Advertisement

Postharvest Biology and Technology of Apricot

  • Sabeera Muzzaffar
  • Mohd Munaff Bhat
  • Touseef Ahmed Wani
  • Idrees Ahmed Wani
  • F. A. Masoodi
Chapter

Abstract

Apricots are an excellent source of nutrients and are cherished for their peculiar flavor. However, high rates of ripening and susceptibility to mechanical injury and diseases limit their shelf life. Being climacteric in nature, ethylene regulates the ripening of apricot fruits. The adoption of different pre- and postharvest treatments like harvesting at optimum maturity, maintenance of cold chain, selection of proper packaging material, and storage atmospheres, decide the postharvest behavior of fruits. For delaying the ripening and maintaining the quality of harvested produce, prompt cooling and low-temperature storage is recommended. However, if apricots are kept at low temperatures for longer durations, chilling injury occurs in the fruits, which is manifested in the form of various symptoms. Therefore, postharvest technology of apricots aims at the reduction of fruit losses as well as optimization of fruit quality throughout the postharvest chain.

Keywords

Apricots Quality indices Shelf life Postharvest treatments Ethylene 

References

  1. Abdi, N., McGlasson, W. B., Holford, P., Williams, M., & Mizrahi, Y. (1998). Responses of climacteric and suppressed-climacteric plums to treatment with propylene and 1-methylcyclopropene. Postharvest Biology and Technology, 14, 29–39.CrossRefGoogle Scholar
  2. Adams-Phillips, L., Barry, C., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9, 331–338.CrossRefPubMedGoogle Scholar
  3. Agar, T., Paydas, S., Buyukalaca, O., Ozkaya, O., Ekinci, F., & Sabr, F. K. (2006). Effect of harvest dates and forced air cooling on post-harvest quality of apricot cv. ‘Precoce de Tyrinthe’. Journal of Food, Agriculture and Environment, 4, 107–108.Google Scholar
  4. Ahmadi, H., Fathollahzadeh, H., & Mobli, H. (2008). Some physical and mechanical properties of apricot fruits, pits and kernels (CV Tabarzeh). American-Eurasian Journal of Agriculture & Environmental Sciences, 3, 703–707.Google Scholar
  5. Ali, S., Masud, T., & Abbasi, K. S. (2011). Physico-chemical characteristics of apricot (Prunus armeniaca L.) grown in Northern Areas of Pakistan. Scientia Horticulturae, 130, 386–392.CrossRefGoogle Scholar
  6. Antunes, M. D. C., Correia, M. P., Miguel, M. G., Martins, M. A., &Neves, M. A. (2003). The effect of calcium chloride postharvest application on fruit storage ability and quality of ‘Beliana’ and ‘Lindo’ apricot (Prunus armeniaca L.) cultivars. In International conference on quality in chains. An integrated view on fruit and vegetable quality (vol. 604, pp. 721–726).Google Scholar
  7. Arvanitoyannis, I. S. (2010). Irradiation of food commodities: Techniques, applications, detection, legislation, safety and consumer opinion (p. 736). New York: Academic Press.Google Scholar
  8. Aubert, C., & Chanforan, C. (2007). Postharvest changes in physicochemical properties and volatile constituents of apricot (Prunus armeniaca L.) characterization of 28 cultivars. Journal of Agricultural and Food Chemistry, 55, 3074–3082.CrossRefPubMedGoogle Scholar
  9. Aubert, C., Bony, P., Chalot, G., & Hero, V. (2010). Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chemistry, 119, 1386–1398.CrossRefGoogle Scholar
  10. Ayour, J., Sagar, M., Alfeddy, M. N., Taourirte, M., & Benichou, M. (2016). Evolution of pigments and their relationship with skin color based on ripening in fruits of different Moroccan genotypes of apricots (Prunus armeniaca L.) Scientia Horticulturae, 207, 168–175.CrossRefGoogle Scholar
  11. Ayub, R., Guis, M., Ben Amor, M., Gillot, L., Roustan, J. P., Latché, A., Bouzayen, M., & Pech, J. C. (1996). Expression of ACC oxidase antisense gene inhibits ripening. Nature Biotechnology, 14, 862–866.CrossRefPubMedGoogle Scholar
  12. Bartolozzi, F., Bertazza, F., Bassi, F., & Cristoferi, F. (1997). Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas liquid chromatography. Journal of Chromatography A, 758, 99–107.CrossRefPubMedGoogle Scholar
  13. Baysal, T., Bilek, S. E., & Apaydin, E. (2010). The effect of corn zein edible film coating on intermediate moisture apricot (Prunus armenica L.) quality. Gida, 35(4), 245–249.Google Scholar
  14. Beaudry, R. M. (1999). Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 15, 293–303.CrossRefGoogle Scholar
  15. Botondi, R., Desantis, D., Bellincontro, A., Vizovitis, K., & Mencarelli, F. (2003). Influence of ethylene inhibition by 1-methylcyclopropene on apricot quality, volatile production, and glycosidase activity of low- and high-aroma varieties of apricots. Journal of Agricultural and Food Chemistry, 51, 1189–1200.CrossRefPubMedGoogle Scholar
  16. Bruhn, C., Feldman, N., Garlitz, C., Harwood, J., Ivans, E., Marshall, M., Riley, A., Thurber, D., & Williamson, E. (1991). Consumer perceptions of quality: apricots, cantaloupes, peaches, pears, strawberries, and tomatoes. Journal of Food Quality, 14, 187–195.CrossRefGoogle Scholar
  17. Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33, 103–119.CrossRefGoogle Scholar
  18. Cameron, A. C., Beaudry, R. M., Banks, N. H., & Yelanich, M. V. (1994). Modified-atmosphere packaging of blueberry fruit: modeling respiration and package oxygen partial pressures as a function of temperature. Journal of the American Society for Horticultural Science, 119, 534–539.Google Scholar
  19. Camps, C., & Christen, D. (2009). Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. LWT-Food Science and Technology, 42, 1125–1131.CrossRefGoogle Scholar
  20. Cardarelli, M., Botondi, R., Vizovitis, K., & Mencarelli, F. (2002). Effects of exogenous propylene on softening, glycosidase, and pectinmethylesterase activity during postharvest ripening of apricots. Journal of Agricultural and Food Chemistry, 50, 1441–1446.CrossRefPubMedGoogle Scholar
  21. Carlos, H. C., & Kader, A. A. (1999). Apricots postharvest quality maintenance guidelines. Davis: Department of Pomology, University of California, Davis.Google Scholar
  22. Carocho, M., Barros, L., Antonio, A. L., Barreira, J. C., Bento, A., Kaluska, I., & Ferreira, I. C. (2013). Analysis of organic acids in electron beam irradiated chestnuts (Castanea sativa Mill.): Effects of radiation dose and storage time. Food and Chemical Toxicology, 55, 348–352.CrossRefPubMedGoogle Scholar
  23. Chan, Z. L., Qin, G. Z., Xu, X. B., Li, B. Q., & Tian, S. P. (2007). Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. Journal of Proteome Research, 6, 1677–1688.CrossRefPubMedGoogle Scholar
  24. Chen, P., & Sun, Z. (1991). A review of non-destructive methods for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research, 49, 85–98.CrossRefGoogle Scholar
  25. Claypool, L. L., & Pangborn, R. M. (1972). Influence of controlled atmosphere storage on quality of canned apricots. Journal of the American Society for Horticultural Science, 97, 636–638.Google Scholar
  26. Crisosto, C. H., Mitchell, F. G., & Zhiguo, J. (1999). Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience, 34, 1116–1118.Google Scholar
  27. Crouzet, J., Etievant, P., & Bayonove, C. (1990). Stoned fruit: Apricot, plum, peach, cherry. In I. D. Morton & A. J. Macleod (Eds.), Food flavours. Part C: the flavour of fruits (pp. 43–91). Amsterdam: Elsevier.Google Scholar
  28. Dandekar, A. M., Teo, G., Defilippi, B. G., Uratsu, S. L., Passey, A. J., Kader, A. A., Stow, J. R., Colgan, R. J., & James, D. J. (2004). Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Research, 13, 373–384.CrossRefGoogle Scholar
  29. De Martino, G., Massantini, R., Botondi, R., & Mencarelli, F. (2002). Temperature affects impact injury on apricot fruit. Postharvest Biology and Technology, 21, 331–339.Google Scholar
  30. De Martino, G., Vizovitis, K., Botondi, R., Bellincontro, A., & Mencarelli, F. (2006). 1-MCP controls ripening induced by impact injury on apricots by affecting SOD and POX activities. Postharvest Biology and Technology, 39, 38–47.CrossRefGoogle Scholar
  31. Defilippi, B. G., Kader, A. A., & Dandekar, A. M. (2005). Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science, 168, 1199–1210.CrossRefGoogle Scholar
  32. Defilippi, B. G., San Juan, W., Valdes, H., Moya-Leon, M. A., Infante, R., & Campos-Vargas, R. (2009). The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biology and Technology, 51, 212–219.CrossRefGoogle Scholar
  33. Dong, L., Lurie, S., & Zhou, H. W. (2002). Effect of 1-methylcyclopropene on ripening of ‘Canino’ apricots and ‘Royal Zee’ plums. Postharvest Biology and Technology, 24, 135–145.CrossRefGoogle Scholar
  34. Dragovic-Uzelac, V., Levaj, B., Mrkicm, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102, 966–975.CrossRefGoogle Scholar
  35. Egea, M. I., Murcia, M. A., Sanchez-Bel, P., Romojaro, F., & Martínez-Madrid, M. C. (2004). Effect of electron beam ionization on shelf life of apricot. In V International Postharvest Symposium (Vol. 682, pp. 1211–1218).Google Scholar
  36. El-Sharkawy, I., Kim, W. S., Jayasankar, S., Svircev, A. M., & Brown, D. C. W. (2008). Differential regulation of four members of the ACC synthase gene family in plum. Journal of Experimental Botany, 59, 2009–2027.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Erdogan-Orhan, I., & Kartal, M. (2011). Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Research International, 44, 1238–1243.CrossRefGoogle Scholar
  38. Fan, X., Argenta, L., & Mattheis, J. P. (2000). Inhibition of ethylene action by 1-methylcyclopropene prolongs storage life of apricots. Postharvest Biology and Technology, 20, 135–142.CrossRefGoogle Scholar
  39. Feng, J., Stanley, J., Othman, M., Woolf, A., Kosasih, M., Olsson, S., Clare, G., Cooper, N., & Wanga, X. (2013). Segregation of apricots for storage potential using non-destructive technologies. Postharvest Biology and Technology, 86, 17–22.CrossRefGoogle Scholar
  40. Ghasemnezhad, M., Shiri, M. A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8, 25–33.Google Scholar
  41. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.CrossRefPubMedGoogle Scholar
  42. Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. Plant Cell, 16, S170–S180.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gomez, A. H., Pereira, A. G., Jun, W., & Yong, H. (2005). Acoustic testing for peach fruit ripeness evaluation during peach storage stage. Revista Ciencias Tecnicas Agropecuarias, 14, 28–33.Google Scholar
  44. Gorny, J. R., & Kader, A. A. (1997). Low oxygen and elevated carbon dioxide atmospheres inhibit ethylene biosynthesis in pre-climacteric and climacteric apple fruit. Journal of the American Society for Horticultural Science, 122, 542–546.Google Scholar
  45. Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science and Technology, 19, 4–25.CrossRefGoogle Scholar
  46. Grotte, M., Gouble, B., Reling, P., Boge, M., & Audergon, J. M. (2006). Sampling methods of fruits applied to the quality characterization of apricot fruits. Fruits, 61, 135–147.CrossRefGoogle Scholar
  47. Guclu, K., Altun, M., Ozyurek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun-dried and sulphited Malatya apricot (Prunus armeniaca L) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science & Technology, 41, 76–85.CrossRefGoogle Scholar
  48. Guelfat-Reich, S., & Ben-Arie, R. (1967). Different factors affecting the keeping quality of ‘Canino’ apricots in cold storage. In: Proceedings of the 12th International Congress on Refrigeration (Vol. 3, pp. 447–457).Google Scholar
  49. Hortensteiner, S. (2006). Chlorophyll degradation during senescence. Annual Review of Plant Biology, 57, 55–77.CrossRefPubMedGoogle Scholar
  50. Hussain, P. R., Meena, R. S., Dar, M. A., & Wani, A. M. (2011). Gamma irradiation of sun-dried apricots (Prunus armeniaca L.) for quality maintenance and quarantine purposes. Radiation Physics and Chemistry, 80(7), 817–827.CrossRefGoogle Scholar
  51. Ishaq, S., Rathore, H. A., Masud, T., & Ali, S. (2009). Influence of postharvest calcium chloride application, ethylene absorbent and modified atmosphere on quality characteristics and shelf life of apricot (Prunus armeniaca L.) fruit during storage. Pakistan Journal of Nutrition, 8, 861–865.Google Scholar
  52. Jeong-Ok, L., Seong, A. L., Mi-Seon, K., Hye-Rim, H., Kyoung-Hee, K., Jong-Pil, C., & Hong-Sun, Y. (2008). The effects of low-dose electron beam irradiation on quality characteristics of stored apricots. Journal of the Korean Society of Food Science and Nutrition, 37, 934–941.Google Scholar
  53. Jiang, Y., Hu, X., Liu, Q., Ren, L., & Tang, W. (2010). Effects of chitosan on post-harvest quality of apricot fruits during storage. Transactions of the Chinese Society of Agricultural Engineering, 26(1), 343–349.Google Scholar
  54. Jiménez, A. M., Martínez-Tomé, M., Ega, I., Romojaro, F., & Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227, 125–134.CrossRefGoogle Scholar
  55. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56–65.CrossRefPubMedGoogle Scholar
  56. Kalyoncu, I. H., Akbulut, M., & Coklar, H. (2009). Antioxidant capacity, total phenolics and some chemical properties of semi-mature apricot cultivars grown in Malatya, Turkey. World Applied Science, 6, 519–523.Google Scholar
  57. Kantor, D. B., Hitka, G., Fekete, A., & Balla, C. (2008). Electronic tongue for sensing taste changes with apricots during storage. Sensors and Actuators B, 131, 43–47.CrossRefGoogle Scholar
  58. Kosto, I., Weksler, A., & Lurie, S. (2000). Extending storage of apricots. Alon Hanotea, 54, 250–254.Google Scholar
  59. Kosto, I., Weksler, A., & Lurie, S. (2002). Modified atmosphere storage of apricots. Alon Hanotea, 56, 173–175.Google Scholar
  60. Koyuncu, M. A., Dilmaçünal, T., & Özdemir, O. (2010). Modified and controlled atmosphere storage of apricots. Acta Horticulturae, 876, 55–66.CrossRefGoogle Scholar
  61. Kurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MS characterization of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110, 522–530.CrossRefPubMedGoogle Scholar
  62. Kuzucu, F. C., & Önder, A. (2010). Effects of different packaging applications on fruit quality of apricots. In 2nd International Symposium on Sustainable Development, 2010, Sarajevo (pp. 133–143).Google Scholar
  63. Lelievre, J. M., Latche, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101, 727–739.CrossRefGoogle Scholar
  64. Lin, Z., Zhong, S., & Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany, 60, 3311–3336.CrossRefPubMedGoogle Scholar
  65. Luchsinger, L. E., & Walsh, C. S. (1998). Development of an objective and non-destructive harvest maturity index for peaches and nectarines. Acta Horticulturae, 465, 679–687.CrossRefGoogle Scholar
  66. Mangaraj, S., Goswami, T. K., & Mahajan, P. V. (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineering Reviews, 1, 133–158.CrossRefGoogle Scholar
  67. Manolopoulou, H., & Mallidis, C. (1999). Storage and processing of apricots. Acta Horticulturae, 488, 567–576.CrossRefGoogle Scholar
  68. Martínez-Romero, D., Serrano, M., Carbonell, A., Burgos, L., Riquelme, F., & Valero, D. (2002). Effects of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot. Journal of Food Science, 67, 1706–1712.CrossRefGoogle Scholar
  69. Mencarelli, F., Botondi, R., DeSantis, D., & Vizovitis, K. (2001). Postharvest quality maintenance of fresh apricots. In XII International Symposium on Apricot Culture and Decline, September 10–14, Avignon, France.Google Scholar
  70. Miller, A. R. (1992). Physiology, biochemistry and detection of bruising (mechanical stress) in fruits and vegetables. Postharvest News and Information, 3, 53–58.Google Scholar
  71. Morandi, B., Grappadelli, L. G., Rieger, M., & Lo Bianco, R. (2008). Carbohydrate availability affects growth and metabolism in peach fruit. Physiologia Plantarum, 133, 229–241.CrossRefPubMedGoogle Scholar
  72. Munoz-Robredo, P., Rubio, P., Infante, R., Campos-Vargas, R., Manríquez, D., González-Agüero, M., & Defilippi, B. G. (2012). Ethylene biosynthesis in apricot: Identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biology and Technology, 63, 85–90.CrossRefGoogle Scholar
  73. Nijssen, L.M., Visscher, C.A., Maarse, H., Willemsens, L.C., & Boelens, M.H. (2007). Volatile compounds in foods qualitative and quantitative data. Zeist, The Netherlands: TNO Nutrition and Food Research Institute, online version 9.2.Google Scholar
  74. Pala, M., Damarli, E., & Gün, H. (1994). The effects of modified atmosphere packaging on quality and storage life of apricot. Acta Horticulturae, 368, 808–816.CrossRefGoogle Scholar
  75. Palou, L., & Crisosto, C. H. (2003). Postharvest treatments to reduce the harmful effects of ethylene on apricots. Acta Horticulturae, 599, 31–38.CrossRefGoogle Scholar
  76. Peano, C., Giuggioli, N. R., & Girgenti, V. (2014). Effects of innovative packaging materials on apricot fruits (cv Tom Cot®). Fruits, 69, 247–258.CrossRefGoogle Scholar
  77. Perez-Pastor, A., Ruiz-Sanchez, M. C., Martınez, J. A., Nortes, P. A., Artes, F., & Domingo, R. (2007). Effect of deficit irrigation on apricot fruit quality at harvest and during storage. Journal of the Science of Food and Agriculture, 87, 2409–2415.CrossRefGoogle Scholar
  78. Petrisor, C., Radu, G. L., & Cimpeanu, G. (2010). Quantification of physico-chemical changes during apricot ripening through non-destructive methods. Revista de Chimie, 61, 345–350.Google Scholar
  79. Pretel, M. T., Souty, M., & Romojaro, F. (2000). Use of passive and active modified atmosphere packaging to prolong the postharvest life of three varieties of apricot (Prunus armeniaca L.) European Food Research International, 211, 191–198.CrossRefGoogle Scholar
  80. Rhodes, M. J. C. (1980). The maturation and ripening of fruits. In K. V. Thimann (Ed.), Senescence in plants (pp. 157–205). Boca Raton: CRC Press.Google Scholar
  81. Riu-Aumatell, M., Lopez-Tamames, E., & Buxadera, S. (2005). Assessment of the volatile composition of juices of apricot, peach, and pear according to two pectolytic treatments. Journal of Agricultural and Food Chemistry, 53, 7837–7843.CrossRefPubMedGoogle Scholar
  82. Ruiz, D., Egea, J., Tomás-Barberán, F. A., & Gil, M. I. (2005). Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of Agricultural and Food Chemistry, 53, 6368–6374.CrossRefPubMedGoogle Scholar
  83. Saba, M. K., Arzani, K., & Barzegar, M. (2012). Postharvest polyamine application alleviates chilling injury and affects apricot storage ability. Journal of Agricultural and Food Chemistry, 60, 8947–8953.Google Scholar
  84. Sartaj, A., Tariq, M., Kashif, S. A., Talat, M., & Ijlal, H. (2013). Influence of CaCl on biochemical composition, antioxidant and enzymatic activity of apricot at ambient storage. Pakistan Journal of Nutrition, 12, 476–483.CrossRefGoogle Scholar
  85. Schieber, A., & Carle, R. (2005). Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends in Food Science & Technology, 16, 416–422.CrossRefGoogle Scholar
  86. Serrano, M., Guillen, F., Martinez-Romero, D., Castillo, S., & Valero, D. (2005). Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. Journal of Agricultural and Food Chemistry, 53, 2741–2745.CrossRefPubMedGoogle Scholar
  87. Stanley, J., Marshall, R., Tustin, S., & Woolf, A. (2014). Preharvest factors affect apricot fruit quality. Acta Horticulturae, 1058, 269–276.CrossRefGoogle Scholar
  88. Şümnü, G., & Baymdirh, L. (1995). Effects of sucrose polyester coating on fruit quality of apricots (Prunus armenaica (L)). Journal of the Science of Food and Agriculture, 67(4), 537–540.CrossRefGoogle Scholar
  89. Tang, C., & Jennings, W. (1967). Volatile components of apricots. Journal of Agricultural and Food Chemistry, 15, 24–28.CrossRefGoogle Scholar
  90. Tang, C., & Jennings, W. (1968). Lactonic compounds of apricots. Journal of Agricultural and Food Chemistry, 16, 252–254.CrossRefGoogle Scholar
  91. Tareen, M. J., Abbasi, N. A., & Hafizb, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Acta Horticulturae, 142, 221–228.Google Scholar
  92. Tassoni, A., Antagnoni, F., Battistini, M. L., Sanvido, O., & Bagni, N. (1989). Characterization of spermidine binding to solubilized plasma membrane. Plant Physiology, 117, 971–977.CrossRefGoogle Scholar
  93. Tonini, G., & Caccioni, D. (1991). Precooling of apricot: influence on rot, ripening and weight loss. Acta Horticulturae, 293, 701–704.CrossRefGoogle Scholar
  94. Truter, A. B., & Combrink, J. C. (1997). Controlled atmosphere storage of South African plums. In Proceedings of the International Controlled Atmosphere Conference (Vol. 3, pp. 54–61). Davis, CA: University of California.Google Scholar
  95. Tucker, G. A., & Grierson, D. (1987). Fruit ripening. In D. Davies (Ed.), The biochemistry of plants (Vol. 12, pp. 265–319). New York: Academic.Google Scholar
  96. Tzoutzoukou, C. G., & Bouranis, D. L. (1997). Effect of preharvest application of calcium on the postharvest physiology of apricot fruit. Journal of Plant Nutrition, 20(2–3), 295–309.CrossRefGoogle Scholar
  97. Valdés, H., Pizarro, M., Campos-Vargas, R., Infante, R., & Defilippi, B. G. (2009). Effect of ethylene inhibitors on quality attributes of apricot cv. Modesto and Patterson during storage. Chilean Journal of Agricultural Research, 69, 134–144.CrossRefGoogle Scholar
  98. Valero, D., & Serrano, M. (2010). Postharvest biology and technology for preserving fruit quality. Boca Raton: CRC Press.CrossRefGoogle Scholar
  99. Varoquaux, P., Gouble, B., Ducamp, M. N., & Self, G. (2002). Procedure to optimize modified atmosphere packaging for fruit. Fruits, 57, 313–322.CrossRefGoogle Scholar
  100. Wang, Z., Ma, L., Zhang, X., Xu, L., Cao, J., & Jiang, W. (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae, 181, 113–120.CrossRefGoogle Scholar
  101. Wankier, B. N., Salunkhe, D. K., & Campbell, W. F. (1970). Effects of controlled atmosphere storage on biochemical changes in apricot and peach fruit. Journal of the American Society for Horticultural Science, 95, 604–609.Google Scholar
  102. Watkins, C. B. (2006). The use of 1-methylcyclopropene on fruits and vegetables. Biotechnology Advances, 24, 389–409.CrossRefPubMedGoogle Scholar
  103. Wei, M., Zhou, L., Song, H., Yi, J., Wu, B., Li, Y., Zhang, L., Che, F., Wang, Z., Gao, M., & Li, S. (2014). Electron beam irradiation of sun-dried apricots for quality maintenance. Radiation Physics and Chemistry, 97, 126–133.CrossRefGoogle Scholar
  104. Wu, B., Guo, Q., Wang, G. X., Peng, X. Y., Wang, J. D., & Che, F. B. (2015). Effects of different postharvest treatments on the physiology and quality of ‘Xiaobai’ apricots at room temperature. Journal of Food Science and Technology, 52, 2247–2255.CrossRefPubMedGoogle Scholar
  105. Yan, J., Song, Y., Li, J., & Jiang, W. (2017). Forced-air precooling treatment enhanced antioxidant capacities of apricots. Journal of Food Processing and Preservation.  https://doi.org/10.1111/jfpp.13320.
  106. Zhou, H. W., Ben Arie, R., & Lurie, S. (2000). Pectin esterase, polygalacturonase and gel formation in peach pectin fraction. Phytochemistry, 55, 191–195.CrossRefPubMedGoogle Scholar
  107. Zokaee Khosroshahi, M. R., & Esna-Ashari, M. (2007). Post-harvest putrescine treatments extend the storage-life of apricot (Prunus armeniaca L.) ‘Tokhm-sefid’ fruit. The Journal of Horticultural Science and Biotechnology, 82(6), 986–990.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabeera Muzzaffar
    • 1
  • Mohd Munaff Bhat
    • 2
  • Touseef Ahmed Wani
    • 1
  • Idrees Ahmed Wani
    • 1
  • F. A. Masoodi
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of KashmirSrinagarIndia
  2. 2.Department of AgricultureGovernment of Jammu & KashmirSrinagarIndia

Personalised recommendations