Advertisement

Postharvest Biology and Technology of Apple

  • Khalid Gul
  • Nisar Ahmad Mir
  • Preeti Singh
  • Ali Abas Wani
Chapter

Abstract

Apple is a climacteric fruit commercially grown in temperate regions of the world. Apple quality and its postharvest life can be influenced by several factors, including harvest maturity, storage conditions, and postharvest treatments. Apples have a relatively long storage life compared with other fruit crops. However, the main problem of apple storage is the decrease of fruit firmness. Fruit ripening is accompanied by softening, which is one of the most important determinants of fruit quality and consumer acceptability. Numerous techniques, including controlled atmosphere storage, modified atmosphere packaging, 1-methlycyclopropene treatment, coatings, etc., have been employed for increasing the shelf life of apple fruit.

Keywords

Apple Harvesting time Climacteric fruit Cold storage 1-Methylcyclopropene Coating Superficial scald 

References

  1. Aprea, E., Charles, M., Endrizzi, I., Corollaro, M. L., Betta, E., Biasioli, F., & Gasperi, F. (2017). Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Scientific Reports, 7, 44950.  https://doi.org/10.1038/srep44950.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arendse, E., Fawole, O. A., Magwaza, L. S., & Opara, U. L. (2018). Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. Journal of Food Engineering, 217, 11–23.CrossRefGoogle Scholar
  3. Arseneault, M. H., & Cline, J. A. (2016). A review of apple preharvest fruit drop and practices for horticultural management. Scientia Horticulturae, 211, 40–52.CrossRefGoogle Scholar
  4. Bai, J., Hagenmaier, R. D., & Baldwin, E. A. (2003). Coating selection for ‘Delicious’ and other apples. Postharvest Biology and Technology, 28(3), 381–390.CrossRefGoogle Scholar
  5. Bai, J., Baldwin, E. A., Goodner, K. L., Mattheis, J. P., & Brecht, J. K. (2005). Response of four apple cultivars to 1-methylcyclopropene treatment and controlled atmosphere storage. HortScience, 40(5), 1534–1538.Google Scholar
  6. Bangerth, F. K., Song, J., & Streif, J. (2012). Physiological impacts of fruit ripening and storage conditions on aroma volatile formation in apple and strawberry fruit: A review. HortScience, 47(1), 4–10.Google Scholar
  7. Bekele, E. A., Ampofo-Asiama, J., Alis, R. R., Hertog, M. L., Nicolai, B. M., & Geeraerd, A. H. (2016). Dynamics of metabolic adaptation during initiation of controlled atmosphere storage of ‘Jonagold’apple: Effects of storage gas concentrations and conditioning. Postharvest Biology and Technology, 117, 9–20.CrossRefGoogle Scholar
  8. Ben-Yehoshua, S., & Rodov, V. (2003). Transpiration and water stress. In J. A. Bartz & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (pp. 111–159). New York: Marcel Dekker.Google Scholar
  9. Both, V., Brackmann, A., Thewes, F. R., de Freitas Ferreira, D., & Wagner, R. (2014). Effect of storage under extremely low oxygen on the volatile composition of ‘Royal Gala’ apples. Food Chemistry, 156, 50–57.CrossRefPubMedGoogle Scholar
  10. Chung, H. S., Moon, K. D., Chung, S. K., & Choi, J. U. (2005). Control of internal browning and quality improvement of ‘Fuji’apples by stepwise increase of CO2 level during controlled atmosphere storage. Journal of the Science of Food and Agriculture, 85(5), 883–888.CrossRefGoogle Scholar
  11. Dávila-Aviña, J., Villa-Rodríguez, J., Villegas-Ochoa, M. A., Tortoledo-Ortiz, O., Olivas, G. I., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2014). Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages. Journal of Food Science and Technology, 51(10), 2706–2712.CrossRefPubMedGoogle Scholar
  12. Day, B. P. F. (1996). High oxygen modified atmosphere packaging for fresh prepared produce. Postharvest News and Information, 7, 31–34.Google Scholar
  13. de Freitas, S. T., do Amarante, C. V. T., & Mitcham, E. J. (2015). Mechanisms regulating apple cultivar susceptibility to bitter pit. Scientia Horticulturae, 186, 54–60.CrossRefGoogle Scholar
  14. De León-Zapata, M. A., Sáenz-Galindo, A., Rojas-Molina, R., Rodríguez-Herrera, R., Jasso-Cantú, D., & Aguilar, C. N. (2015). Edible candelilla wax coating with fermented extract of tarbush improves the shelf life and quality of apples. Food Packaging and Shelf Life, 3, 70–75.CrossRefGoogle Scholar
  15. De Wild, H. P. J., Woltering, E. J., & Peppelenbos, H. W. (1999). Carbon dioxide and 1-MCP inhibit ethylene production and respiration of pear fruit by different mechanisms. Journal of Experimental Botany, 50(335), 837–844.  https://doi.org/10.1093/jxb/50.335.837.CrossRefGoogle Scholar
  16. DeEll, J. R., Murr, D. P., Porteous, M. D., & Rupasinghe, H. V. (2002). Influence of temperature and duration of 1-methylcyclopropene (1-MCP) treatment on apple quality. Postharvest Biology and Technology, 24(3), 349–353.CrossRefGoogle Scholar
  17. DeEll, J. R., Lum, G. B., & Ehsani-Moghaddam, B. (2016). Effects of multiple 1-methylcyclopropene treatments on apple fruit quality and disorders in controlled atmosphere storage. Postharvest Biology and Technology, 111, 93–98.CrossRefGoogle Scholar
  18. Du, L., Song, J., Palmer, L. C., Fillmore, S., & Zhang, Z. (2017). Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit. Postharvest Biology and Technology, 123, 33–50.CrossRefGoogle Scholar
  19. Echeverría, G., Fuentes, M. T., Graell, J., & López, M. L. (2004a). Relationships between volatile production, fruit quality and sensory evaluation of Fuji apples stored in different atmospheres by means of multivariate analysis. Journal of the Science of Food and Agriculture, 84(1), 5–20.CrossRefGoogle Scholar
  20. Echeverría, G., Fuentes, T., Graell, J., Lara, I., & López, M. L. (2004b). Aroma volatile compounds of ‘Fuji’apples in relation to harvest date and cold storage technology: A comparison of two seasons. Postharvest Biology and Technology, 32(1), 29–44.CrossRefGoogle Scholar
  21. ElMasrya, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8.Google Scholar
  22. Emongor, V. E., Murr, D. P., & Lougheed, E. C. (1994). Preharvest factors that predispose apples to superficial scald. Postharvest Biology and Technology, 4(4), 289–300.CrossRefGoogle Scholar
  23. Fan, X., Blankenship, S. M., & Mattheis, J. P. (1999). 1-Methylcyclopropene inhibits apple ripening. Journal of the American Society for Horticultural Science, 124(6), 690–695.Google Scholar
  24. Fante, C. A., Boas, A. C. V., Paiva, V. A., Pires, C. R. F., & Lima, L. C. D. O. (2014). Modified atmosphere efficiency in the quality maintenance of Eva apples. Food Science and Technology (Campinas), 34(2), 309–314.CrossRefGoogle Scholar
  25. FAOSTAT. (2017). Food and Agricultural Organization Statistical Database. Retrieved December 24, 2017, from http://www.fao.org/faostat/en.
  26. Fawbush, F., Nock, J. F., & Watkins, C. B. (2009). Antioxidant contents and activity of 1-methylcyclopropene (1-MCP)-treated ‘Empire’apples in air and controlled atmosphere storage. Postharvest Biology and Technology, 52(1), 30–37.CrossRefGoogle Scholar
  27. Ferguson, I. B., & Watkins, C. B. (1989). Bitter pit in apple fruit. Horticultural Reviews, 11, 289–355.Google Scholar
  28. Ferree, D. C., & Warrington, I. J. (Eds.). (2003). Apples: Botany, production, and uses. Wallingford: CABI Publishing.Google Scholar
  29. Gago, C. M., Guerreiro, A. C., Miguel, G., Panagopoulos, T., Sánchez, C., & Antunes, M. D. (2015). Effect of harvest date and 1-MCP (SmartFresh™) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biology and Technology, 110, 77–85.CrossRefGoogle Scholar
  30. Gago, C. M., Guerreiro, A. C., Miguel, G., Panagopoulos, T., da Silva, M. M., & Antunes, M. D. (2016). Effect of calcium chloride and 1-MCP (Smartfresh™) postharvest treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Scientia Horticulturae, 211, 440–448.CrossRefGoogle Scholar
  31. Ganai, S. A., Ahsan, H., Tak, A., Mir, M. A., Rather, A. H., & Wani, S. M. (2016). Effect of maturity stages and postharvest treatments on physical properties of apple during storage. Journal of the Saudi Society of Agricultural Sciences.  https://doi.org/10.1016/j.jssas.2016.07.001.
  32. Gardesh, A. S. K., Badii, F., Hashemi, M., Ardakani, A. Y., Maftoonazad, N., & Gorji, A. M. (2016). Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT-Food Science and Technology, 70, 33–40.CrossRefGoogle Scholar
  33. Goffings, G., & Herregods, M. (1993). The influence of the storage conditions on some quality parameters of Jonagold apples. Acta Horticulturae, 368, 37–42.Google Scholar
  34. Harker, F. R., Marsh, K. B., Young, H., Murray, S. H., Gunson, F. A., & Walker, S. B. (2002). Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biology and Technology, 24(3), 241–250.CrossRefGoogle Scholar
  35. Harker, F. R., White, A., Gunson, F. A., Hallett, I. C., & De Silva, H. N. (2006). Instrumental measurement of apple texture: A comparison of the single-edge notched bend test and the penetrometer. Postharvest Biology and Technology, 39(2), 185–192.CrossRefGoogle Scholar
  36. Hyson, D. A. (2011). A comprehensive review of apples and apple components and their relationship to human health. Advances in Nutrition, 2, 408–420.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jung, S. K., & Watkins, C. B. (2014). Internal ethylene concentrations in apple fruit at harvest affect persistence of inhibition of ethylene production after 1-methylcyclopropene treatment. Postharvest Biology and Technology, 96, 1–6.CrossRefGoogle Scholar
  38. Kader, A. A. (1999). Fruit maturity, ripening, and quality relationships. Acta Horticulturae, 485, 203–207.CrossRefGoogle Scholar
  39. Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2017). Preserving apple (Malus domestica var. Anna) fruit bioactive substances using olive wastes extract-chitosan film coating. Information Processing in Agriculture, 4(1), 90–99.CrossRefGoogle Scholar
  40. Knee, M., Hatfield, S. G. S., & Smith, S. M. (1989). Evaluation of various indicators of maturity for harvest of apple fruit intended for long-term storage. Journal of Horticultural Science, 64(4), 403–411.CrossRefGoogle Scholar
  41. Krugera, E., Dietrich, H., Schopplein, E., Rasima, S., & Kurbelb, P. (2010). Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biology and Technology, 60, 31–37.CrossRefGoogle Scholar
  42. Łata, B., Trampczynska, A., & Paczesna, J. (2009). Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae, 121, 176–181.CrossRefGoogle Scholar
  43. Lavilla, T., Puy, J., Lopez, M. L., Recasens, I., & Vendrell, M. (1999). Relationships between volatile production, fruit quality, and sensory evaluation in Granny Smith apples stored in different controlled atmosphere treatments by means of multivariate analysis. Journal of Agricultural Food Chemistry, 47, 3791–3803.CrossRefPubMedGoogle Scholar
  44. Li, J., Lei, H., Song, H., Lai, T., Xu, X., & Shi, X. (2017). 1-Methylcyclopropene (1-MCP) suppressed postharvest blue mold of apple fruit by inhibiting the growth of Penicillium expansum. Postharvest Biology and Technology, 125, 59–64.CrossRefGoogle Scholar
  45. Little, C. R., & Holmes, R. J. (2000). Storage technology for apples and pears. Knoxfield, VIC, Australia: Highway Press Pty. Ltd..Google Scholar
  46. Lu, X. G., Ma, Y. P., & Liu, X. H. (2012). Effects of maturity and 1-MCP treatment on postharvest quality and antioxidant properties of ‘Fuji’apples during long-term cold storage. Horticulture, Environment, and Biotechnology, 53(5), 378–386.CrossRefGoogle Scholar
  47. Lu, X., Meng, G., Jin, W., & Gao, H. (2018). Effects of 1-MCP in combination with Ca application on aroma volatiles production and softening of ‘Fuji’apple fruit. Scientia Horticulturae, 229, 91–98.CrossRefGoogle Scholar
  48. Lurie, S., & Watkins, C. B. (2012). Superficial scald, its etiology and control. Postharvest Biology and Technology, 65, 44–60.CrossRefGoogle Scholar
  49. Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A, 372, 20130309.CrossRefGoogle Scholar
  50. Mahmood, T., Anwar, F., Abbas, M., Boyce, M. C., & Saari, N. (2012). Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. International Journal of Molecular Sciences, 13(2), 1380–1392.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mathooko, F. M., Tsunashima, Y., Owino, W. Z., Kubo, Y., & Inaba, A. (2001). Regulation of genes encoding ethylene biosynthetic enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene. Postharvest Biology and Technology, 21(3), 265–281.Google Scholar
  52. Mattheis, J. P., Fellman, J. K., Chen, P. M., & Patterson, M. E. (1991). Changes in headspace volatiles during physiological development of Bisbee Delicious apple fruits. Journal of Agricultural and Food Chemistry, 39(11), 1902–1906.CrossRefGoogle Scholar
  53. Moldao-Martins, M., Beirao-da-Costa, S. M., & Beirao-da-Costa, M. L. (2003). The effects of edible coatings on postharvest quality of the “Bravo de Esmolfe” apple. European Food Research and Technology, 217(4), 325–328.CrossRefGoogle Scholar
  54. Paull, R. E. (1999). Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biology Technology, 15, 263–277.CrossRefGoogle Scholar
  55. Prange, R., Delong, J., Nichols, D., & Harrison, P. (2011). Effect of fruit maturity on the incidence of bitter pit, senescent breakdown, and other post-harvest disorders in ‘Honeycrisp’TM apple. The Journal of Horticultural Science and Biotechnology, 86(3), 245–248.CrossRefGoogle Scholar
  56. Robinson, J. E., Browne, K. M., & Burton, W. G. (1975). Storage characteristics of some vegetables and soft fruits. Annals of Applied Biology, 81, 399–408.CrossRefPubMedGoogle Scholar
  57. Rocha, A. M. C. N., Barreira, M. G., & Morais, A. M. M. B. (2004). Modified atmosphere package for apple ‘Bravo de Esmolfe’. Food Control, 15(1), 61–64.CrossRefGoogle Scholar
  58. Rupasinghe, H. P. V., Murr, D. P., Paliyath, G., & Skog, L. (2000). Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’and ‘Delicious’ apples. The Journal of Horticultural Science and Biotechnology, 75(3), 271–276.CrossRefGoogle Scholar
  59. Saks, Y., Sonego, L., & Ben-Arie, R. (1990). Senescent breakdown of ‘Jonathan’ apples in relation to the water-soluble calcium content of the fruit pulp before and after storage. Journal of the American Society for Horticultural Science, 115(4), 615–618.Google Scholar
  60. Sandhya, N. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. Food Science and Technology, 43, 381–392.Google Scholar
  61. Sansavini, S., Donati, F., Costa, F., & Tartarini, S. (2004). Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: New varieties for the European market. Journal of Fruit and Ornamental Plant Research, 12(Spec.ed.2), 13–52.Google Scholar
  62. Saure, M. C. (1996). Reassessment of the role of calcium in development of bitter pit in apple. Functional Plant Biology, 23(3), 237–243.Google Scholar
  63. Sisler, E. C., & Serek, M. (1997). Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiologia Plantarum, 100(3), 577–582.CrossRefGoogle Scholar
  64. Smith, S. M. (1984). Improvement of aroma of Cox’s Orange Pippin apples stored in low oxygen atmospheres. Journal of Horticultural Science, 59(4), 515–522.CrossRefGoogle Scholar
  65. Thewes, F. R., Brackmann, A., Both, V., Weber, A., de Oliveira Anese, R., dos Santos Ferrão, T., & Wagner, R. (2017). The different impacts of dynamic controlled atmosphere and controlled atmosphere storage in the quality attributes of ‘Fuji Suprema’ apples. Postharvest Biology and Technology, 130, 7–20.CrossRefGoogle Scholar
  66. Tomic, N., Radivojevic, D., Milivojevic, J., Djekic, I., & Smigic, N. (2016). Effects of 1-methylcyclopropene and diphenylamine on changes in sensory properties of ‘Granny Smith’ apples during postharvest storage. Postharvest Biology and Technology, 112, 233–240.CrossRefGoogle Scholar
  67. Vasco, C., Riihinen, K., Ruales, J., & Kamal-Eldin, A. (2009). Phenolic compounds in Rosaceae fruits from Ecuador. Journal of Agricultural and Food Chemistry, 57, 1204–1212.CrossRefPubMedGoogle Scholar
  68. Vielma, M. S., Matta, F. B., & Silval, J. L. (2008). Optimal harvest time of various apple cultivars grown in Northern Mississippi. Journal American Pomological Society, 62, 13–20.Google Scholar
  69. Viškelis, P., Rubinskienė, M., Sasnauskas, A., Bobinas, Č., & Kviklienė, N. (2011). Changes in apple fruit quality during a modified atmosphere storage. Journal of Fruit and Ornamental Plant Research, 19(1), 155–165.Google Scholar
  70. Warrington, I. J., Fulton, T. A., Halligan, E. A., & De Silva, H. N. (1999). Apple fruit growth and maturity are affected by early season temperatures. Journal of the American Society for Horticultural Science, 124(5), 468–477.Google Scholar
  71. Watkins, C. B., & Nock, J. F. (2012). Rapid 1-methylcyclopropene (1-MCP) treatment and delayed controlled atmosphere storage of apples. Postharvest Biology and Technology, 69, 24–31.CrossRefGoogle Scholar
  72. Watkins, C. B., Nock, J. F., & Whitaker, B. D. (2000). Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air and controlled atmosphere storage conditions. Postharvest Biology and Technology, 19(1), 17–32.CrossRefGoogle Scholar
  73. Watkins, C., Jackie Nock, J. (2004). SmartFreshTM (1-MCP)—the good and bad as we head into the 2004 season. New York Fruit Quarterly, 12(3), 1–26.Google Scholar
  74. Westwood, M. N. (1993). Temperate-zone pomology: Physiology and culture (p. 523). Portland, OR: Timber Press.Google Scholar
  75. Wills, R. B. H., Warton, M. A., Mussa, D. M. D. N., & Chew, L. P. (2001). Ripening of climacteric fruits initiated at low ethylene levels. Australian Journal of Experimental Agriculture, 41(1), 89–92.CrossRefGoogle Scholar
  76. Zhang, B., Peng, B., Zhang, C., Song, Z., & Ma, R. (2017). Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches. PLoS One, 12(5), e0177511.  https://doi.org/10.1371/journal.pone.0177511.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Khalid Gul
    • 1
  • Nisar Ahmad Mir
    • 2
  • Preeti Singh
    • 3
  • Ali Abas Wani
    • 4
  1. 1.Food Process Engineering Laboratory, School of Applied Life SciencesGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Department of Food Engineering and TechnologySant Longowal Institute of Engineering and Technology (SLIET)SangrurIndia
  3. 3.Chair Food Packaging TechnologyTechnical University of MunichFreising-WeihenstephanGermany
  4. 4.Process Development for Plant Raw MaterialsFraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany

Personalised recommendations