Advertisement

Acquisition and Analysis of Meteorological Data

  • Javier Calvo Sánchez
  • Gema Morales Martín
  • Jesús Polo
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Wind and solar radiation observations are required for renewable energy modeling and forecasting. High-quality ground measurements are essential for renewable energy studies. Ideal wind measurement devices should respond to slightest breezes, be strong enough to stand up high winds, give a fast and accurate answer for turbulent fluctuations, and have a linear output and a simple dynamic performance. The solar radiation reaching the earth’s surface contains several components, beam, diffuse, and reflected (albedo) radiation, as a consequence of the interaction with atmospheric particles. The instruments for measuring solar radiation are classified according to the working principle (mainly thermoelectric or photoelectric sensors) and to the component of solar radiation to be measured. Ground measurements give information about solar radiation or wind fields in a specific location. On the other hand, in many applications for the modeling and prediction of natural resources, meteorological data with a greater spatial distribution are needed. Satellite models offer meteorological data estimated from satellite images with a high spatial and temporary resolution. In the same way, Numerical Weather Predictions models give information about several meteorological variables with a great spatial resolution.

References

  1. 1.
    Part I. Measurements of meteorological variables (2008). In: Guide to meteorological instruments and methods of observation, chap. 5. World Meteorological OrganizationGoogle Scholar
  2. 2.
    Global aspects. annex v to the wmo technical regulations (2015). In: Manual on the global observing system, vol. I. World Meteorological OrganizationGoogle Scholar
  3. 3.
    Amillo AG, Huld T, Müller R (2014) A new database of global and direct solar radiation using the eastern meteosat satellite, models and validation. Remote Sens 6(9):8165–8189Google Scholar
  4. 4.
    Beyer HG, Costanzo C, Heinemann D (1996) Modifications of the heliosat procedure for irradiance estimates from satellite images. Sol Energy 56(3):207–212Google Scholar
  5. 5.
    Blanc P, Espinar B, Geuder N, Gueymard C, Meyer R, Pitz-Paal R, Reinhardt B, Renné D, Sengupta M, Wald L et al (2014) Direct normal irradiance related definitions and applications: the circumsolar issue. Sol Energy 110:561–577Google Scholar
  6. 6.
    Blanc P, Gschwind B, Lefevre M, Wald L (2014) Twelve monthly maps of ground albedo parameters derived from modis data sets. In: IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3270–3272Google Scholar
  7. 7.
    Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University PressGoogle Scholar
  8. 8.
    Bubnová R, Hello G, Bénard P, Geleyn JF (1995) Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the arpege/aladin nwp system. Mon Weather Rev 123(2):515–535Google Scholar
  9. 9.
    Busch N, Kristensen L (1976) Cup anemometer overspeeding. J Appl Meteorol 15:1328–1332Google Scholar
  10. 10.
    Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37(1):31–39Google Scholar
  11. 11.
    Cebecauer T, Suri M (2010) Accuracy improvements of satellite-derived solar resource based on gems re-analysis aerosols. In: SolarPACES conferenceGoogle Scholar
  12. 12.
    Cebecauer T, Suri M, Gueymard C (2011) Uncertainty sources in satellite-derived direct normal irradiance: how can prediction accuracy be improved globally. In: Proceedings of the SolarPACES conference, Granada, Spain, vol 2023Google Scholar
  13. 13.
    Coiffier J (2011) Fundamentals of numerical weather prediction. Cambridge University PressGoogle Scholar
  14. 14.
    Coppin P (1982) An examintaion of cup anemometer overspeeding. Meteorolog Rundsch 35:1–11Google Scholar
  15. 15.
    Cros S, Albuisson M, Wald L (2006) Simulating meteosat-7 broadband radiances using two visible channels of meteosat-8. Sol Energy 80(3):361–367Google Scholar
  16. 16.
    Dagestad KF (2004) Mean bias deviation of the heliosat algorithm for varying cloud properties and sun-ground-satellite geometry. Theor Appl Climatol 79(3):215–224Google Scholar
  17. 17.
    Dagestad KF, Olseth JA (2007) A modified algorithm for calculating the cloud index. Sol Energy 81(2):280–289Google Scholar
  18. 18.
    Daley R (1993) Atmospheric data analysis. Cambridge University Press, Cambridge Atmospheric and Space Science SeriesGoogle Scholar
  19. 19.
    Diabaté L, Demarcq H, Michaud-Regas N, Wald L (1987) Estimating incident solar radiation at the surface from images of the earth transmitted by geostationary satellites: the heliosat project. Int J Sol Energy 5(5–6):261–278Google Scholar
  20. 20.
    Djebbar R, Morris R, Thevenard D, Perez R, Schlemmer J (2012) Assessment of suny version 3 global horizontal and direct normal solar irradiance in canada. Energy Procedia 30:1274–1283Google Scholar
  21. 21.
    Dobson F (1981) Review of reference height for and averaging time of surface wind measurements at sea. Technical Report 3, World Meteorological Organization. Marine Meteorology and Related Oceanographic ActivitiesGoogle Scholar
  22. 22.
    Emde C, Buras-Schnell R, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T et al (2015) The libradtran software package for radiative transfer calculations (version 2.0). Geosci Model Dev Discuss 8(12):10,237–10,303Google Scholar
  23. 23.
    Emde C, Buras-Schnell R, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T et al (2016) The libradtran software package for radiative transfer calculations (version 2.0. 1). Geosci Model Dev 9(5):1647–1672Google Scholar
  24. 24.
    Escobar RA, Cortés C, Pino A, Pereira EB, Martins FR, Cardemil JM (2014) Solar energy resource assessment in chile: satellite estimation and ground station measurements. Renew Energy 71:324–332Google Scholar
  25. 25.
    Espinar B, Blanc P, Wald L, Hoyer-Klick C, Homscheidt MS, Wanderer T (2012) On quality control procedures for solar radiation and meteorological measures, from subhourly to montly average time periods. In: EGU general assemblyGoogle Scholar
  26. 26.
    Espinar B, Ramirez L, Polo J, Zarzalejo L, Wald L (2009) Analysis of the influences of uncertainties in input variables on the outcomes of the heliosat-2 method. Sol Energy 83(9):1731–1741Google Scholar
  27. 27.
    Fiebrich CA, Morgan CR, McCombs AG, Hall PK Jr, McPherson RA (2010) Quality assurance procedures for mesoscale meteorological data. J Atmos Ocean Technol 27(10):1565–1582Google Scholar
  28. 28.
    Garg H, Garg S (1993) Measurement of solar radiationi. radiation instruments. Renew Energy 3(4–5):321–333Google Scholar
  29. 29.
    Gautier C, Diak G, Masse S (1980) A simple physical model to estimate incident solar radiation at the surface from goes satellite data. J Appl Meteorol 19(8):1005–1012Google Scholar
  30. 30.
    Gerard L (2015) Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution. Mon Weather Rev 143(10):4038–4063Google Scholar
  31. 31.
    Gill G, Olsson L, Sela J, Suda M (1967) Accuracy of wind measurements on towers or stacks. Bull Am Meteorol Soc 48:665–674Google Scholar
  32. 32.
    Gold E (1936) Wind in britain: the dines anemometer and some notable records during the last 40 years. Q J Roy Meteorol Soc 62:167–206Google Scholar
  33. 33.
    Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Müller R, Beyer HG (2003) Solar energy assessment using remote sensing technologies. Remote Sens Environ 86(3):423–432Google Scholar
  34. 34.
    Hoyer-Klick C, Dumortier D, Tsvetkov A, Polo J, Torres J, Kurz C, Ineichen P (2009) Mesor existing ground data setsGoogle Scholar
  35. 35.
    Huld T, Müller R, Gambardella A (2012) A new solar radiation database for estimating pv performance in europe and africa. Sol Energy 86(6):1803–1815Google Scholar
  36. 36.
    Ikawa M (1988) Comparison of some schemes for nonhydrostatic models with orography. J Meteorol Soc Jpn Ser. II 66(5):753–776Google Scholar
  37. 37.
    Ineichen P (2014) Long term satellite global, beam and diffuse irradiance validation. Energy Procedia 48:1586–1596Google Scholar
  38. 38.
    Janjai S, Laksanaboonsong J, Nunez M, Thongsathitya A (2005) Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Sol Energy 78(6):739–751Google Scholar
  39. 39.
    Janjai S, Masiri I, Laksanaboonsong J (2013) Satellite-derived solar resource maps for myanmar. Renew Energy 53:132–140Google Scholar
  40. 40.
    Janjai S, Pankaew P, Laksanaboonsong J, Kitichantaropas P (2011) Estimation of solar radiation over cambodia from long-term satellite data. Renew Energy 36(4):1214–1220Google Scholar
  41. 41.
    Journée M, Bertrand C (2011) Quality control of solar radiation data within the rmib solar measurements network. Sol Energy 85(1):72–86Google Scholar
  42. 42.
    Kaimal J (1980) Sonic anemometers. In: Dobson LHF, Davis R (eds) Air-Sea interaction: instruments and methods. New York, pp 81–96Google Scholar
  43. 43.
    Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University PressGoogle Scholar
  44. 44.
    König-Langlo G, Sieger R, Schmithüsen H, Bücker A, Richter F, Dutton E (2013) The baseline surface radiation network and its world radiation monitoring centre at the alfred wegener instituteGoogle Scholar
  45. 45.
    Kriebel K, Gesell G, Kästner M, Mannstein H (2003) The cloud analysis tool apollo: improvements and validations. Int J Remote Sens 24(12):2389–2408Google Scholar
  46. 46.
    Laprise R (1992) The euler equations of motion with hydrostatic pressure as an independent variable. Mon Weather Rev 120(1):197–207Google Scholar
  47. 47.
    Lefevre M, Oumbe A, Blanc P, Espinar B, Gschwind B, Qu Z, Wald L, Homscheidt MS, Hoyer-Klick C, Arola A et al (2013) Mcclear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos Measure Techn 6:2403–2418Google Scholar
  48. 48.
    Long CN, Shi Y (2008) An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos Sci J 2(1)Google Scholar
  49. 49.
    Lynch P (2006) The emergence of numerical weather prediction: richardson’s dream. Cambridge University Press (2006)Google Scholar
  50. 50.
    MacCready P (1966) Mean wind speed measurements in turbulence. J Appl Meteorol 5:219–225Google Scholar
  51. 51.
    Martins FR, Pereira EB, Abreu S (2007) Satellite-derived solar resource maps for brazil under swera project. Sol Energy 81(4):517–528Google Scholar
  52. 52.
    Martins FR, Pereira EB, Abreu SL, Beyer HG, Colle S, Perez R, Heinemann D (2003) Cross validation of satellite radiation transfer models during swera project in brazil. In: Proceedings of ISES solar world congressGoogle Scholar
  53. 53.
    Masson V, Le Moigne P, Martin E, Faroux S, Alias A, Alkama R, Belamari S, Barbu A, Boone A, Bouyssel F, Brousseau P, Brun E, Calvet JC, Carrer D, Decharme B, Delire C, Donier S, Essaouini K, Gibelin AL, Giordani H, Habets F, Jidane M, Kerdraon G, Kourzeneva E, Lafaysse M, Lafont S, Lebeaupin Brossier C, Lemonsu A, Mahfouf JF, Marguinaud P, Mokhtari M, Morin S, Pigeon G, Salgado R, Seity Y, Taillefer F, Tanguy G, Tulet P, Vincendon B, Vionnet V, Voldoire A (2013) The surfexv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6(4):929–960.  https://doi.org/10.5194/gmd-6-929-2013. https://www.geosci-model-dev.net/6/929/2013/Google Scholar
  54. 54.
    Maxwell E, Wilcox S, Rymes M (1993) Users manual for seri qc software, assessing the quality of solar radiation data. Solar Energy Research Institute, Golden, CO. http://www.osti.gov/bridge
  55. 55.
    Mazarella D (1972) An inventory of specifications for wind-measuring instruments. Bull Am Meteorol Soc 53:860–871Google Scholar
  56. 56.
    Möser W, Raschke E (1984) Incident solar radiation over europe estimated from meteosat data. J Clim Appl Meteorol 23(1):166–170Google Scholar
  57. 57.
    Mueller R, Dagestad KF, Ineichen P, Schroedter-Homscheidt M, Cros S, Dumortier D, Kuhlemann R, Olseth J, Piernavieja G, Reise C et al (2004) Rethinking satellite-based solar irradiance modelling: the solis clear-sky module. Remote Sens Environ 91(2):160–174Google Scholar
  58. 58.
    Mueller R, Pfeifroth U, Traeger-Chatterjee C (2015) Towards optimal aerosol information for the retrieval of solar surface radiation using heliosat. Atmosphere 6(7):863–878Google Scholar
  59. 59.
    Noia M, Ratto C, Festa R (1993) Solar irradiance estimation from geostationary satellite data: I. statistical models. Sol Energy 51(6):449–456Google Scholar
  60. 60.
    Noia M, Ratto C, Festa R (1993) Solar irradiance estimation from geostationary satellite data: Ii. physical models. Sol Energy 51(6):457–465Google Scholar
  61. 61.
    Nunez M (1993) The development of a satellite-based insolation model for the tropical western pacific ocean. Int J Climatol 13(6):607–627MathSciNetGoogle Scholar
  62. 62.
    Peppler RA, Long C, Sisterson D, Turner D, Bahrmann C, Christensen SW, Doty K, Eagan R, Halter T, Iveyh M et al (2008) An overview of arm program climate research facility data quality assurance. Open Atmos Sci J 2(1):192–216Google Scholar
  63. 63.
    Perez R (2002) Time specific irradiances derived from geostationary satellite images. J Sol Energy Eng 124(1):1–1MathSciNetGoogle Scholar
  64. 64.
    Perez R, Cebecauer T, Šúri M (2013) Semi-empirical satellite models. Solar energy forecasting and resource assessment, Academic Press, Oxford, UK, pp 21–48Google Scholar
  65. 65.
    Perez R, Ineichen P, Kmiecik M, Moore K, Renne D, George R (2004) Producing satellite-derived irradiances in complex arid terrain. Sol Energy 77(4):367–371Google Scholar
  66. 66.
    Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vignola F (2002) A new operational model for satellite-derived irradiances: description and validation. Sol Energy 73(5):307–317Google Scholar
  67. 67.
    Perez R, Schlemmer J, Hemker K, Kivalov S, Kankiewicz A, Gueymard C (2015) Satellite-to-irradiance modeling-a new version of the suny model. In: IEEE 42nd photovoltaic specialist conference (PVSC), IEEE, pp 1–7Google Scholar
  68. 68.
    Perez R, Schlemmer J, Renne D, Cowlin S, George R, Bandyopadhyay B (2009) Validation of the suny satellite model in a meteosat environment. In: Proceeding of ASES annual conference, Buffalo, New YorkGoogle Scholar
  69. 69.
    Pinker R, Laszlo I (1991) Effects of spatial sampling of satellite data on derived surface solar irradiance. J Atmos Ocean Technol 8(1):96–107Google Scholar
  70. 70.
    Polo J, Antonanzas-Torres F, Vindel J, Ramirez L (2014) Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models. Renew Energy 68:785–792Google Scholar
  71. 71.
    Polo J, Martin L, Cony M (2012) Revision of ground albedo estimation in heliosat scheme for deriving solar radiation from seviri hrv channel of meteosat satellite. Sol Energy 86(1):275–282Google Scholar
  72. 72.
    Polo J, Martín L, Vindel J (2015) Correcting satellite derived dni with systematic and seasonal deviations: application to india. Renew Energy 80:238–243Google Scholar
  73. 73.
    Polo J, Vindel J, Martín L (2013) Angular dependence of the albedo estimated in models for solar radiation derived from geostationary satellites. Sol Energy 93:256–266Google Scholar
  74. 74.
    Polo J, Wilbert S, Ruiz-Arias JA, Meyer R, Gueymard C, Suri M, Martín L, Mieslinger T, Blanc P, Grant I et al (2016) Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Sol Energy 132:25–37Google Scholar
  75. 75.
    Polo J, Zarzalejo LF, Ramírez L (2008) Solar radiation derived from satellite images. In: Modeling solar radiation at the earth’s surface, pp 449–462Google Scholar
  76. 76.
    Posselt R, Mueller R, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoringthe cm-saf retrieval in international comparison. Remote Sens Environ 118:186–198Google Scholar
  77. 77.
    Posselt R, Müller R, Trentmann J, Stockli R, Liniger MA (2014) A surface radiation climatology across two meteosat satellite generations. Remote Sens Environ 142:103–110Google Scholar
  78. 78.
    Qu Z, Oumbe A, Blanc P, Espinar B, Gesell G, Gschwind B, Klüser L, Lefèvre M, Saboret L, Schroedter-Homscheidt M et al (2017) Fast radiative transfer parameterisation for assessing the surface solar irradiance: the heliosat-4 method. Meteorol Z 26(1):33–57Google Scholar
  79. 79.
    Retallack B (1984) In: Compendium of lecture notes for training class IV meteorological personnel, vol II, World Meteorological OrganizationGoogle Scholar
  80. 80.
    Rigollier C, Lefèvre M, Wald L (2004) The method heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77(2):159–169Google Scholar
  81. 81.
    Riihelä A, Carlund T, Trentmann J, Müller R, Lindfors AV (2015) Validation of cm saf surface solar radiation datasets over finland and sweden. Remote Sens 7(6):6663–6682Google Scholar
  82. 82.
    Roesch A, Wild M, Ohmura A, Dutton EG, Long CN, Zhang T (2011) Assessment of bsrn radiation records for the computation of monthly means. Atmos Measure Tech 4(2):339–354Google Scholar
  83. 83.
    Sanchez-Lorenzo A, Wild M, Trentmann J (2013) Validation and stability assessment of the monthly mean cm saf surface solar radiation dataset over europe against a homogenized surface dataset (1983–2005). Remote Sens Environ 134:355–366Google Scholar
  84. 84.
    Schillings C, Meyer R, Mannstein H (2004) Validation of a method for deriving high resolution direct normal irradiance from satellite data and application for the arabian peninsula. Sol Energy 76(4):485–497Google Scholar
  85. 85.
    Schwandt M, Chhatbar K, Meyer R, Mitra I, Vashistha R, Giridhar G, Gomathinayagam S, Kumar A (2014) Quality check procedures and statistics for the indian srra solar radiation measurement network. Energy Procedia 57:1227–1236Google Scholar
  86. 86.
    Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The arome-france convective-scale operational model. Mon Weather Rev 139(3):976–991Google Scholar
  87. 87.
    Sengupta M, Habte A, Kurtz S, Dobos A, Wilbert S, Lorenz E, Stoffel T, Renné D, Gueymard C, Myers D et al (2015) Best practices handbook for the collection and use of solar resource data for solar energy applications. NRELGoogle Scholar
  88. 88.
    Stensrud D (2009) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University PressGoogle Scholar
  89. 89.
    Steppeler J, Hess R, Schättler U, Bonaventura L (2003) Review of numerical methods for nonhydrostatic weather prediction models. Meteorol Atmos Phys 82(1):287–301Google Scholar
  90. 90.
    Vignola F, Grover C, Lemon N, McMahan A (2012) Building a bankable solar radiation dataset. Sol Energy 86(8):2218–2229Google Scholar
  91. 91.
    Walmsley J, Troen I, Lalas D, Mason P (1990) Surface-layer flow in complex terrain: comparison of models and full-scale observation. Bound Layer Meteorol 52:259–281Google Scholar
  92. 92.
    Wieringa J (1980) A revaluation of the kansas mast influence on measurements of stress and cup anemometer overspeeding. Bound Layer Meteorol 18:411–430Google Scholar
  93. 93.
    Wieringa J (1983) Description requirements for assessment of non-ideal wind stations, for example aachen. J Wind Eng Ind Aerodyn 11:121–131Google Scholar
  94. 94.
    Zarzalejo LF, Polo J, Martín L, Ramírez L, Espinar B (2009) A new statistical approach for deriving global solar radiation from satellite images. Sol Energy 83(4):480–484Google Scholar
  95. 95.
    Zelenka A, Perez R, Seals R, Renné D (1999) Effective accuracy of satellite-derived hourly irradiances. Theor Appl Climatol 62(3):199–207Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Javier Calvo Sánchez
    • 1
  • Gema Morales Martín
    • 1
  • Jesús Polo
    • 2
  1. 1.NWP Group of the State Meteorological Agency (AEMET)MadridSpain
  2. 2.Photovoltaic Solar Energy UnitRenewable Energy Division (Energy Department) of CIEMATMadridSpain

Personalised recommendations