Nutritional and Health Benefits of Temperate Fruits

  • Callistus Bvenura
  • Ngemakwe Nitcheu Patrick Hermaan
  • Lingyun Chen
  • Dharini SivakumarEmail author


Epidemiologic evidence has suggested a close relationship between the daily consumption of fruits and the prevention of cardiovascular diseases, certain forms of cancer, and general health and wellbeing. The upsurge in the consumption of unhealthy processed foods is slowly breeding unhealthy nations, and this comes at huge costs to governments. Recent reports indicate very low per capita global fruit consumption. Therefore, the recent interest in phytonutrient compositions of fruits could not have come at a better time. Although the phytonutrient compositions of fruits have been widely reported, comprehensive analysis of their phytonutrient compositions and effects on health are lacking. Therefore, in this chapter, we report the phytonutrient compositions of some temperate fruits and their health benefits. This information will be useful to a wide range of stakeholders, including consumers, non-governmental organizations (NGOs), and government departments involved with food, in the hope to educate and increase fruit consumption.


Phytochemicals Minerals Carbohydrates Berries, pome fruits Amino acids 



The financial support of the Canadian and South African Research Chair Programme for the Phytochemical Food Network to improve the nutritional status of the consumers (grant number 98352) is greatly acknowledged.


  1. Abdulkadir, A. G., & Jimoh, W. L. O. (2013). Comparative analysis of physico-chemical properties of extracted and collected palm oil and tallow. ChemSearch Journal, 4(2), 44–54.Google Scholar
  2. Ampomah-Dwamena, C., Dejnoprat, S., Lewis, D., Sutherland, P., Volz, R. K., & Allan, A. C. (2012). Metabolic and gene expression analysis of apple (Malus × domestica) carotenogenesis. Journal of Experimental Botany, 63(12), 4497–4511.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ashraf, C. M., Iqbal, S., & Ahmed, D. (2011). Nutritional and physicochemical studies on fruit pulp, seed and shell of indigenous Prunus persica. Journal of Medicinal Plant Research, 5(16), 3917–3921.Google Scholar
  4. Awad, M. A., & de Jager, A. (2002). Relationship between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Scientia Horticulturae, 92(3–4), 265–276.CrossRefGoogle Scholar
  5. Azzini, E., Intorre, F., Vitaglione, P., Napolitano, A., Foddai, M. S., Durazzo, A., Fumagalli, A., Catasta, G., Rossi, L., Venneria, E., Testa, M. F., Raguzzini, A., Palomba, L., Fogliano, V., & Maiani, G. (2010). Absorption of strawberry phytochemicals and antioxidant status changes in humans. Journal of Berry Research, 1, 81–89.Google Scholar
  6. Babsky, N. E., Toribio, J. L., & Lozano, J. E. (1986). Influence of storage on the composition of clarified apple juice concentrate. Journal of Food Science, 51(3), 564–567.CrossRefGoogle Scholar
  7. Bazzano, L. A., Serdula, M. K., & Liu, S. (2003). Dietary intake of fruit and vegetables and risk of cardiovascular disease. Current Atherosclerosis Reports, 5(6), 492–499.PubMedCrossRefGoogle Scholar
  8. Bellik, Y., Boukraâ, L., Alzahrani, H. A., Bakhotmah, B. A., Abdellah, F., Hammoudi, S. M., & Iguer-Ouada, M. (2013). Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: An update. Molecules, 18, 322–353.CrossRefGoogle Scholar
  9. Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonnet, E., Müller, M. J., Oberritter, H., Schulze, M., & Watzl, B. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637–663.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128, 14.PubMedCrossRefGoogle Scholar
  11. Boudabous, M., Mrabet, A., & Ferchichi, A. (2009). Mineral characterization of some Tunisian apple cultivars. Journal of Arid Land Studies, 19(1), 197–200.Google Scholar
  12. Božović, D., Bosančić, B., Velimirović, A., Ercisli, S., Jaćimović, V., & Keles, H. (2017). Biological characteristics of some plum cultivars grown in Montenegro. Acta Scientiarum Polonorum Hortorum Cultus, 16(2), 35–45.Google Scholar
  13. Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13, 155–171.CrossRefGoogle Scholar
  14. Cascales, A., Costell, E., & Romojaro, F. (2005). Effects of the degree of maturity on the chemical composition, physical characteristics and sensory attributes of peach (Prunus persica) cv. Caterin. Food Science and Technology International, 11, 345–352.CrossRefGoogle Scholar
  15. Cevallos-Casals, B. A., Byrne, D., Okie, W. R., & Cisneros-Zevallos, L. (2006). Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, 96, 273–280.CrossRefGoogle Scholar
  16. Chen, J. L., Yan, S., Feng, Z., Xiao, L., & Hu, X. S. (2006). Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chemistry, 97(2), 248–255.Google Scholar
  17. Chen, J. L., Wang, Z. F., Wu, J. H., Wang, W., & Hu, X. S. (2007). Chemical compositional characterization of eight pear cultivars grown in China. Food Chemistry, 104, 268–275.CrossRefGoogle Scholar
  18. Coimbra, M. A., Nunes, C., Cunha, P. R., & Guiné, R. (2011). Amino acid profile and Maillard compounds of sun-dried pears. Relation with the reddish brown colour of the dried fruits. European Food Research and Technology, 233(4), 637–646.CrossRefGoogle Scholar
  19. Cordenunsi, B. R., Genovese, M. I., Do Nascimento, J. R. O., Hassimotto, N. M. A. H., Dos Santos, R. J., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91, 113–121.CrossRefGoogle Scholar
  20. Crozier, A., Del Rio, D., & Clifford, M. N. (2010). Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine, 31, 446–467.PubMedCrossRefGoogle Scholar
  21. Daly, T., Jiwan, M., O’Brien, N., & Aherne, S. (2010). Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model. Plant Foods for Human Nutrition, 65, 164–169.PubMedCrossRefGoogle Scholar
  22. Dauchet, L., Amouyel, P., Hercberg, S., & Dallongeville, J. (2006). Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. The Journal of Nutrition, 136(10), 2588–2593.PubMedCrossRefGoogle Scholar
  23. de Melo, G. W. B., Sete, P. B., Ambrosini, V. G., Freitas, R. F., Basso, A., & Brunetto, G. (2016). Nutritional status, yield and composition of peach fruit subjected to the application of organic compost. Acta Scientiarium Agronomy, 38(1), 103–109.CrossRefGoogle Scholar
  24. De Souza, V. R., Pereira, P. A. P., Da Silva, T. L. T., de Oliveira Lima, L. C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156(1), 362–368.PubMedCrossRefGoogle Scholar
  25. Del Bubba, M., Giordani, E., Pippucci, L., Cincinelli, L., & Galvan, P. (2009). Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. Journal of Food Composition and Analysis, 22(7–8), 668–677.CrossRefGoogle Scholar
  26. Delgado-Pelayo, R., Gallardo-Guerrero, L., & Hornero-Méndez, D. (2014). Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Research International, 65, 272–281.CrossRefGoogle Scholar
  27. Delian, E., Petre, V., Burzo, I., Bădulescu, L., & Hoza, D. (2011). Total phenols and nutrients composition aspects of some apple cultivars and new studied breeding creations lines grown in Voineşti area–Romania. Romanian Biotechnological Letters, 16(6), 6722–6729.Google Scholar
  28. Di Vaio, C., Graziani, G., Marra, L., Cascone, A., & Ritieni, A. (2008). Antioxidant capacities, carotenoids and polyphenols evaluation of fresh and refrigerated peach and nectarine cultivars from Italy. European Food Research and Technology, 227, 1225–1231.CrossRefGoogle Scholar
  29. Dikeman, C. L., Bauer, L. L., & Fahey, G. C., Jr. (2004). Carbohydrate composition of selected plum/prune preparations. Journal of Agricultural and Food Chemistry, 52(4), 853–859.PubMedCrossRefGoogle Scholar
  30. DRI. (2006). In J. J. Otten, J. P. Hellwig, & L. D. Meyers (Eds.) Dietary reference intakes: The essential guide to nutrient requirements. Washington: The National Academies Press.Google Scholar
  31. Drogoudi, P. D., Michailidis, Z., & Pantelids, G. (2008). Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Scientia Horticulturae, 115, 149–153.CrossRefGoogle Scholar
  32. Eberhardt, M. V., Lee, C. Y., & Liu, R. H. (2000). Nutrition: antioxidant activity of fresh apples. Nature, 405, 903–904.PubMedCrossRefGoogle Scholar
  33. El Kossori, R. L., Villaume, C., El Boustani, E., Sauvaire, Y., & Méjean, L. (1998). Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.) Plant Foods for Human Nutrition, 52, 263.PubMedCrossRefGoogle Scholar
  34. Esehaghbeygi, A., Pirnazari, K., Kamali, M., & Razavi, J. (2013). Physical, and mechanical properties of three plum varieties (Prunus domestica L.) Thai Journal of Agricultural Science, 46(2), 95–101.Google Scholar
  35. FAO. (1998). Carbohydrates in human nutrition. FAO Food and Nutrition Paper 66, Rome.Google Scholar
  36. FAO/UN. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food and Nutrition Paper 91, Rome.Google Scholar
  37. Feng, G., Li, M., Ma, F., & Cheng, L. (2014). Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Horticulture Research, 1, 14019.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395–401.CrossRefGoogle Scholar
  39. García-Limones, C., Schnäbele, K., Blanco-Portales, R., Luz Bellido, M., Caballero, J. L., Schwab, W., & Muñoz-Blanco, J. (2008). Functional characterization of FaCCD1: A carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. Journal of Agriculture and Food Chemistry, 56(19), 9277–9285.CrossRefGoogle Scholar
  40. Gąstoł, M., & Domagała-Świątkiewicz, I. (2009). Mineral composition of ‘Conference’ pears as affected by different foliar sprays. Polish Journal of Environmental Studies, 18(4), 741–744.Google Scholar
  41. Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., & Kader, A. A. (2002). Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50, 4976–4982.PubMedCrossRefGoogle Scholar
  42. Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zember, M., Weisz, M., Trakhtenberg, S., & Martín-Belloso, O. (2001). Comparative content of dietary fiber, total phenolics, and minerals in persimmons and apples. Journal of Agricultural and Food Chemistry, 49, 952–957.PubMedCrossRefGoogle Scholar
  43. Hamadziripi, E. T., Theron, K. I., Muller, M., & Steyn, W. J. (2014). Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance. HortScience, 49(3), 384–392.Google Scholar
  44. Harborne, J. B. (1980). Plant phenolics. In E. A. Bell, B. V. Charlwood, & B. Archer (Eds.), Secondary plant products. Berlin: Springer.Google Scholar
  45. Hoffman, J. R., & Falvo, M. J. (2004). Protein—Which is best? Journal of Sports Science and Medicine, 3(3), 118–130.PubMedGoogle Scholar
  46. Hooper, L., Summerbell, C. D., Thompson, R., Sills, D., Roberts, F. G., Moore, H., & Smith, G. D.(2011). Reduced or modified dietary fat for preventing cardiovascular disease. Cochrane DatabaseSystematic Review, (7), CD002137.Google Scholar
  47. Huang, C., Yu, B., Teng, Y., Su, J., Shu, Q., Cheng, Z., & Zeng, L. (2009). Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Scientia Horticulturae, 121, 149–158.CrossRefGoogle Scholar
  48. Hussain, S., Masud, T., Bano, R., Wang, H., Ali, S., & Ali, A. (2015). Comparative study of two pear (Pyrus communis L.) cultivars in terms of nutritional composition. Food Science and Quality Management, 36, 48–54.Google Scholar
  49. IM (Institute of Medicine). (2002). Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington: National Academy Press.Google Scholar
  50. Iordănescu, O. A., Alexa, E., Radulov, I., Costea, A., Dobrei, A., & Dobrei, A. (2015). Minerals and amino acids in peach (Prunus persica L.) cultivars and hybrids belonging to world germoplasm collection in the conditions of West Romania. Agriculture and Agricultural Science Procedia, 6, 145–150.CrossRefGoogle Scholar
  51. Itai, A., Hatanaka, R., Irie, H., & Murayama, H. (2015). Effects of storage temperature on fruit quality and expression of sucrose phosphate synthase and acid invertase genes in Japanese pear. The Horticulture Journal, 84(3), 227–232. Scholar
  52. Jia, H., Okamoto, G., & Hirano, K. (2000). Effect of amino acid composition on the taste of ‘Hakuho’ peaches (Prunus persica Batsch.) grown under different fertilizer levels. Journal of the Japanese Society for Horticultural Science, 69(2), 135–140.CrossRefGoogle Scholar
  53. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5(2), 56–65.PubMedCrossRefGoogle Scholar
  54. Johnston, C. S., Taylor, C. A., & Hampl, J. S. (2000). More Americans are eating “5 a day” but intakes of dark green and cruciferous vegetables remain low. The Journal of Nutrition, 130, 3063–3067.PubMedCrossRefGoogle Scholar
  55. Ju, Z. G. (1991). Effect on the Laiyang pear phenolic acid mechanism and texture browning in harvest time. Chinese Journal of Agricultural Science, 24(2), 63–68.Google Scholar
  56. Karaś, M., Jakubczyk, A., Szymanowska, U., Złotek, U., & Zielińska, E. (2017). Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science and Technology, 52, 291–305.CrossRefGoogle Scholar
  57. Kaur, K., & Dhillon, W. S. (2015). Influence of maturity and storage period on physical and biochemical characteristics of pear during post cold storage at ambient conditions. Journal of Food Science and Technology, 52(8), 5352–5356.PubMedCrossRefGoogle Scholar
  58. Keutgen, A. J., & Pawelzik, E. (2008). Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111(3), 642–647.CrossRefGoogle Scholar
  59. Kiczorowska, B., & Kiczorowski, P. (2011). Comparison of basic chemical and mineral composition in edible parts of chosen pear cultivars produced in Podkarpackie Province. Acta Scientiarum Polonorum Hortorum Cultus, 10(4), 153–169.Google Scholar
  60. Kim, D.-O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81, 321–326.CrossRefGoogle Scholar
  61. Komiyama, Y., Harakawa, M., Otoguro, C., & Ozawa, S. (1978). Composition of free amino acids in plums harvested in Japan. Nippon Shokuhin Kogyo Gakkaishi, 25(1), 36–40.CrossRefGoogle Scholar
  62. Lado, J., Zacarías, L., & Rodrigo, M. J. (2016). Regulation of carotenoid biosynthesis during fruit development. In C. Stange (Ed.), Carotenoids in nature: Biosynthesis, regulation and function. Berlin: Springer.Google Scholar
  63. LaferrièreJE, Weber, C. W., & Kohlhepp, E. A. (1991). Use and nutritional composition of some traditional Mountain Pima plant foods. Journal of Ethnobiology, 11(1), 93–114.Google Scholar
  64. Landi, M., Tattini, M., & Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant–environment interactions. Environmental and Experimental Botany, 119, 4–17.CrossRefGoogle Scholar
  65. Leja, M., Mareczek, A., & Ben, J. (2002). Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry, 80, 303–307.CrossRefGoogle Scholar
  66. Lembo, A. J. (2016). Constipation. In M. Feldman, L. S. Friedman, & L. J. Brandt (Eds.), Sleisenger and Fordtran’s gastrointestinal and liver disease (10th ed.). Philadelphia: Elsevier Saunders.Google Scholar
  67. Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577–1587.CrossRefGoogle Scholar
  68. Li, K.-T. (2012). Physiology and classification of fruits. In N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu, & M. P. Cano (Eds.), Handbook of fruits and fruit processing (2nd ed.). New York: Wiley.Google Scholar
  69. Li, H., Tsao, R., & Deng, Z. (2012). Factors affecting the antioxidant potential and health benefits of plant foods. Canadian Journal of Plant Science, 92, 1101–1111.CrossRefGoogle Scholar
  70. Lin, B.-H., & Morrison, R. M. (2002). Higher fruit consumption linked with lower body mass index. Food Review, 25(3), 28–32.Google Scholar
  71. Lintas, C., & Cappelloni, M. (1992). Dietary fiber content of Italian fruit and nuts. Journal of Food Composition and Analysis, 5(2), 146–151.CrossRefGoogle Scholar
  72. Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition, 78(Suppl), 517S–520S.PubMedCrossRefGoogle Scholar
  73. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition, 134, 3479S–3485S.PubMedCrossRefGoogle Scholar
  74. Lombardo, V. A., Osorio, S., Borsani, J., Lauxmann, M. A., Bustamante, C. A., Budde, C. O., Andreo, C. S., Lara, M. V., Fernie, A. R., & Drincovich, M. F. (2011). Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology, 157, 1696–1710.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mahammad, M. U., Kamba, A. S., Abubakar, L., & Bagna, E. A. (2010). Nutritional composition of pear fruits (Pyrus communis). African Journal of Food Science and Technology, 1(3), 76–81.Google Scholar
  76. Mahmood, T., Anwar, F., Iqbal, T., Bhatti, J. A., & Ashraf, M. (2012). Mineral composition of strawberry, mulberry and cherry fruits at different ripening stages as analyzed by inductively coupled plasma-optical emission spectroscopy. Journal of Plant Nutrition, 35(1), 111–122.CrossRefGoogle Scholar
  77. Manzoor, M., Anwar, F., Saari, N., & Ashraf, M. (2012). Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules, 17, 390–407.PubMedCrossRefGoogle Scholar
  78. Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International, 18, ID905215.Google Scholar
  79. Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260.Google Scholar
  80. Maro, A. D., Dosi, R., Ferrara, L., Rocco, M., Sepe, J., Ferrari, G., & Parente, A. (2011). Free amino acid profile of Malus domestica Borkh cv. Annurca from the Campania region and other Italian vegetables. Australian Journal of Crop Science, 5(2), 154–161.Google Scholar
  81. Mehta, S., Soni, N., Satpathy, G., & Gupta, R. K. (2014). Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of dried plum (Prunus domestica). Journal of Pharmacognosy and Phytochemistry, 3(2), 166–171.Google Scholar
  82. Miletić, M., Popović, B., Mitrović, O., & Kandić, M. (2012). Phenolic content and antioxidant capacity of fruits of plum cv. ‘Stanley’ (Prunus domestica L.) as influenced by maturity stage and on-tree ripening. Australian Journal of Crop Science, 6(4), 681–687.Google Scholar
  83. Miloševic, T., & Miloševic, N. (2012). Factors influencing mineral composition of plum fruits. Journal of Elementology, 17(3), 453–464.Google Scholar
  84. Moing, A., Svanella, L., Rolin, D., Gaudillère, M., Gaudillère, J.-P., & Monet, R. (1998). Compositional changes during fruit development of two peach cultivars differing in juice acidity. Journal of the American Society for Horticultural Science, 123(5), 770–775.Google Scholar
  85. Nergiz, C., & Yıldız, H. (1997). Research on chemical composition of some varieties of European plums (prunus domestica) adapted to the Aegean district of Turkey. Journal of Agricultural and Food Chemistry, 45(8), 2820–2823.CrossRefGoogle Scholar
  86. Noroozi, M., Angerson, W. J., & Lean, M. E. J. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. American Journal of Clinical Nutrition, 67, 1210–1218.PubMedCrossRefGoogle Scholar
  87. Nour, V., Trandafir, I., & Ioni, M. E. (2010). Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 228–233.Google Scholar
  88. Ogasanović, D. (2007). Amino acids content in the fruit of some plum cultivars and hybrids. Acta Horticulture, 734, 353–356.CrossRefGoogle Scholar
  89. Ojeda-Real, L. A., Lobit, P., Cárdenas-Navarro, R., Grageda-Cabrera, O., Farías-Rodríguez, R., Valencia-Cantero, E., & Macías-Rodríguez, L. (2009). Effect of nitrogen fertilization on quality markers of strawberry (Fragaria × ananassa Duch. cv. Aromas). Journal of the Science of Food and Agriculture, 89(6), 935–939.CrossRefGoogle Scholar
  90. Ornelas-Paz Jde, J., Yahia, E. M., Ramirez-Bustamante, N., Perez-Martinez, J. D., del Pilar Escalante-Minakata, M., Ibarra-Junquera, V., & Ochoa-Reyes, E. (2013). Physical attributes and chemical composition of organic strawberry fruit (Fragaria × ananassa Duch, Cv. Albion) at six stages of ripening. Food Chemistry, 138(1), 372–381.PubMedCrossRefGoogle Scholar
  91. Özcan, M. M., & Hacıseferoğulları, H. (2007). The strawberry (Arbutus unedo L.) fruits: Chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78(3), 1022–1028.CrossRefGoogle Scholar
  92. Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393–396.Google Scholar
  93. Panico, A. M., Garufi, G., Nitto, S., Di Mauro, R., Longhitano, R. C., Magrì, G., Catalfo, A., Serrentino, M. E., & De Guidi, G. (2009). Antioxidant activity and phenolic content of strawberry genotypes from Fragaria × ananassa. Pharmaceutical Biology, 47(3), 203–208.CrossRefGoogle Scholar
  94. Perez, A. G., Rios, J. J., Sanz, C., & Olias, J. M. (1992). Aroma components and free amino acids in strawberry variety Chandler during ripening. Journal of Agricultural and Food Chemistry, 40(11), 2232–2235.CrossRefGoogle Scholar
  95. Ramulu, P., & Udayasekhara-Rao, P. (2003). Total, insoluble and soluble dietary fiber contents of Indian fruits. Journal of Food Composition and Analysis, 16, 677–685.CrossRefGoogle Scholar
  96. Recamales, A. F., Medina, J. L., & Hernanz, D. (2007). Physicochemical characteristics and mineral content of strawberries grown in soil and soilless system. Journal of Food Quality, 30, 837–853.CrossRefGoogle Scholar
  97. Reis-Giada, M. L. (2013). Food phenolic compounds: Main classes, sources and their antioxidant power. In J. M. Morales-González (Ed.), Oxidative stress and chronic degenerative diseases—A role for antioxidants. Rijeka: Intech.Google Scholar
  98. Robertson, J. A., Meredith, F. I., & Forbus, W. R. (1991). Changes in quality characteristics during peach (cv. ‘Majestic’) maturation. Journal of Food Quality, 14, 197–207.Google Scholar
  99. Rodríguez, M. J., Villanueva, M. J., & Tenorio, M. D. (1999). Changes in chemical composition during storage of peaches. European Food Research and Technology, 209(2), 135–139.CrossRefGoogle Scholar
  100. Roussos, P. A., Dinaxa, N.-K., Tsafouros, A., Efstathios, N., & Intidhar, B. (2015). Apricot (Prunus armeniaca L.) In M. Simmonds & V. R. Preedy (Eds.), Nutritional compositions of fruit cultivars. New York: Academic Press.Google Scholar
  101. Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735–750.PubMedCrossRefGoogle Scholar
  102. Sánchez-Moreno, C., de Pascual-Teresa, S., de Ancos, B., & Cano, M. P. (2012). Fruit freezing principles. In N. K. Sinha, J. S. Sidhu, J. Barta, W. JSB, & M. P. Cano (Eds.), Handbook of fruits and fruit processing (2nd ed.). New York: Wiley.Google Scholar
  103. Sarkar, S. K., Sen, U., Dhar, M., Absar, N., & Islam, M. K. (2011). Evaluation of nutritive, antioxidant and mineral composition of two newly developed varieties of strawberry (Fragaria ananassa) and their antimicrobial activity and brine shrimp toxicity study. Asian Journal of Agricultural Research, 5, 283–291.CrossRefGoogle Scholar
  104. Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3, 506–516.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669.CrossRefGoogle Scholar
  106. Solovchenko, A. E., Chivkunova, O. B., Merzlyak, M. N., & Gudkovsky, V. A. (2005). Relationships between chlorophyll and carotenoid pigments during on-and off-tree ripening of apple fruit as revealed non-destructively with reflectance spectroscopy. Postharvest Biology and Technology, 38(1), 9–17.CrossRefGoogle Scholar
  107. Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686–692.CrossRefGoogle Scholar
  108. Sugimoto, N., Jones, D., & Beaudry, R. (2011). Changes in free amino acid content in ‘Jonagold’ apple fruit as related to branched-chain ester production, ripening, and senescence. Journal of the American Society for Horticultural Science, 136(6), 429–440.Google Scholar
  109. Sun-Hee, Y., & Seung-Hee, N. (2016). Physiochemical, nutritional and functional characterization of 10 different pear cultivars (Pyrus spp.) Journal of Applied Botany and Food Quality, 89, 73–81.Google Scholar
  110. Suni, M., Nyman, M., Björk, L., & Björk, I. (2000). Carbohydrate composition and content of organic acids in fresh and stored apples. Journal of the Science of Food and Agriculture, 80(10), 1538–1544.CrossRefGoogle Scholar
  111. Threapleton, D. E., Greenwood, D. C., Evans, C. E., Cleghorn, C. L., Nykjaer, C., Woodhead, C., Cade, J. E., Gale, C. P., & Burley, V. J. (2013). Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. British Medical Journal, 347, f6879.PubMedCrossRefGoogle Scholar
  112. Tsao, R., Yang, R., Young, J. C., & Zhu, H. (2003). Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51(21), 6347–6353.PubMedCrossRefGoogle Scholar
  113. Vasantha Rupasinghe, H. P., Jayasankar, S., & Lay, W. (2006). Variation in total phenolics and antioxidant capacity among European plum genotypes. Scientia Horticulturae, 108, 243–246.CrossRefGoogle Scholar
  114. Veberic, R., Schmitzer, V., Pekcovsek, M. M., & Stampar, F. (2010). Impact of shelf life on content of primary and secondary metabolites in apple (Malus domestica Borkh.) Journal of Food Science, 75(9), S461–S468.PubMedCrossRefGoogle Scholar
  115. Venter, A., Joubert, E., & de Beer, D. (2013). Characterisation of phenolic compounds in South African plum fruits (Prunus salicina Lindl.) using HPLC coupled with diode-array, fluorescence, mass spectrometry and on-line antioxidant detection. Molecules, 18, 5072–5090.PubMedCrossRefGoogle Scholar
  116. Viana, A. P., Riaz, S., & Walker, M. A. (2013). Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genetics and Molecular Research, 12, 951–964.PubMedCrossRefGoogle Scholar
  117. Vieira, F. G. K., Da Silva Campelo Borges, G., Copetti, C., De Mello Castanho Amboni, R. D., Denardi, F., & Fett, R. (2009). Physico-chemical and antioxidant properties of six apple cultivars (Malus domestica Borkh) grown in southern Brazil. Scientia Horticulturae, 122, 421–425.CrossRefGoogle Scholar
  118. Vigneault, C., Leblanc, D. I., Goyette, B., & Jenni, S. (2012). Engineering aspects of physical treatments to increase fruit and vegetable phytochemical content. Canadian Journal of Plant Science, 92, 373–397.CrossRefGoogle Scholar
  119. Vizzotto, M., Cisneros-Zevallos, L., Byrne, D. H., Ramming, D. W., & Okie, W. R. (2006). Total phenolic, carotenoid, and anthocyanin content and antioxidant activity of peach and plum genotypes. Acta Horticulturae, 713, 453–456.CrossRefGoogle Scholar
  120. Voća, S., Dobricevic, N., Dragovic-Uzelac, V., Duralija, B., Druzic, J., Cmelik, Z., & Babojelic, M. S. (2008). Fruit quality of new early ripening strawberry cultivars in Croatia. Food Technology andBiotechnology, 46(3), 292–298.Google Scholar
  121. Voća, S., Žlabur, J. Š., Dobričević, N., Jakobek, L., Šeruga, M., Galić, A., & Pliestić, S. (2014). Variation in the bioactive compound content at three ripening stages of strawberry fruit. Molecules, 19, 10370–10385.PubMedCrossRefGoogle Scholar
  122. Vukojevic, D., Simic, J., Dragisic, N., Sevo, D., Misimovic, M., Zavisic, N., Bolic E., & Radanovic, B. (2012). Evaluation of the quality of autochthonous plum cultivars in the area of Bosanski Petrovac. Paper presented at the Third International Scientific Symposium “Agrosym Jahorina, Bosanski Petrovac”.Google Scholar
  123. Wang, S. Y., & Camp, M. J. (2000). Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae, 85(3), 183–199.CrossRefGoogle Scholar
  124. Wang, H., Cao, G., & Prior, R. L. (1996). Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44, 701–705.CrossRefGoogle Scholar
  125. Wang, J., Cao, X., Jiang, H., Qi, Y., Chin, K. L., & Yue, Y. (2014). Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules, 19, 21226–21238.PubMedCrossRefGoogle Scholar
  126. Waterlow, J. C. (1972). Classification and definition of protein-calorie malnutrition. British Medical Journal, 3, 566–569.PubMedPubMedCentralCrossRefGoogle Scholar
  127. WHO. (2003). Fruit and vegetable promotion initiative: Report of the meeting, 25–27 August 2003, Geneva.Google Scholar
  128. WHO. (2009). Global health risks: mortality and burden of disease attributable to selected major risks. ISBN 978-9-24156-387-1.Google Scholar
  129. Wold, A.-B., & Opstad, N. (2007). Fruit quality in strawberry (Fragaria × ananassa Duch. cv. Korona) at three times during the season and with two fertilizer strategies. Journal of Applied Botany and Food Quality, 81, 36–40.Google Scholar
  130. Wu, G. (2009). Amino acids: Metabolism, functions, and nutrition. Amino Acids, 37(1), 1–17.PubMedCrossRefGoogle Scholar
  131. Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265.CrossRefGoogle Scholar
  132. Wu, X., Cao, G., & Prior, R. L. (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. Journal of Nutrition, 132, 1865–1871.PubMedCrossRefGoogle Scholar
  133. Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z., & Hu, X. (2007). Chemical compositional characterization of some apple cultivars. Food Chemistry, 103, 88–93.CrossRefGoogle Scholar
  134. Zamorska, I. L. (2016). Amino acid composition of strawberries (Fragaria × Ananassa Duch.) In S. A. Bekuzarova, N. A. Bome, A. I. Opalko, & L. I. Weisfeld (Eds.), Temperate crop science and breeding: Ecological and genetic studies. Point Pleasant Boro: Apple Academic Press.Google Scholar
  135. Zhang, W. Y. (1990). The biological and physiology of fruit. Beijing: Agricultural Publishing Company.Google Scholar
  136. Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany, 62(3), 1103–1118.PubMedCrossRefGoogle Scholar
  137. Zhou, D. R., Liao, R. Y., & Ye, X. F. (2012). Analysis of the compositions and contents of amino acids in plums. Journal of South China Fruits, 2, 8.Google Scholar
  138. Zhu, Q., Nakagawa, T., Kishikawa, A., Ohnuki, K., & Shimizu, K. (2015). In vitro bioactivities and phytochemical profile of various parts of the strawberry (Fragaria × ananassa var. Amaou). Journal of Functional Foods, 13, 38–49.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Callistus Bvenura
    • 1
  • Ngemakwe Nitcheu Patrick Hermaan
    • 1
  • Lingyun Chen
    • 2
  • Dharini Sivakumar
    • 1
    Email author
  1. 1.Phytochemical Food Network Group, Department of Crop SciencesTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Agricultural, Food and Nutritional Sciences, Faculty of Agricultural, Life & Environmental SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations