Advertisement

Chronic Myelomonocytic Leukemia (CMML)

  • Matthieu Duchmann
  • Nolwenn Lucas
  • Raphael Itzykson
  • Eric Solary
Chapter
Part of the Hematologic Malignancies book series (HEMATOLOGIC)

Abstract

Chronic myelomonocytic leukemia (CMML) is an aggressive, clonal bone marrow disorder that induces a persistent monocytosis and in some cases an accumulation of dysplastic granulocytes at various stages of maturation. Because of the combination of monocyte accumulation with myelodysplastic features, the disease is classified by the WHO as an overlap, myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN). The disease annual incidence, ranging between 0.35 and 0.52/105 population in Western countries, may be underestimated as low-risk forms are commonly neglected. CMML is a disease of aging whose median age at diagnosis is 72 years, with a male/female predominance of approximately 2:1 whose origin remains unclear. The disease is infrequent before 50 years, except on the basis of germline alterations, and prognosis could be less severe in these younger patients, probably because younger patients present with fewer comorbidities and are more often eligible for allogeneic stem cell transplantation. Clonal hematopoiesis of indeterminate potential (CHIP), as defined by the occurrence of clonal mutations in otherwise healthy individuals, may be a first step to CMML. In 15–30% of cases, the chronic disease transforms into acute myeloid leukemia (AML). Even in the absence of transformation, the disease outcome is poor with a median overall survival ranging between 16 and 30 months, depending on the series

Notes

Acknowledgments

The team is supported by grants from the Ligue Nationale Contre le Cancer (Equipe labellisée) and the French National Cancer Institute (INCa, PL-BIO, and PRT-K programs).

References

  1. 1.
    Murthy GSG, Dhakal I, Mehta P. Incidence and survival outcomes of chronic myelomonocytic leukemia in the United States. Leuk Lymphoma. 2016;58(7):1648–54.CrossRefGoogle Scholar
  2. 2.
    Srour SA, et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001–12. Br J Haematol. 2016;174:382–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Patnaik MM, et al. Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome. Blood Cancer J. 2015;5:e270.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Onida F, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99:840–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Patnaik MM, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Such E, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Itzykson R, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRefPubMedGoogle Scholar
  9. 9.
    Droin N, et al. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood. 2010;115:78–88.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ziegler-Heitbrock L, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Selimoglu-Buet D, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125:3618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Subirá D, et al. Immunophenotype in chronic myelomonocytic leukemia: is it closer to myelodysplastic syndromes or to myeloproliferative disorders? Transl Res. 2008;151:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lacronique-Gazaille C, et al. A simple method for detection of major phenotypic abnormalities in myelodysplastic syndromes: expression of CD56 in CMML. Haematologica. 2007;92:859–60.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Goasguen JE, et al. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94:994.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Orazi A, et al. Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol. 2006;19:1536–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Swerdlow S, Campo E, Harris N, et al. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.Google Scholar
  17. 17.
    Such E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96:375.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wassie EA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89:1111–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kohlmann A, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28:3858–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Haase D, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385–95.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tang G, et al. Prognostic impact of acquisition of cytogenetic abnormalities during the course of chronic myelomonocytic leukemia. Am J Hematol. 2015;90:882–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Genovese G, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Steensma DP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kwok B, et al. Myeloid neoplasia: MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126:2355.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Merlevede J, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ball M, List AF, Padron E. When clinical heterogeneity exceeds genetic heterogeneity: thinking outside the genomic box in chronic myelomonocytic leukemia. Blood. 2016;128:2381–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Meggendorfer M, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3080–8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fenaux P, Beuscart R, Lai JL, Jouet JP, Bauters F. Prognostic factors in adult chronic myelomonocytic leukemia: an analysis of 107 cases. J Clin Oncol. 1988;6:1417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Germing U, Gattermann N, Minning H, Heyll A, Aul C. Problems in the classification of CMML—dysplastic versus proliferative type. Leuk Res. 1998;22:871–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Peker D, et al. A close association of autoimmune-mediated processes and autoimmune disorders with chronic myelomonocytic leukemia: observation from a single institution. Acta Haematol. 2015;133:249–56.CrossRefPubMedGoogle Scholar
  32. 32.
    Hadjadj J, et al. Immune thrombocytopenia in chronic myelomonocytic leukemia. Eur J Haematol. 2014;93:521–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zeidman A, et al. Platelet function and its clinical significance in the myelodysplastic syndromes. Hematol J. 2004;5:234–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mathew RA, et al. Cutaneous manifestations in CMML: indication of disease acceleration or transformation to AML and review of the literature. Leuk Res. 2012;36:72–80.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Vitte F, et al. Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations. A study of 42 cases. Am J Surg Pathol. 2012;36:1302–16.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saffie M, Sun D, Hsia C. Sweet’s syndrome in chronic myelomonocytic leukemia. Am J Hematol. 2013;88:630.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ahmed F, et al. Therapy related CMML: a case report and review of the literature. Int J Hematol. 2009;89:699–703.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Takahashi K, et al. Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia. Blood. 2013;122:2807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Subari S, et al. Patients with therapy-related CMML have shorter median overall survival than those with de novo CMML: Mayo Clinic long-term follow-up experience. Clin Lymphoma Myeloma Leuk. 2015;15:546–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zahid MF, et al. Spectrum of autoimmune diseases and systemic inflammatory syndromes in patients with chronic myelomonocytic leukemia. Leuk Lymphoma. 2016;58(6):1488–93.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Saif MW, Hopkins JL, Gore SD. Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma. 2002;43:2083–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hamidou MA, et al. Prevalence of rheumatic manifestations and antineutrophil cytoplasmic antibodies in haematological malignancies. A prospective study. Rheumatology. 2000;39:417–20.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Grignano E, et al. Autoimmune and inflammatory diseases associated with chronic myelomonocytic leukemia: a series of 26 cases and literature review. Leuk Res. 2016;47:136–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Fraison J-B, et al. Efficacy of azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res. 2016;43:13–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Droin N, Lucas N, Parinet V, Selimoglu-Buet D, Humbert M, Saada V, Lambotte O, Solary E, Noël N. Eosinophil-rich tissue infiltrates in chronic myelomonocytic leukemia patients. Leuk Lymphoma. 2017;58(12):2875–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    El-Fattah MA. Second malignancies in survivors of chronic myelomonocytic leukemia: a U.S. population-based study. Leuk Lymphoma. 2017;58:1–7.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Gaulier A, et al. Occurrence of angioimmunoblastic T cell lymphoma in a patient with chronic myelomonocytic leukemia features. Leuk Lymphoma. 2000;40:197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Quivoron C, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20:25–38.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014;28:485–96.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nösslinger T, et al. Dysplastic versus proliferative CMML – a retrospective analysis of 91 patients from a single institution. Leuk Res. 2001;25:741–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Germing U, Strupp C, Aivado M, Gattermann N. New prognostic parameters for chronic myelomonocytic leukemia? Blood. 2002;100:731–3.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Padron E, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Patnaik MM, et al. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. Am J Hematol. 2015;90:411–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Alayed K, et al. TET2 mutations, myelodysplastic features, and a distinct immunoprofile characterize blastic plasmacytoid dendritic cell neoplasm in the bone marrow. Am J Hematol. 2013;88:1055–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Menezes J, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28:823–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Stenzinger A, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5:6404.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bénet C, et al. Histologic and Immunohistologic Characterization of Skin Localization of Myeloid DisordersA Study of 173 Cases. Am J Clin Pathol. 2011;135:278–90.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kazakov DV, Mentzel T, Burg G, Dummer R, Kempf W. Blastic natural killer-cell lymphoma of the skin associated with myelodysplastic syndrome or myelogenous leukaemia: a coincidence or more? Br J Dermatol. 2003;149:869–76.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Brunetti L, et al. Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: a shared clonal origin. Leukemia. 2017;31(5):1238–40.  https://doi.org/10.1038/leu.2017.38.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Facchetti F, et al. Neoplasms derived from plasmacytoid dendritic cells. Mod Pathol. 2016;29:98–111.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Khoury JD, et al. CD56(+) TdT(+) blastic natural killer cell tumor of the skin: a primitive systemic malignancy related to myelomonocytic leukemia. Cancer. 2002;94:2401–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang SA, et al. Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease (SM-AHNMD): clinical significance and comparison of chromosomal abnormalities in SM and AHNMD components. Am J Hematol. 2013;88:219.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sotlar K, et al. Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM–AHNMD). J Pathol. 2010;220:586–95.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stoecker MM, Wang E. Systemic mastocytosis with associated clonal hematologic nonmast cell lineage disease: a clinicopathologic review. Arch Pathol Lab Med. 2012;136:832–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Edelbroek JR, et al. Langerhans cell histiocytosis first presenting in the skin in adults: frequent association with a second haematological malignancy. Br J Dermatol. 2012;167:1287–94.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shon W, et al. Atypical generalized eruptive histiocytosis clonally related to chronic myelomonocytic leukemia with loss of Y chromosome. J Cutan Pathol. 2013;40:725–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Singla A, Girnius S, Wikenheiser-Brokamp KA, McCormack FX, Gupta N. A3. Fellows case conference A7939–A7939 (American Thoracic Society, 2016).  https://doi.org/10.1164/ajrccm-conference.2016.193.1_MeetingAbstracts.A7939.
  68. 68.
    Itzykson R, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Moran-Crusio K, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pronier E, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood. 2011;118:2551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Abdel-Wahab O, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Patnaik MM, et al. DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia. Am J Hematol. 2017;92:56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Xie M, et al. Age-related cancer mutations associated with clonal hematopoietic expansion. Nat Med. 2014;20:1472.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mason CC, et al. Age-related mutations and chronic myelomonocytic leukemia. Leukemia. 2016;30:906–13.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Itzykson R, Solary E. An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia. 2013;27:1441–50.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kotecha N, et al. Single cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell. 2008;14:335.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Padron E, et al. GM-CSF–dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Geissler K, et al. In vitro and in vivo effects of JAK2 inhibition in chronic myelomonocytic leukemia. Eur J Haematol. 2016;97:562–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Geissler K, et al. Chronic myelomonocytic leukemia patients with RAS pathway mutations show high in vitro myeloid colony formation in the absence of exogenous growth factors. Leukemia. 2016;30:2280.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Padron E, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22:3746.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Solary E. Unplugging JAK/STAT in chronic myelomonocytic leukemia. Clin Cancer Res. 2016;22:3707–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Meldi K, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125:1857.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Aucagne R, et al. Transcription intermediary factor 1γ is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest. 2011;121:2361.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Satoh T, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature. 2017;541:96–101.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Reynaud D, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell. 2011;20:661.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Welner RS, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell. 2015;27:671.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Raaijmakers MHGP, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature. 2010;464:852.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zambetti NA, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 2016;19:613–27.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Dong L, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kode A, et al. Leukemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 2014;506:240.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Elena C, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bennett JM, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia: proposals by the French - American - British Cooperative Leukaemia Group. Br J Haematol. 1994;87:746–54.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Germing U, Kündgen A, Gattermann N. Risk assessment in chronic myelomonocytic leukemia (CMML). Leuk Lymphoma. 2004;45:1311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Patnaik MM, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27:1504–10.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Schuler E, et al. Refined medullary blast and white blood cell count based classification of chronic myelomonocytic leukemias. Leuk Res. 2014;38:1413–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Gelsi-Boyer V, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010;151:365–75.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Grossmann V, et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia. 2011;25:877–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Laborde RR, et al. SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia. 2013;27:2100.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kosmider O, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009;94:1676.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Aul C, et al. Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia. 1992;6:52–9.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kantarjian H, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original international prognostic scoring system. Cancer. 2008;113:1351.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Greenberg PL, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Symeonidis A, et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Br J Haematol. 2015;171:239–46.CrossRefPubMedGoogle Scholar
  106. 106.
    de Witte T, et al. Use of hematopoietic cell transplantation for patients with myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2017;6:724500.  https://doi.org/10.1182/blood-2016-06-724500.CrossRefGoogle Scholar
  107. 107.
    Duong HK, et al. Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20:1262–73.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Park S, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90:355–64.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Sharma P, et al. Allogeneic hematopoietic stem cell transplant in adult patients with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes. Leuk Lymphoma. 2017;58:872–81.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kongtim P, et al. Treatment with hypomethylating agents before allogeneic stem cell transplant improves progression free survival for patients with chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2016;22:47.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Itonaga H, et al. Impacts of graft-versus-host disease on outcomes after allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia: a nationwide retrospective study. Leuk Res. 2016;41:48–55.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Pusic I, et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2015;21:1761.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wattel E, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group. Blood. 1996;88:2480–7.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Xicoy B, et al. Response to erythropoietic-stimulating agents in patients with chronic myelomonocytic leukemia. Eur J Haematol. 2016;97:33–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fenaux P, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Aribi A, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109:713–7.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Wijermans PW, et al. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res. 2008;32:587–91.CrossRefPubMedGoogle Scholar
  118. 118.
    Braun T, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118:3824–31.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Costa R, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117:2690–6.CrossRefPubMedGoogle Scholar
  120. 120.
    Adès L, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37:609–13.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Wong E, et al. Treatment of chronic myelomonocytic leukemia with azacitidine. Leuk Lymphoma. 2013;54:878–80.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Fianchi L, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54:658–61.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Subari S, et al. Hypomethylating agents are effective in shrinking splenomegaly in patients with chronic myelomonocytic leukemia. Leuk Lymphoma. 2016;57:1714–5.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Pleyer L, et al. Azacitidine in CMML: matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk Res. 2014;38:475–83.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Diesch J, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Cheson BD, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108:419–25.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Verstovsek S, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120:1202–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Savona MR, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Goodyear O, et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 2010;116:1908–18.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Chiappinelli KB, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Yang H, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Cruijsen M, et al. Addition of 10-day decitabine to fludarabine/total body irradiation conditioning is feasible and induces tumor-associated antigen-specific T cell responses. Biol Blood Marrow Transplant. 2016;22:1000–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthieu Duchmann
    • 1
  • Nolwenn Lucas
    • 1
  • Raphael Itzykson
    • 2
  • Eric Solary
    • 1
    • 3
  1. 1.INSERM U1170Gustave RoussyVillejuifFrance
  2. 2.Assistance Publique – Hôpitaux de ParisHôpital Saint-LouisParisFrance
  3. 3.Faculté de Médecine Paris-SudLe Kremlin-BicêtreFrance

Personalised recommendations