Advertisement

Postharvest Biology and Technology of Peach

  • Saqib Farooq
  • Mohammad Maqbool Mir
  • Shaiq Ahmad Ganai
  • Tabasum Maqbool
  • Shabir Ahmad Mir
  • Manzoor Ahmad Shah
Chapter

Abstract

Peach is a climacteric fruit and undergoes rapid ripening after harvest. The fast ripening of the fruit is responsible for its short shelf life and represents a serious constraint for its efficient handling and transportation. Quick softening of the fruit after harvest and subsequent mold growth leads to huge losses in the marketing chain of the fruit. This chapter mainly sums up recent studies about the maturation parameters, ripening, physiological disorders, microbiological disorders, and postharvest techniques (cold storage, controlled atmosphere storage, and modified atmosphere packaging) of peach fruit. Various treatments, including physical (heat treatment, intermittent warming, irradiation, and edible coatings) and chemical methods (1-methylcyclopropene, salicylic acid, methyl jasmonate, calcium chloride, oxalic acid, melatonin, and nitric oxide), have been applied to peach fruit to enhance its shelf life.

Keywords

Peach Perishable Postharvest life Cold storage Chilling injury Intermittent warming 

References

  1. Ahmad, M. S., & Siddiqui, M. W. (2015). Factors affecting postharvest quality of fresh fruits. InPostharvest quality assurance of fruits. Cham: Springer.Google Scholar
  2. Ahmed, C. B., Rouina, B. B., Sensoy, S., & Boukhriss, M. (2009). Saline water irrigation effects on fruit development, quality, and phenolic composition of virgin olive oils, cv. Chemlali. Journal of Agricultural and Food Chemistry, 57(7), 2803–2811.PubMedGoogle Scholar
  3. Asghar, A., Zeb, A., Farooq, K., Qazi, I. M., Ahmad, S., Sohail, M., Islam, M. S., & Shinwari, A. (2014). Effect of edible gum coating, glycerin and calcium lactate treatment on the post-harvest quality of peach fruit. Food Science and Quality Management, 30, 40–47.Google Scholar
  4. Bakshi, P., & Masoodi, F. A. (2010). Effect of pre-storage heat treatment on enzymological changes in peach. Journal of Food Science and Technology, 47(4), 461–464.PubMedPubMedCentralGoogle Scholar
  5. Bassi, D., & Monet, R. (2008). Botany and taxonomy. In D. R. Layne & D. Bassi (Eds.), The peach: Botany, production and uses (pp. 1–36). Wallingford: CAB International.Google Scholar
  6. Belhadj, F., Somrani, I., Aissaoui, N., Messaoud, C., Boussaid, M., & Marzouki, M. N. (2016). Bioactive compounds contents, antioxidant and antimicrobial activities during ripening of Prunus persica L. varieties from the North West of Tunisia. Food Chemistry, 204, 29–36.PubMedGoogle Scholar
  7. Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., & Heyes, J. A. (2012). Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71–78.Google Scholar
  8. Blankenship, S. M., & Dole, J. M. (2003). 1-Methylcyclopropene: A review. Postharvest Biology and Technology, 28, 1–25.Google Scholar
  9. Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R., Andreo, C. S., Drincovich, M. F., & Lara, M. V. (2009). Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany, 60(6), 1823–1837.PubMedGoogle Scholar
  10. Bosquez-Molina, E., Ronquillo-de Jesús, E., Bautista-Banos, S., Verde-Calvo, J. R., & Morales-Lopez, J. (2010). Inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology, 57, 132–137.Google Scholar
  11. Brummell, D. A. (2006). Cell wall disassembly in ripening fruit. Functional Plant Biology, 33(2), 103–119.Google Scholar
  12. Brummell, D. A., Cin, V. D., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 55(405), 2029–2039.PubMedGoogle Scholar
  13. Byrne, D. H. (2002). Peach breeding trends: A world wide perspective. Acta Horticulturae, 592, 49–59.Google Scholar
  14. Callahan, A. M., Scorza, R., Bassett, C., Nickerson, M., & Abeles, F. B. (2004). Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Functional Plant Biology, 31(2), 159–168.Google Scholar
  15. Cao, S. F., Song, C. B., Shao, J. R., Bian, K., Chen, W., & Yang, Z. F. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64, 5215–5222.PubMedGoogle Scholar
  16. Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., & Cappelloni, M. (2002). Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.) Journal of Agricultural and Food Chemistry, 50(19), 5458–5462.PubMedGoogle Scholar
  17. Cetinkaya, N., Ozyardimci, B., Denli, E., & Ic, E. (2006). Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots. Radiation Physics and Chemistry, 75(3), 424–431.Google Scholar
  18. Cirilli, M., Bassi, D., & Ciacciulli, A. (2016). Sugars in peach fruit: A breeding perspective. Horticulture Research, 3, 15067.  https://doi.org/10.1038/hortres.2015.67.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (2008). Plums, peach and nectarines. Recommendation for Maintaining Postharvest Quality. http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Fruit_English/?uid=39&ds=798
  20. Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999). Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience, 34, 1116–1118.Google Scholar
  21. Dabbou, S., Lussiana, C., Maatallah, S., Gasco, L., Hajlaoui, H., & Flamini, G. (2016). Changes in biochemical compounds in flesh and peel from Prunus persica fruits grown in Tunisia during two maturation stages. Plant Physiology and Biochemistry, 100, 1–11.PubMedGoogle Scholar
  22. Dangl, J. L., Dietrich, R. A., & Thomas, H. (2000). Senescence and programmed cell death. InBiochemistry and molecular biology of plants (1st ed.). Rockville: American Society of Plant Physiologist.Google Scholar
  23. de Santana, L. R. R., Benedetti, B. C., Sigrist, J. M. M., Sato, H. H., & de Almeida Anjos, V. D. (2011a). Effect of controlled atmosphere on postharvest quality of ‘Douradão’ peaches. Ciência e Tecnologia de Alimentos, 31(1), 231–237.Google Scholar
  24. de Santana, L. R. R., Benedetti, B. C., Sigrist, J. M. M., & Sato, H. H. (2011b). Effects of modified atmosphere packaging on ripening of ‘Douradão’ peach related to pectolytic enzymes activities and chilling injury symptoms. Revista Brasileira de Fruticultura, 33(4), 1084–1094.Google Scholar
  25. de Souza, A. V., Kohatsu, D. S., Lima, G. P. P., & Vieites, R. L. (2009). Conservação pós-colheita de pêssego com o uso da refrigeração e da irradiação. Revista Brasileira de Fruticultura, 31, 1184–1189.Google Scholar
  26. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for new a paradigm? Postharvest Biology and Technology, 52(2), 137–145.Google Scholar
  27. Europêch. (2011). Prévisions de racolte europeene de Pêche, Nectarine et Pavie. Perpignan, 28th April.Google Scholar
  28. Fan, X., Mattheis, J. P., Fellman, J. K., & Patterson, M. E. (1997). Effect of methyl jasmonate on ethylene and volatile production by summerred apples depends on fruit developmental stage. Journal of Agricultural & Food Chemistry, 45(1), 208–211.Google Scholar
  29. FAOSTAT. (2015). Statistics Division of FAO. Accessed August, 2015, from http://faostat.fao.org/Google Scholar
  30. Farneti, B., Gutierrez, M. S., Novak, B., Busatto, N., Ravaglia, D., Spinelli, F., & Costa, G. (2015). Use of the index of absorbance difference (I AD) as a tool for tailoring post-harvest 1-MCP application to control apple superficial scald. Scientia Hoticulturae, 190, 110–116.Google Scholar
  31. Fernández-Trujillo, J. P., & Artés, F. (1997). Quality improvement of peaches by intermittent warming and modified-atmosphere packaging. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 205, 59–63.Google Scholar
  32. Fernández-Trujillo, J. P., & Artés, F. (1998). Chilling injuries in peaches during conventional and intermittent warming storage. International Journal of Refrigeration, 21(4), 265–272.Google Scholar
  33. Fernández-Trujillo, J. P., Martínez, J. A., & Artés, F. (1998). Modified atmosphere packaging affects the incidence of cold storage disorders and keeps ‘flat’ peach quality. Food Research International, 31(8), 571–579.Google Scholar
  34. Fernández-Trujillo, J. P., Cano, A., & Artés, F. (2000). Interactions among cooling, fungicide and postharvest ripening temperature on peaches. International Journal of Refrigeration, 23(6), 457–465.Google Scholar
  35. Ferrer, A., Remón, S., Negueruela, A. I., & Oria, R. (2005). Changes during the ripening of the very late season Spanish peach cultivar Calanda: Feasibility of using CIELAB coordinates as maturity indices. Scientia Horticulturae, 105(4), 435–446.Google Scholar
  36. Flores, F. B., Sánchez-Bel, P., Valdenegro, M., Romojaro, F., Martínez-Madrid, M. C., & Egea, I. E. (2008). Effects of a pretreatment with nitric oxide on peach (Prunus persica L.) storage at room temperature. European Food Research and Technology, 227, 1599–1611.Google Scholar
  37. Fruk, G., Cmelik, Z., Jemric, T., Hribar, J., & Vidrih, R. (2014). Pectin role in woolliness development in peaches and nectarines: A review. Scientia Horticulturae, 180, 1–5.Google Scholar
  38. Gad, M. M., Zagzog, O. A., & Hemeda, O. M. (2016). Development of nano-chitosan edible coating for peach fruits cv. Desert Red. International Journal of Environment, 5(4), 43–55.Google Scholar
  39. Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B., & Odeh, I. (2014). Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39(6), 1108–1117.Google Scholar
  40. Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., Yang, T., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103–110.Google Scholar
  41. Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659–666.PubMedGoogle Scholar
  42. Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolics compounds, carotenoids, and vitamin C content of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50(17), 4976–4982.PubMedGoogle Scholar
  43. Giné-Bordonaba, J., Cantín, C. M., Echeverría, G., Ubach, D., & Larrigaudière, C. (2016). The effect of chilling injury-inducing storage conditions on quality and consumer acceptance of different Prunus persica cultivars. Postharvest Biology and Technology, 115, 38–47.Google Scholar
  44. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.PubMedGoogle Scholar
  45. Girardi, C. L., Corrent, A. R., Lucchetta, L., Zanuzo, M. R., da Costa, T. S., Brackmann, A., Twyman, R. M., Nora, F. R., Nora, L., Silva, J. A., & Rombalbi, C. V. (2005). Effect of ethylene, intermittent warming and controlled atmosphere on postharvest quality and the occurrence of woolliness in peach (Prunus persica cv. Chiripá) during cold storage. Postharvest Biology and Technology, 38(1), 25–33.Google Scholar
  46. Goristein, S., Martín-Belooso, O., Lojek, A., Číž, M., Soliva-Fortuny, R., Park, Y. S., Caspi, A., Libman, I., & Trakhtenberg, S. (2002). Comparative content of some phytochemicals in Spanish apples, peaches and pears. Journal of the Science of Food and Agriculture, 82(10), 1166–1170.Google Scholar
  47. Goulao, L. F., & Olivera, C. M. (2008). Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology, 19(1), 4–25.Google Scholar
  48. Gu, R., Zhu, S., Zhou, J., Liu, N., & Shi, J. (2014). Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution. European Journal of Plant Pathology, 139(2), 369–378.Google Scholar
  49. Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valeroa, D., Serrano, M., Castilloa, S., & Martínez-Romero, D. (2013). Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biology and Technology, 83, 54–57.Google Scholar
  50. Gupta, N., Jawandha, S. K., & Gill, P. S. (2011). Effect of calcium on cold storage and post-storage quality of peach. Journal of Food Science and Technology, 48(2), 225–229.PubMedGoogle Scholar
  51. Han, T., Wang, Y., Li, L., & Ge, X. (2003). Effect of exogenous salicylic acid on postharvest physiology of peaches. Acta Horticulturae, 628, 383–389.Google Scholar
  52. Harker, F.R., Redgwell, R.J., Hallett, I.C., Murray, S.H. & Carter, G. (1997). Texture of fresh fruit. Horticultural Reviews, 20: 121–224.Google Scholar
  53. Hayama, H., Tatsuki, M., & Nakamura, Y. (2008). Combined treatment of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) reduces melting-flesh peach fruit softening. Postharvest Biology and Technology, 50, 228–230.Google Scholar
  54. Hazrati, S., Kashkooli, A. B., Habibzadeh, F., Tahmasebi-Sarvestani, Z., & Sadeghi, A. R. (2017). Evaluation of Aloe vera gel as an alternative edible coating for peach fruits during cold storage period. Gesunde Pflanzen, 69, 131–137.Google Scholar
  55. Herrero-Langreo, A., Fernández-Ahumada, E., Roger, J. M., Palagós, B., & Lleó, L. (2012). Combination of optical and non-destructive mechanical techniques for the measurement of maturity in peach. Journal of Food Engineering, 108(1), 150–157.Google Scholar
  56. Hong, C. X., Holtz, B. A., Morgan, D. P., & Michailides, T. J. (1997). Significance of thinned fruit as a source of the secondary inoculum of Monilinia fructicola in California nectarine orchards. Plant Disease, 81(5), 519–524.Google Scholar
  57. Hossein-Farahi, M., Kohvare, M. M., Rezaee, T., Alahdadi, F., & Bagheri, F. (2016). The influence of chitosan edible coatings and calcium treatments on quality indices of peach fruit cv. ‘Alberta’ during cold storage. Agricultural Communications, 4(2), 7–13.Google Scholar
  58. Huan, C., Jiang, L., An, X., Yu, M., Xu, Y., Ma, R., & Yu, Z. (2016). Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiology and Biochemistry, 104, 294–303.PubMedGoogle Scholar
  59. Hussain, P. R., Meena, R. S., Dar, M. A., & Wani, A. M. (2008). Studies on enhancing the keeping quality of peach (Prunus persica Bausch) cv. Elberta by gamma-irradiation. Radiation Physics and Chemistry, 77, 473–481.Google Scholar
  60. Hussain, P. R., Suradkar, P. P., Wani, A. M., & Dar, M. A. (2016). Potential of carboxymethyl cellulose and γ-irradiation to maintain quality and control disease of peach fruit. International Journal of Biological Macromolecules, 82, 114–126.PubMedGoogle Scholar
  61. Infante, R., Meneses, C., & Predieri, S. (2008). Sensory quality performance of two nectarine flesh typologies exposed to distant market conditions. Journal of Food Quality, 31(4), 526–535.Google Scholar
  62. Infante, R., Contador, L., Rubio, P., Mesa, K., & Meneses, C. (2011). Non-destructive monitoring of flesh softening in the black-skinned Japanese plums ‘Angeleno’ and ‘Autumn beaut’ on-tree and postharvest. Postharvest Biology and Technology, 61(1), 35–40.Google Scholar
  63. Infante, R., Aros, D., Contador, L., & Rubio, P. (2012). Does the maturity at harvest affect quality and sensory attributes of peaches and nectarines? New Zealand Journal of Crop and Horticultural Science, 40(2), 103–113.Google Scholar
  64. Iordănescu, O. A., Alexa, E., Radulov, I., Costea, A., Dobrei, A., & Dobrei, A. (2015). Minerals and amino acids in peach (Prunus persica L.) cultivars and hybrids belonging to world germoplasm collection in the conditions of West Romania. Agriculture and Agricultural Science Procedia, 6, 145–150.Google Scholar
  65. Jemric, T., Ivic, D., Fruk, G., Matijas, H. S., Cvjetkovic, B., Bupic, M., & Pavkovic, B. (2011). Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dipping. Food and Bioprocess Technology, 4(1), 149–154.Google Scholar
  66. Jin, P., Wang, K., Shang, H., Tong, J., & Zheng, Y. (2009a). Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture, 89(10), 1690–1696.Google Scholar
  67. Jin, P., Zheng, Y., Tang, S., Rui, H., & Wang, C. Y. (2009b). A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology, 52, 24–29.Google Scholar
  68. Jin, P., Shang, H., Chen, J., Zhu, H., Zhao, Y., & Zheng, Y. (2011). Effect of 1-methylcyclopropene on chilling injury and quality of peach fruit during cold storage. Journal of Food Science, 76(8), 485–491.Google Scholar
  69. Jin, P., Zhu, H., Wang, L., Shan, T., & Zheng, Y. (2014). Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents. Food Chemistry, 161, 87–93.PubMedGoogle Scholar
  70. Kader, A.A. (2001). Postharvest technology of horticultural crops. University of California, special publication 3311.Google Scholar
  71. Kang, G. Z., Wang, Z. X., & Sun, G. C. (2003). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica, 45, 567–573.Google Scholar
  72. Karabulut, O. A., Gabler, F. M., Mansour, M., & Smilanick, J. L. (2004). Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biology and Technology, 34(2), 169–177.Google Scholar
  73. Kim, K. H., Kim, M. S., Kim, H. G., & Yook, H. S. (2010). Inactivation of contaminated fungi and antioxidant effects of peach (Prunus persica L. Batsch cv Dangeumdo) by 0.5–2 kGy gamma irradiation. Radiation Physics and Chemistry, 79(4), 495–501.Google Scholar
  74. Kondo, S., Yamada, H., & Setha, S. (2007). Effects of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. Journal of the American Society for Horticultural Science, 132, 120–125.Google Scholar
  75. Liang, Y., Strelkov, S. E., & Kav, N. H. (2009). Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 9, 3156–3173.PubMedGoogle Scholar
  76. Liguori, G., Weksler, A., Zutahi, Y., Lurie, S., & Kosto, I. (2004). Effect of 1-methylcyclopropene on ripening of melting flesh peaches and nectarines. Postharvest Biology and Technology, 31, 263–268.Google Scholar
  77. Liu, H., Jiang, W., Zhou, L., Wang, B., & Luo, Y. (2005). The effects of 1-methylcyclopropene on peach fruit (Prunus persica L. cv. Jiubao) ripening and disease resistance. International Journal of Food Science and Technology, 40(1), 1–7.Google Scholar
  78. Liu, H., Cao, J., & Jiang, W. (2015). Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biology and Technology, 108, 111–118.Google Scholar
  79. Liu, H., Jiang, W., Cao, J., & Ma, L. (2018). A combination of 1-methylcyclopropene treatment and intermittent warming alleviates chilling injury and affects phenolics and antioxidant activity of peach fruit during storage. Scientia Horticulturae, 229, 175–181.Google Scholar
  80. Llácer, G., Alonso, J. M., Rubio, M. J., Batlle, I., Iglesias, I., Vargas, F. J., García-Brunton, J., & Badenes, M. L. (2009). Situación del material vegetal de melocotonero utilizado en España. ITEA, 195(1), 67–83.Google Scholar
  81. Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195–208.Google Scholar
  82. Lurie, S., Vanoli, M., Dagar, A., Weksler, A., Lovati, F., Eccher Zerbini, P., Spinelli, L., Torricelli, A., Feng, J., & Rizzolo, A. (2011). Chilling injury in stored nectarines and its detection by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 59(3), 211–218.Google Scholar
  83. Lurie, S., Friedman, H., Weksler, A., Dagar, A., & Zerbini, P. E. (2013). Maturity assessment at harvest and prediction of softening in an early and late season melting peach. Postharvest Biology and Technology, 76, 10–16.Google Scholar
  84. Malakou, A., & Nanos, G. D. (2005). A combination of hot water treatment and modified atmosphere packaging maintains quality of advanced maturity ‘Caldesi 2000’ nectarines and ‘Royal Glory’ peaches. Postharvest Biology and Technology, 38, 106–114.Google Scholar
  85. Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28, 489–499.PubMedGoogle Scholar
  86. Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot on stone fruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biology and Technology, 47(1), 61–67.Google Scholar
  87. Matteoli, S., Diani, M., Massai, R., Corsini, G., & Remorini, D. (2015). A spectroscopy-based approach for automated nondestructive maturity grading of peach fruits. IEEE Sensors Journal, 15(10), 5455–5464.Google Scholar
  88. McDonald, H., McCulloch, M., Caporaso, F., Winborne, I., Oubichon, M., Rakovski, C., & Prakash, A. (2012). Commercial scale irradiation for insect disinfestation preserves peach quality. Radiation Physics and Chemistry, 81(6), 697–704.Google Scholar
  89. Meng, X., Han, J., Wang, Q., & Tian, S. (2009). Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry, 114, 1028–1035.Google Scholar
  90. Muhua, L., Peng, F., & Renfa, C. (2007). Non-destructive estimation peach SSC and firmness by multispectral reflectance imaging. New Zealand Journal of Agricultural Research, 50(5), 601–608.Google Scholar
  91. Nascimento, P. A. M., de Carvalho, L. C., Júnior, L. C. C., Pereira, F. M. V., & de Almeida Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.Google Scholar
  92. Northover, J., & Zhou, T. (2002). Control of Rhizopus rot of peaches with treatments of tebuconazole, fludioxonil, and pseudomonas syringae. Canadian Journal of Plant Pathology, 24(2), 144–153.Google Scholar
  93. Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133, 181–196.Google Scholar
  94. Ogawa, J. M., Zehr, E. I., Bird, G. W., Ritchie, D. F., Rriu, K., & Uyemoto, J. K. (1995). Compendium of stone fruit diseases (p. 98). St. Paul: APS.Google Scholar
  95. Oliveira, M., Abadias, M., Usall, J., Torres, R., Teixido, N., & Vinas, I. (2015). Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables–A review. Trends in Food Science & Technology, 46(1), 13–26.Google Scholar
  96. Orr, G., & Brady, C. (1993). Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biology and Technology, 3(2), 121–130.Google Scholar
  97. Pandey, V. P., Singh, S., Jaiswal, N., Awasthi, M., Pandey, B., & Dwivedi, U. N. (2013). Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase. Journal of Molecular Catalysis B: Enzymatic, 98, 98–105.Google Scholar
  98. Parveen, S., Wani, A. H., Bhat, M. Y., Koka, J. A., & Wani, F. A. (2016). Management of postharvest fungal rot of peach (Prunus persica) caused by Rhizopus stolonifer in Kashmir Valley, India. Plant Pathology and Quarantine, 6(1), 19–29.Google Scholar
  99. Perazzolli, M., Romero-Puertas, M. C., & Delledonne, M. (2006). Modulation of nitric oxide bioactivity by plant haemoglobins. Journal of Experimental Botany, 57, 479–488.PubMedGoogle Scholar
  100. Pongener, A., Mahajan, B. V. C., & Singh, H. (2011). Effect of different packaging films on storage life and quality of peach fruits under cold storage conditions. Indian Journal of Horticulture, 68(2), 240–245.Google Scholar
  101. Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19.PubMedGoogle Scholar
  102. Proteggente, A. R., Pannala, A. S., Paganga, G., Van Buren, L., Wagner, E., Wiseman, S., Van de Put, F., Dacombe, C., & Rice-Evans, C. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217–233.PubMedGoogle Scholar
  103. Rahman, M. U., Sajid, M., Rab, A., Ali, S., Shahid, M. O., Alam, A., Muhammad Israr, M., & Irshad Ahmad, I. (2016). Impact of calcium chloride concentrations and storage duration on quality attributes of peach (Prunus persica). Russian Agricultural Sciences, 42(2), 130–136.Google Scholar
  104. Razavi, F., & Hajilou, J. (2016). Enhancement of postharvest nutritional quality and antioxidant capacity of peach fruits by preharvest oxalic acid treatment. Scientia Horticulturae, 200, 95–101.Google Scholar
  105. Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., & Galano, A. (2015). Phytomelatonin: Assisting plants to survive and thrive. Molecules, 20, 7396–7437.PubMedGoogle Scholar
  106. Remorini, D., Tavarini, S., Degl’Innocenti, E., Loreti, F., Massai, R., & Guidi, L. (2008). Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chemistry, 110(2), 361–367.PubMedGoogle Scholar
  107. Rodrigo, M. J., & Zacarias, L. (2007). Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 43(1), 14–22.Google Scholar
  108. Rojas-Graü, M. A., Tapia, M. S., & Martín-Belloso, O. (2008). Using polysaccharide based edible coatings to maintain quality of fresh cut Fuji apples. LWT – Food Science and Technology, 41, 139–147.Google Scholar
  109. Ruiz, K. B., Bressanin, D., Ziosi, V., Costa, G., & Torrigiani, P. (2010). Early jasmonate application interferes with peach fruit development and ripening as revealed by several differentially expressed seed and mesocarp genes. Acta Horticulturae, 884, 101–106.Google Scholar
  110. Ruoyi, K., Zhifang, Y., & Zhaoxin, L. (2005). Effect of coating and intermittent warming on enzymes, soluble pectin substances and ascorbic acid of Prunus persica (cv. Zhonghuashoutao) during refrigerated storage. Food Research International, 38(3), 331–336.Google Scholar
  111. Ruperti, B., Bonghi, C., Tonutti, P., & Ramina, A. (1998). Ethylene biosynthesis in peach fruitlet abscission. Plant, Cell & Environment, 21, 731–737.Google Scholar
  112. Ruperti, B., Bonghi, C., Rasori, A., Ramina, A., & Tonutti, P. (2001). Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiologia Plantarum, 111, 336–344.PubMedGoogle Scholar
  113. Ruperti, B., Cattivelli, L., Pagni, S., & Ramina, A. (2002). Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Journal of Experimental Botany, 53(368), 429–437.PubMedGoogle Scholar
  114. Salem, E. A., Youssef, K., & Sanzani, S. M. (2016). Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Scientia Horticulturae, 198, 86–90.Google Scholar
  115. Sasaki, F. F., Cerqueira, T. S., Sestari, I., & Kluge, J. S. A. R. A. (2010). Woolliness control and pectin solubilization of ‘Douradão’ peach after heat shock treatment. Acta Horticulturae, 877, 539–542.Google Scholar
  116. Sayyari, M., Valero, D., Babalar, M., Kalantari, S., Zapata, P. J., & Serrano, M. (2010). Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after longterm storage at 2°C. Journal of Agricultural and Food Chemistry, 58, 6804–6808.PubMedGoogle Scholar
  117. Shinya, P., Contador, L., Predieri, S., Rubio, P., & Infante, R. (2013). Peach ripening: Segregation at harvest and postharvest flesh softening. Postharvest Biology and Technology, 86, 472–478.Google Scholar
  118. Siddiqui, M. W., & Dhua, R. S. (2010). Eating artificially ripened fruits is harmful. Current Science, 99(12), 1664–1668.Google Scholar
  119. Singh, S. P., Singh, Z., & Swinny, E. E. (2009). Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums (Prunus salicina Lindell). Postharvest Biology and Technology, 53, 101–108.Google Scholar
  120. Spadoni, A., Guidarelli, M., Sanzani, S. M., Ippolito, A., & Mari, M. (2014). Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biology and Technology, 94, 66–73.Google Scholar
  121. Spadoni, A., Cameldi, I., Noferini, M., Bonora, E., Costa, G., & Mari, M. (2016). An innovative use of DA-meter for peach fruit postharvest management. Scientia Horticulturae, 201, 140–144.Google Scholar
  122. Steiner, A., Abreu, M., Correia, L., Beirão-da-Costa, S., Leitão, E., Beirão-da-Costa, M. L., Empis, J., & Moldão-Martins, M. (2006). Metabolic response to combined mild heat pre-treatments and modified atmosphere packaging on fresh-cut peach. European Food Research and Technology, 222, 217–222.Google Scholar
  123. Tan, D. X. (2015). Melatonin and plants. Journal of Experimental Botany, 66, 625–625.PubMedCentralGoogle Scholar
  124. Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Scientia Horticulturae, 142, 221–228.Google Scholar
  125. Tian, S., Qin, G., & Li, B. (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 82(6), 593–602.PubMedGoogle Scholar
  126. Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49(10), 4748–4760.PubMedGoogle Scholar
  127. Tonutti, P., Bonghi, C., Ruperti, B., Tornielli, G. B., & Ramina, A. (1997). Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. Journal of the American Society for Horticultural Science, 122(5), 642–647.Google Scholar
  128. Trainotti, L., Bonghi, C., Ziliotto, F., Zanin, D., Rasori, A., Casadoro, G., Ramina, A., & Tonutti, P. (2006). The use of microarray μPEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Science, 170(3), 606–613.Google Scholar
  129. USDA: United States Department of Agriculture. (2017). Fresh peaches and cherries: World markets and trade. https://apps.fas.usda.gov/psdonline/circulars/StoneFruit.pdf
  130. Villarino, M., Sandin-España, P., Melgarejo, P., & De Cal, A. (2011). High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. Journal of Agricultural and Food Chemistry, 59(7), 3205–3213.PubMedGoogle Scholar
  131. Vizzotto, G., Pinton, R., Varanini, Z., & Costa, G. (1996). Sucrose accumulation in developing peach fruit. Physiologia Plantarum, 96(2), 225–230.Google Scholar
  132. Wakabayashi, K. (2000). Changes in cell wall polysaccharides during fruit ripening. Journal of Plant Research, 113(3), 231–237.Google Scholar
  133. Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.Google Scholar
  134. Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681–697.PubMedPubMedCentralGoogle Scholar
  135. Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.PubMedGoogle Scholar
  136. Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y., & Duan, X. (2011). Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International, 44(5), 1299–1305.Google Scholar
  137. Xi, W. P., Zhang, B., Shen, J. Y., Sun, C. D., Xu, C. J., & Chen, K. S. (2012). Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage. Postharvest Biology and Technology, 74, 42–48.Google Scholar
  138. Yang, H. S., Feng, G. P., An, H. J., & Li, Y. F. (2006). Microstructure changes of sodium carbonate-soluble pectin of peach by AFM during controlled atmosphere storage. Food Chemistry, 94(2), 179–192.Google Scholar
  139. Yu, L., Liu, H., Shao, X., Yu, F., Wei, Y., Ni, Z., Xu, F., & Wang, H. (2016). Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biology and Technology, 113, 8–16.Google Scholar
  140. Zanon, L., Falchi, R., Santi, R., & Vizzotto, G. (2015). Sucrose transport and phloem unloading in peach fruit: Potential role of two transporters localized in different cell types. Physiologia Plantarum, 154(2), 179–193.PubMedGoogle Scholar
  141. Zerbini, P. E., Vanoli, M., Grassia, M., Rizzolo, A., Fibiani, M., Cubeddu, R., Pifferi, A., Spinelli, L., & Torricelli. (2006). A model for the softening of nectarines based on sorting fruit at harvest by time-resolved reflectance spectroscopy. Postharvest Biology and Technology, 39(3), 223–232.Google Scholar
  142. Zhang, L.-l., Zhu, S.-h., Chen, C.-b., & Zhou, J. (2011). Metabolism of endogenous nitric oxide during growth and development of apple fruit. Scientia Horticulturae, 127, 500–506.Google Scholar
  143. Zhang, B. B., Guo, J. Y., Ma, R. J., Cai, Z. X., Yan, J., & Zhang, C. H. (2015). Relationship between the bagging microenvironment and fruit quality in ‘Guibao’ peach [Prunus persica (L.) Batsch]. The Journal of Horticultural Science and Biotechnology, 90(3), 303–310.Google Scholar
  144. Zhang, B., Peng, B., Zhang, C., Song, Z., & Ma, R. (2017). Determination of fruit maturity and its prediction model based on the pericarp index of absorbance difference (IAD) for peaches. PLoS One, 12(5), e0177511.  https://doi.org/10.1371/journal.pone.0177511.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhou, H. W., Dong, L., Ben-Arie, R., & Lurie, S. (2001). The role of ethylene in the prevention of chilling injury in nectarines. Journal of Plant Physiology, 158(1), 55–61.Google Scholar
  146. Zhou, T., Schneider, K. E., & Li, X. Z. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126, 180–185.PubMedGoogle Scholar
  147. Zhou, X., Dong, L., Zhou, Q., Wang, J. W., Chang, N., Liu, Z. Y., & Ji, S. J. (2015). Effects of intermittent warming on aroma-related esters of 1-methylcyclopropene-treated ‘Nanguo’ pears during ripening at room temperature. Scientia Horticulturae, 185(30), 82–89.Google Scholar
  148. Zhu, S., Liu, M., & Zhou, J. (2006). Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 42, 41–48.Google Scholar
  149. Zhu, S., Sun, L., & Zhou, J. (2009). Effects of nitric oxide fumigation on phenolic metabolism of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao) in relation to fruit quality. LWT Food Science and Technology, 42, 1009–1014.Google Scholar
  150. Zhu, L., Zhou, J., & Zhu, S. (2010). Effect of a combination of nitric oxide treatment and intermittent warming on prevention of chilling injury of ‘Feicheng’ peach fruit during storage. Food Chemistry, 121(1), 165–170.Google Scholar
  151. Ziosi, V., Noferini, M., Fiori, G., Tadiello, A., Trainotti, L., Casadoro, G., & Costa, G. (2008). A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biology and Technology, 49(3), 319–329.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Saqib Farooq
    • 1
  • Mohammad Maqbool Mir
    • 2
  • Shaiq Ahmad Ganai
    • 1
  • Tabasum Maqbool
    • 1
  • Shabir Ahmad Mir
    • 1
  • Manzoor Ahmad Shah
    • 3
  1. 1.Department of Food TechnologyIslamic University of Science and TechnologyAwantiporaIndia
  2. 2.Division of Fruit ScienceSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
  3. 3.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations