Exploring Fundamentals

  • Tim Skern
Part of the Learning Materials in Biosciences book series (LMB)


This chapter provides you with a first foothold toward exploring protein structures. We will examine hemoglobin and papain, two proteins whose structures were first determined in the 1960s, the pioneering days of modern structural biology. The examination of the structure of hemoglobin illuminates the secondary, tertiary, and quaternary structure of proteins, while that of the plant protease papain provides insights into the properties of amino acids in proteins, with an emphasis on hydrogen bonding, ionization, and van der Waals forces. Hydrogen bonds will be illustrated using the structure of tyrosyl-tRNA synthetase, one of the first enzymes specifically modified by mutagenesis to investigate the importance of such bonds in enzymatic catalysis.


  1. Adams MJ, Ford GC, Koekoek R, Lentz PJ, McPherson A Jr, Rossmann MG, Smiley IE, Schevitz RW, Wonacott AJ (1970) Structure of lactate dehydrogenase at 2.8 Å resolution. Nature 227(5263):1098–1103CrossRefPubMedGoogle Scholar
  2. Albrecht G, Corey RB (1939) The crystal structure of glycine. J Am Chem Soc 61:1087–1103. CrossRefGoogle Scholar
  3. Astbury WT, Street A (1932) X-ray studies of the structure of hair, wool, and related fibres I – general. Philos T R Soc Lond 230:75–101. CrossRefGoogle Scholar
  4. Astbury WT, Woods HJ (1930) The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 126:913–914. CrossRefGoogle Scholar
  5. Bernal JD (1931) The crystal structure of the natural amino acids and related compounds. Z Kristallogr Kristallgeom 78:363–369Google Scholar
  6. Bernal JD, Fankuchen I, Perutz M (1937) An X-ray study of chymotrypsin and haemoglobin. Nature 141:523–524CrossRefGoogle Scholar
  7. Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 angstrom resolution. Nature 206(4986):757–761CrossRefPubMedGoogle Scholar
  8. Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208(1):83–98Google Scholar
  9. Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T (2007) Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. J Mol Biol 373(4):1071–1087. CrossRefPubMedGoogle Scholar
  10. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265(5170):346–355CrossRefPubMedGoogle Scholar
  11. Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273(40):25529–25532CrossRefPubMedGoogle Scholar
  12. Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG (1968) Structure of papain. Nature 218(5145):929–932CrossRefPubMedGoogle Scholar
  13. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A 63(1):78–85CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fedosyuk S, Grishkovskaya I, de Almeida Ribeiro E Jr, Skern T (2014) Characterization and structure of the vaccinia virus NF-kappaB antagonist A46. J Biol Chem 289(6):3749–3762. CrossRefPubMedGoogle Scholar
  15. Fersht AR, Shi JP, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, Brick P, Carter P, Waye MM, Winter G (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314(6008):235–238CrossRefPubMedGoogle Scholar
  16. Harrington DJ, Adachi K, Royer WE Jr (1997) The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol 272(3):398–407. CrossRefPubMedGoogle Scholar
  17. Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) Structure of papain refined at 1.65 Å resolution. J Mol Biol 179(2):233–256CrossRefPubMedGoogle Scholar
  18. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610):662–666CrossRefPubMedGoogle Scholar
  19. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å Resolution. Nature 185(4711):422–427CrossRefPubMedGoogle Scholar
  20. Kossiakoff AA, Chambers JL, Kay LM, Stroud RM (1977) Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16(4):654–664CrossRefPubMedGoogle Scholar
  21. Ladner RC, Heidner EJ, Perutz MF (1977) The structure of horse methaemoglobin at 2.0 Å resolution. J Mol Biol 114(3):385–414Google Scholar
  22. Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matthews BW, Sigler PB, Henderson R, Blow DM (1967) Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 214(5089):652–656CrossRefPubMedGoogle Scholar
  24. Perutz MF (1939) Absorption spectra of single crystals of hemoglobin in polarized light. Nature 143:731–733CrossRefGoogle Scholar
  25. Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9(10):867–873. CrossRefGoogle Scholar
  26. Perutz MF (1978) Electrostatic effects in proteins. Science 201(4362):1187–1191CrossRefPubMedGoogle Scholar
  27. Perutz MF, Muirhead H, Cox JM, Goaman LC (1968) Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model. Nature 219(5150):131–139CrossRefPubMedGoogle Scholar
  28. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185(4711):416–422CrossRefPubMedGoogle Scholar
  29. Pimental GC, McClellan AL (1960) The hydrogen bond. Freeman, San FranciscoGoogle Scholar
  30. Richardson JS, Richardson JC (1989) Principles and patterns of protein. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformation. Plenum Press, New York, pp 1–99Google Scholar
  31. Rossmann MG (2009) Chapter 3: recollection of the events leading to the discovery of the structure of haemoglobin. J Mol Biol 392(1):23–32. CrossRefPubMedGoogle Scholar
  32. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3(7):619–625CrossRefPubMedGoogle Scholar
  33. Roy G (1874) On the solvent action of papain on the nitrogenous functions of food. Glasgow Med J 6:33Google Scholar
  34. Shipton M, Kierstan MP, Malthouse JP, Stuchbury T, Brocklehurst K (1975) The case for assigning a value of approximately 4 to pKa-i of the essential histidine-cysteine interactive systems of papain, bromelain and ficin. FEBS Lett 50(3):365–368CrossRefPubMedGoogle Scholar
  35. Storer A, Ménard R (2013) Handbook of proteolytic enzymes. In: Rawlings ND, Salvesen G (eds) Handbook of proteolytic enzymes, vol 1, Third edn. Elsevier/AP, Amsterdam, pp 1858–1861CrossRefGoogle Scholar
  36. Wells TNC, Fersht AR (1985) Hydrogen-bonding in enzymatic catalysis analyzed by protein engineering. Nature 316(6029):656–657. CrossRefGoogle Scholar
  37. Wurtz A, Bouchut E (1880) Sur le ferment digestif du carica papaya. Comptes rendu de l'académie des. Sciences 89:425–430Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tim Skern
    • 1
  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria

Personalised recommendations