Advertisement

Moving from Former to Future Frontiers

  • Tim Skern
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

In this chapter, we will continue to examine variations on themes in protein structure. We will reproduce using modern techniques the first multiple sequence alignment that was based upon three-dimensional protein structures. Then, we will look at the structure of an activated complex of the adrenaline receptor and a heterotrimeric G-protein and examine the tricks that were necessary to determine the structure. With an eye to the future, we will examine a structure of the human spliceosome complex that was determined by the increasingly powerful technique of cryo-electron microscopy. The chapter finishes by returning to the structure of hemoglobin, this time also determined by cryo-electron microscopy. Hemoglobin is at present the smallest structure determined by this method, but it seems likely to lose this attribute very soon.

References

  1. Abad-Zapatero C, Griffith JP, Sussman JL, Rossmann MG (1987) Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol 198(3):445–467CrossRefPubMedGoogle Scholar
  2. Baker PJ, Britton KL, Engel PC, Farrants GW, Lilley KS, Rice DW, Stillman TJ (1992) Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 12(1):75–86.  https://doi.org/10.1002/prot.340120109 CrossRefPubMedGoogle Scholar
  3. Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Luhrmann R (2017) Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542(7641):318–323.  https://doi.org/10.1038/nature21079 CrossRefPubMedGoogle Scholar
  4. Bourne HR (1997) How receptors talk to trimeric G proteins. Curr Opin Cell Biol 9(2):134–142CrossRefPubMedGoogle Scholar
  5. Carroni M, Saibil HR (2016) Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95:78–85.  https://doi.org/10.1016/j.ymeth.2015.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265.  https://doi.org/10.1126/science.1150577 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C (2011) T -Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39(Web Server issue):W13–W17.  https://doi.org/10.1093/nar/gkr245 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321(6065):75–79.  https://doi.org/10.1038/321075a0 CrossRefPubMedGoogle Scholar
  9. Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4(4):274–282.  https://doi.org/10.1002/prot.340040406 CrossRefPubMedGoogle Scholar
  10. Fedosyuk S, Grishkovskaya I, de Almeida Ribeiro E Jr, Skern T (2014) Characterization and structure of the vaccinia virus NF-kappaB antagonist A46. J Biol Chem 289(6):3749–3762.  https://doi.org/10.1074/jbc.M113.512756 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537(7620):339–346.  https://doi.org/10.1038/nature19948 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gille C (2006) Structural interpretation of mutations and SNPs using STRAP-NT. Protein Science 15(1):208–210CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gille C, Fähling M, Weyand B, Wieland T, Gille A (2014) Alignment-Annotator web server: rendering and annotating sequence alignments. Nucleic Acids Research 42(W1):W3–W6CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK (2015) The RCSB PDB “molecule of the month”: inspiring a molecular view of biology. PLoS Biol 13(5):e1002140.  https://doi.org/10.1371/journal.pbio.1002140 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Harrison RA, Engen JR (2016) Conformational insight into multi-protein signaling assemblies by hydrogen-deuterium exchange mass spectrometry. Curr Opin Struct Biol 41:187–193.  https://doi.org/10.1016/j.sbi.2016.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Helliwell JR (2013) Biochemistry. How to solve protein structures with an X-ray laser. Science 339(6116):146–147.  https://doi.org/10.1126/science.1233209 CrossRefPubMedGoogle Scholar
  17. Herrmann R, Heck M, Henklein P, Henklein P, Kleuss C, Hofmann KP, Ernst OP (2004) Sequence of interactions in receptor-G protein coupling. J Biol Chem 279(23):24283–24290.  https://doi.org/10.1074/jbc.M311166200 CrossRefPubMedGoogle Scholar
  18. Hughes MM, Lavrencic P, Coll RC, Ve T, Ryan DG, Williams NC, Menon D, Mansell A, Board PG, Mobli M, Kobe B, O'Neill LAJ (2017) Solution structure of the TLR adaptor MAL/TIRAP reveals an intact BB loop and supports MAL Cys91 glutathionylation for signaling. Proc Natl Acad Sci U S A 114(32):E6480–E6489.  https://doi.org/10.1073/pnas.1701868114 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iiri T, Farfel Z, Bourne HR (1998) G-protein diseases furnish a model for the turn-on switch. Nature 394(6688):35–38.  https://doi.org/10.1038/27831 CrossRefPubMedGoogle Scholar
  20. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561–567.  https://doi.org/10.1038/nature14656 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Khoshouei M, Danev R, Plitzko JM, Baumeister W (2017a) Revisiting the structure of hemoglobin and myoglobin with cryo-electron microscopy. J Mol Biol 429(17):2611–2618.  https://doi.org/10.1016/j.jmb.2017.07.004 CrossRefPubMedGoogle Scholar
  22. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017b) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat Commun 8:16099.  https://doi.org/10.1038/ncomms16099 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kim TH, Mehrabi P, Ren Z, Sljoka A, Ing C, Bezginov A, Ye L, Pomes R, Prosser RS, Pai EF (2017) The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355(6322).  https://doi.org/10.1126/science.aag2355 CrossRefPubMedGoogle Scholar
  24. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379(6563):311–319.  https://doi.org/10.1038/379311a0 CrossRefPubMedGoogle Scholar
  25. Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546(7656):118–123.  https://doi.org/10.1038/nature22327 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lundqvist T, Schneider G (1991) Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-Å resolution. Biochemistry 30(4):904–908CrossRefPubMedGoogle Scholar
  27. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 165(7):1698–1707CrossRefPubMedPubMedCentralGoogle Scholar
  28. Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossmann MG (1975) Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250(23):9137–9162PubMedGoogle Scholar
  29. Muller DJ, Gaub HE (2017) Membrane proteins scrambling through a folding landscape. Science 355(6328):907–908.  https://doi.org/10.1126/science.aam8370 CrossRefPubMedGoogle Scholar
  30. Noel JP, Hamm HE, Sigler PB (1993) The 2.2 Å crystal structure of transducin-alpha complexed with GTP gamma S. Nature 366(6456):654–663.  https://doi.org/10.1038/366654a0 CrossRefPubMedGoogle Scholar
  31. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217.  https://doi.org/10.1006/jmbi.2000.4042 CrossRefPubMedGoogle Scholar
  32. Pauling L (1953) Abnormality of hemoglobin molecules in hereditary hemolytic anemias. Harvey Lect 49:216–241PubMedGoogle Scholar
  33. Pauling L, Itano HA et al (1949) Sickle cell anemia a molecular disease. Science 110(2865):543–548CrossRefPubMedGoogle Scholar
  34. Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76(2):241–256CrossRefPubMedGoogle Scholar
  35. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555.  https://doi.org/10.1038/nature10361 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rondard P, Iiri T, Srinivasan S, Meng E, Fujita T, Bourne HR (2001) Mutant G protein alpha subunit activated by Gbeta gamma: a model for receptor activation? Proc Natl Acad Sci U S A 98(11):6150–6155.  https://doi.org/10.1073/pnas.101136198 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273.  https://doi.org/10.1126/science.1150609 CrossRefPubMedGoogle Scholar
  38. Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of nucleotide-binding protein. Nature 250(463):194–199CrossRefPubMedGoogle Scholar
  39. Saleh T, Kalodimos CG (2017) Enzymes at work are enzymes in motion. Science 355(6322):247–248.  https://doi.org/10.1126/science.aal4632 CrossRefPubMedGoogle Scholar
  40. Sara T, Konrat R, Skern T (2014) Strategies for purifying variants of human rhinovirus 14 2C protein. Protein Expr Purif 95:28–37.  https://doi.org/10.1016/j.pep.2013.11.012 CrossRefPubMedGoogle Scholar
  41. Schneider G, Lindqvist Y, Lundqvist T (1990) Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol 211(4):989–1008.  https://doi.org/10.1016/0022-2836(90)90088-4 CrossRefPubMedGoogle Scholar
  42. Schwartz TW, Sakmar TP (2011) Structural biology: snapshot of a signalling complex. Nature 477(7366):540–541.  https://doi.org/10.1038/477540a CrossRefPubMedPubMedCentralGoogle Scholar
  43. Special Collections & Archives Research Center OSUL (2015) Molecular Medicine. Oregon State University Libraries. http://scarc.library.oregonstate.edu/coll/pauling/blood/pictures/1951s.17-large.html. Accessed 3rd August 2017
  44. Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S, Swain M, Fan L, Nelson G, Li C, Wendel DR, White TA, Coe JD, Wiedorn MO, Knoska J, Oberthuer D, Tuckey RA, Yu P, Dyba M, Tarasov SG, Weierstall U, Grant TD, Schwieters CD, Zhang J, Ferre-D'Amare AR, Fromme P, Draper DE, Liang M, Hunter MS, Boutet S, Tan K, Zuo X, Ji X, Barty A, Zatsepin NA, Chapman HN, Spence JC, Woodson SA, Wang YX (2017) Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541(7636):242–246.  https://doi.org/10.1038/nature20599 CrossRefPubMedGoogle Scholar
  45. Valkov E, Stamp A, Dimaio F, Baker D, Verstak B, Roversi P, Kellie S, Sweet MJ, Mansell A, Gay NJ, Martin JL, Kobe B (2011) Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc Natl Acad Sci U S A 108(36):14879–14884.  https://doi.org/10.1073/pnas.1104780108 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V et al (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3(11):1147–1158CrossRefPubMedGoogle Scholar
  47. Yu H, Siewny MG, Edwards DT, Sanders AW, Perkins TT (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950.  https://doi.org/10.1126/science.aah7124 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations