi.org/10.1200/JCO.2011.35.8135.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cutler CS, Lee SJ, Greenberg P, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.  https://doi.org/10.1182/blood-2004-01-0338.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Platzbecker U, Mufti G. Allogeneic stem cell transplantation in MDS: how? When? Best Pract Res Clin Haematol. 2013;26:421–9.  https://doi.org/10.1016/j.beha.2013.09.008.CrossRefPubMedGoogle Scholar
  13. 13.
    Aul C, Arning M, Runde V, Schneider W. Serum erythropoietin concentrations in patients with myelodysplastic syndromes. Leuk Res. 1991;15:571–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Hattangadi SM, Wong P, Zhang L, et al. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118:6258–68.  https://doi.org/10.1182/blood-2011-07-356006.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Claessens YE, Bouscary D, Dupont JM, et al. In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for Fas-dependent apoptosis. Blood. 2002;99:1594–601.  https://doi.org/10.1182/blood.V99.5.1594.CrossRefPubMedGoogle Scholar
  16. 16.
    Hellström-Lindberg E, van de Loosdrecht A. Erythropoiesis stimulating agents and other growth factors in low-risk MDS. Best Pr Res Clin Haematol. 2013;26:401–10.CrossRefGoogle Scholar
  17. 17.
    Mies A, Hermine O, Platzbecker U. Activin receptor II ligand traps and their therapeutic potential in myelodysplastic syndromes with ring sideroblasts. Curr Hematol Malig Rep. 2016;11:416–24.  https://doi.org/10.1007/s11899-016-0347-9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.  https://doi.org/10.2147/DDDT.S86621.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mies A, Bulycheva E, Rogulj IM, et al. Alterations within the osteo-hematopoietic niche in MDS and their therapeutic implications. Curr Pharm Des. 2016;22:2323–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Villanueva A, García C, Paules AB, et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene. 1998;17:1969–78.  https://doi.org/10.1038/sj.onc.1202118.CrossRefPubMedGoogle Scholar
  21. 21.
    Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999;59:320–4.PubMedGoogle Scholar
  22. 22.
    Rossi MR, Ionov Y, Bakin AV, Cowell JK. Truncating mutations in the ACVR2 gene attenuates activin signaling in prostate cancer cells. Cancer Genet Cytogenet. 2005;163:123–9.  https://doi.org/10.1016/j.cancergencyto.2005.05.007.CrossRefPubMedGoogle Scholar
  23. 23.
    Olaru A, Mori Y, Yin J, et al. Loss of heterozygosity and mutational analyses of the ACTRII gene locus in human colorectal tumors. Lab Investig. 2003;83:1867–71.  https://doi.org/10.1097/01.LAB.0000106723.75567.72.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim S-J, Letterio J. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia. 2003;17:1731–7.  https://doi.org/10.1038/sj.leu.2403069.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang L, Wang N, Tang Y, et al. Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Hum Mutat. 2006;27:897–905.  https://doi.org/10.1002/humu.20387.CrossRefPubMedGoogle Scholar
  26. 26.
    Imai Y, Kurokawa M, Izutsu K, et al. Mutations of the Smad4 gene in acute myelogenous leukemia and their functional implications in leukemogenesis. Oncogene. 2001;20:88–96.  https://doi.org/10.1038/sj.onc.1204057.CrossRefPubMedGoogle Scholar
  27. 27.
    Scott S, Kimura T, Ichinohasama R, et al. Microsatellite mutations of transforming growth factor-beta receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leuk Res. 2003;27:23–34.CrossRefPubMedGoogle Scholar
  28. 28.
    Walter MJ, Payton JE, Ries RE, et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci U S A. 2009;106:12950–5.  https://doi.org/10.1073/pnas.0903091106.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nakahata S, Yamazaki S, Nakauchi H, Morishita K. Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene. 2010;29:4157–69.  https://doi.org/10.1038/onc.2011.158.CrossRefPubMedGoogle Scholar
  30. 30.
    Blank U, Karlsson S. TGF-β signaling in the control of hematopoietic stem cells. Blood. 2015;125:3542–50.  https://doi.org/10.1182/blood-2014-12-618090.CrossRefPubMedGoogle Scholar
  31. 31.
    Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28:885–94.  https://doi.org/10.1016/S0301-472X(00)00488-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Xie Y, Bai H, Liu Y, et al. Cooperative effect of erythropoietin and TGF-β inhibition on erythroid development in human pluripotent stem cells. J Cell Biochem. 2015;116:2735–43.  https://doi.org/10.1002/jcb.25233.CrossRefPubMedGoogle Scholar
  33. 33.
    Allampallam K, Shetty V, Mundle S, et al. Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int J Hematol. 2002;75:289–97.  https://doi.org/10.1007/BF02982044.CrossRefPubMedGoogle Scholar
  34. 34.
    Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13:285–99.  https://doi.org/10.1016/j.stem.2013.06.009.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Naka K, Hoshii T, Muraguchi T, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463:676–80.  https://doi.org/10.1038/nature08734.CrossRefPubMedGoogle Scholar
  36. 36.
    Suragani RNVS, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20:408–14.  https://doi.org/10.1038/nm.3512.CrossRefPubMedGoogle Scholar
  37. 37.
    Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood. 2005;106:287–95.  https://doi.org/10.1182/blood-2004-12-4794.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhou L, Nguyen AN, Sohal D, et al. Inhibition of the TGF-β receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112:3434–43.  https://doi.org/10.1182/blood-2008-02-139824.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bhagat TD, Zhou L, Sokol L, et al. MiR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood. 2013;121:2875–81.  https://doi.org/10.1182/blood-2011-12-397067.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhou L, McMahon C, Bhagat T, et al. Reduced SMAD7 leads to overactivation of TGF-β signaling in MDS that can be reversed by a specific inhibitor of TGF-β receptor I kinase. Cancer Res. 2011;71:955–63.  https://doi.org/10.1158/0008-5472.CAN-10-2933.CrossRefPubMedGoogle Scholar
  41. 41.
    Raje N, Vallet S. Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Curr Opin Mol Ther. 2010;12:586–97.PubMedGoogle Scholar
  42. 42.
    Lotinun S, Pearsall RS, Davies MV, et al. A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone. 2010;46:1082–8.  https://doi.org/10.1016/j.bone.2010.01.370.CrossRefPubMedGoogle Scholar
  43. 43.
    Fajardo RJ, Manoharan RK, Pearsall RS, et al. Treatment with a soluble receptor for activin improves bone mass and structure in the axial and appendicular skeleton of female cynomolgus macaques (Macaca fascicularis). Bone. 2010;46:64–71.  https://doi.org/10.1016/j.bone.2009.09.018.CrossRefPubMedGoogle Scholar
  44. 44.
    Pearsall RS, Canalis E, Cornwall-Brady M, et al. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc Natl Acad Sci U S A. 2008;105:7082–7.  https://doi.org/10.1073/pnas.0711263105.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mulivor AW, Barbosa D, Kumar R, et al. RAP-011, a soluble activin receptor type IIa murine IgG-Fc fusion protein, prevents chemotherapy induced anemia. Blood. 2009;114:161.Google Scholar
  46. 46.
    Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20:398–407.  https://doi.org/10.1038/nm.3468.CrossRefPubMedGoogle Scholar
  47. 47.
    Carrancio S, Markovics J, Wong P, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165:870–82.  https://doi.org/10.1111/bjh.12838.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Langdon JM, Barkataki S, Berger AE, et al. RAP-011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. Am J Hematol. 2015;90:8–14.  https://doi.org/10.1002/ajh.23856.CrossRefPubMedGoogle Scholar
  49. 49.
    Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res. 2009;24:744–52.  https://doi.org/10.1359/jbmr.081208.CrossRefPubMedGoogle Scholar
  50. 50.
    Sherman ML, Borgstein NG, Mook L, et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J Clin Pharmacol. 2013;53:1121–30.  https://doi.org/10.1002/jcph.160.CrossRefPubMedGoogle Scholar
  51. 51.
    Abdulkadyrov KM, Salogub GN, Khuazheva NK, et al. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br J Haematol. 2014;165:814–23.  https://doi.org/10.1111/bjh.12835.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Iancu-Rubin C, Mosoyan G, Wang J, et al. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol. 2013;41:155–166.e17.  https://doi.org/10.1016/j.exphem.2012.12.002.CrossRefPubMedGoogle Scholar
  53. 53.
    Raftopoulos H, Laadem A, Hesketh PJ, et al. Sotatercept (ACE-011) for the treatment of chemotherapy-induced anemia in patients with metastatic breast cancer or advanced or metastatic solid tumors treated with platinum-based chemotherapeutic regimens: results from two phase 2 studies. Support Care Cancer. 2016;24:1517–25.  https://doi.org/10.1007/s00520-015-2929-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Komrokji RS, Garcia-Manero G, Ades L, et al. An open-label, phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (int-1) myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion. Blood. 2014;124:3251.Google Scholar
  55. 55.
    Attie KM, Allison MJ, Mcclure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol. 2014;89:766–70.  https://doi.org/10.1002/ajh.23732.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Platzbecker U, Giagounidis A, Germing U, et al. Luspatercept increases hemoglobin and reduces transfusion burden in patients with low-intermediate risk myelodysplastic syndromes (MDS): long-term results from phase 2 PACE-MDS study. Haematologica. 2016;128:3168.Google Scholar
  57. 57.
    Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47. https://doi.org/10.1016/S1470-2045(17)30615-0. Epub 2017 Sep 1CrossRefPubMedGoogle Scholar
  58. 58.
    Piga A, Perrotta S, Gamberini MR, et al. Luspatercept (ACE-536) reduces disease burden, including anemia, iron overload, and leg ulcers, in adults with beta-thalassemia: results from a phase 2 study. Blood. 2015;126:752.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine IUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  2. 2.German Cancer Consortium (DKTK), and German Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Department of OncologyAlbert Einstein College of Medicine, Montefiore Medical CenterBronxUSA

Personalised recommendations