Advertisement

Examining α-Helical Proteins

  • Tim Skern
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

The possibilities of packing α-helices are limited. The α-helices of a protein must be arranged so that the closely packed side-chains do not clash sterically and that their chemical properties are compatible. The packing of α-helices of closely related proteins can be very similar; however, slight variations and the presence of different amino acids can lead to different properties and functions. First, we will investigate the structure of three DNA-binding proteins that have α-helices in an arrangement known as a coiled coil. Variation in the amino acid sequence in the regions forming the coiled coils determines whether the proteins can form homodimers or heterodimers. Then, we will examine the arrangement of the α-helices in the globular protein myoglobin. In the final part of the chapter, we move on to investigate the variations in the structure and functions of three proteins. All three proteins have similar α-helical Bcl-2-like folds but perform different functions. One protein acts to prevent the onset of apoptosis (i.e., it is a pro-survival factor for a cell), whereas the second acts to induce the onset of apoptosis (i.e., it is a pro-apoptotic factor). The third, from vaccinia virus, does not show any apoptotic properties but can instead inhibit cellular signaling pathways to prevent inflammation in the infected host (◘ Table 7.1).

References

  1. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326CrossRefPubMedGoogle Scholar
  2. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6(8):635–645.  https://doi.org/10.1038/nrm1703 CrossRefPubMedGoogle Scholar
  3. Blankenfeldt W, Thoma NH, Wray JS, Gautel M, Schlichting I (2006) Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. Proc Natl Acad Sci U S A 103(47):17713–17717.  https://doi.org/10.1073/pnas.0606741103 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chothia C, Levitt M, Richardson D (1977) Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A 74(10):4130–4134CrossRefPubMedPubMedCentralGoogle Scholar
  5. Crick FH (1952) Is alpha-keratin a coiled coil? Nature 170(4334):882–883CrossRefPubMedGoogle Scholar
  6. Crick FHC (1953) The packing of alpha-helices - simple coiled-coils. Acta Crystallogr 6(8-9):689–697.  https://doi.org/10.1107/S0365110x53001964 CrossRefGoogle Scholar
  7. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71(7):1223–1237CrossRefPubMedGoogle Scholar
  8. Fedosyuk S, Bezerra GA, Radakovics K, Smith TK, Sammito M, Bobik N, Round A, Ten Eyck LF, Djinovic-Carugo K, Uson I, Skern T (2016) Vaccinia virus Immunomodulator A46: a lipid and protein-binding scaffold for sequestering host TIR-domain proteins. PLoS Pathog 12(12):e1006079.  https://doi.org/10.1371/journal.ppat.1006079 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fedosyuk S, Grishkovskaya I, de Almeida Ribeiro E Jr, Skern T (2014) Characterization and structure of the vaccinia virus NF-kappaB antagonist A46. J Biol Chem 289(6):3749–3762.  https://doi.org/10.1074/jbc.M113.512756 CrossRefPubMedGoogle Scholar
  10. Ferre-D'Amare AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363(6424):38–45.  https://doi.org/10.1038/363038a0 CrossRefPubMedGoogle Scholar
  11. Franklin E, Khan AR (2013) Poxvirus antagonism of innate immunity by Bcl-2 fold proteins. J Struct Biol 181(1):1–10.  https://doi.org/10.1016/j.jsb.2012.10.015 CrossRefPubMedGoogle Scholar
  12. Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303(5665):1838–1842.  https://doi.org/10.1126/science.1093155 CrossRefPubMedGoogle Scholar
  13. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4(8):e1000128.  https://doi.org/10.1371/journal.ppat.1000128 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grinberg AV, Hu CD, Kerppola TK (2004) Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 24(10):4294–4308CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21(4):627–641.  https://doi.org/10.1038/cr.2010.149 CrossRefPubMedGoogle Scholar
  16. Kvansakul M, Caria S, Hinds MG (2017) The Bcl-2 family in host-virus interactions. Virus 9(10).  https://doi.org/10.3390/v9100290 CrossRefPubMedCentralGoogle Scholar
  17. Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA, Huang DC, Colman PM (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 15(10):1564–1571.  https://doi.org/10.1038/cdd.2008.83 CrossRefPubMedGoogle Scholar
  18. Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240(4860):1759–1764CrossRefPubMedGoogle Scholar
  19. Luna-Vargas MP, Chipuk JE (2016) The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J 283(14):2676–2689.  https://doi.org/10.1111/febs.13624 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, Monie T, Bowie AG (2010) Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol 185(7):4261–4271.  https://doi.org/10.4049/jimmunol.1002013 CrossRefPubMedGoogle Scholar
  21. Ma PC, Rould MA, Weintraub H, Pabo CO (1994) Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77(3):451–459CrossRefPubMedGoogle Scholar
  22. Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5(2):170–176.  https://doi.org/10.1002/cbic.200300781 CrossRefPubMedGoogle Scholar
  23. Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112(2):193–205CrossRefPubMedGoogle Scholar
  24. Nobbs CL, Watson HC, Kendrew JC (1966) Structure of deoxymyoglobin: a crystallographic study. Nature 209(5021):339–341CrossRefPubMedGoogle Scholar
  25. O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254(5031):539–544CrossRefGoogle Scholar
  26. Pauling L, Corey RB (1953) Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature 171(4341):59–61CrossRefPubMedGoogle Scholar
  27. Pauling L, Corey RB, Branson HR (1951) The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37(4):205–211CrossRefPubMedPubMedCentralGoogle Scholar
  28. Perutz MF (1951) New X-ray evidence on the configuration of polypeptide chains. Nature 167(4261):1053–1054CrossRefPubMedGoogle Scholar
  29. Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98(6):3012–3017.  https://doi.org/10.1073/pnas.041619798 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rech de Laval V, Deleage G, Aouacheria A, Combet C (2014) BCL2DB: database of BCL-2 family members and BH3-only proteins. Database (Oxford) 2014:bau013.  https://doi.org/10.1093/database/bau013 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sodek J, Hodges RS, Smillie LB, Jurasek L (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Natl Acad Sci U S A 69(12):3800–3804CrossRefPubMedPubMedCentralGoogle Scholar
  32. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103(4):645–654CrossRefPubMedGoogle Scholar
  33. Truebestein L, Leonard TA (2016) Coiled-coils: the long and short of it. BioEssays 38(9):903–916.  https://doi.org/10.1002/bies.201600062 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wallis M (2014) Molecular evolution of growth hormone. The Biochemist, vol 36. Biochemical Society, LondonGoogle Scholar
  35. Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 a resolution. Nature 289(5796):366–373CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations