Advertisement

Orchard Management in Temperate Fruits

  • Mohammad Maqbool Mir
  • Munib-ur-Rehman
  • Gh Hassan Rather
  • Umar Iqbal
  • Ashaq Hussain Pandit
  • Mohammad Amin Mir
  • Khalid Mushtaq Bhat
Chapter

Abstract

The orchard management system is associated with many factors, which has a direct and practical importance on the overall production and productivity of the orchard. The main aim of different cultural practices in temperate orchard management is to find out the real goal at minimum input cost and to sustain the framework of the orchard in a timely and efficient manner. Applications of model concepts lead to the more precise and uniform produce that ultimately support the homogeneity of fruit quality. Recent studies also found that interactions exist between different aspects of orchard management, namely, soil, irrigation, nutrition, training and pruning, weed competition, and plant growth dynamics in temperate fruit orchards. Research showed that adopting a scientific orchard management system will have the advantage of high accuracy in fruit quantity in general and quality in particular.

Keywords

Orchard Fruit crops Temperate fruits Soil Nutrition Irrigation Pruning 

References

  1. Abbotty, J. D., & Gough, R. E. (1992). Comparison of winter mulches of several strawberry cultivars. Journal of Small Fruits Viticulture, 1, 51–58.CrossRefGoogle Scholar
  2. Ahmad, W., Niaz, A., Kanwal, S., Rahmatullah, & Rasheed, M. K. (2009). Role of boron in plant growth. A review. Journal of Agricultural Research, 47, 329–338.Google Scholar
  3. Arakeri, H. R.. (1981). Crop production in India. In 8thConference APWSS, Bangalore, India. Google Scholar
  4. Arsov, T., et al. (2013). The effect of different training systems on yield and fruit quality of Jonagold apple variety. Acta Horticulturae, 981, 243–245.CrossRefGoogle Scholar
  5. Bal, J. S. (2008). Fruit growing. New Delhi: Kalyani Publishers.Google Scholar
  6. Barritt, B. (1992). Intensive orchard management. Yakima: Good Fruit Grower.Google Scholar
  7. Bar-Yosef, B. (1999). Advances in fertigation. Advances in Agronomy, 65, 1–76.CrossRefGoogle Scholar
  8. Bedbabis, S., Ferrara, G., Rouina, B. B., & Boukhris, M. (2010). Effects of irrigation with treated waste water on olive tree growth, yield and leaf mineral elements at short term. Scientia Horticulturae, 126, 345–350.CrossRefGoogle Scholar
  9. Bhan, S., Bhutani, U. P., & Chopra, S. K. (1982). Studies on chemical weed control in Santa Rosa plum (Prunus saliciana L.) Pesticides, 14, 22–24.Google Scholar
  10. Bolaños, L., Lukaszewski, K., Bonilla, I., & Blevins, D. (2004). Why boron? Plant Physiology and Biochemistry, 42, 907–912.CrossRefGoogle Scholar
  11. Bonany, J., & Camps, F. (1998). Effects of different irrigation levels on apple fruit quality. Acta Horticulturae, 511, 43–49.Google Scholar
  12. Bravdo, B. A., Levin, I., & Assaf, R. (1992). Control of root size and root environment of fruit trees for optimal fruit production. Workshop on root distribution and chemistry and biology of the root soil interface, Ithaca, New York, USA, January. Journal of Plant Nutrition, 15, 699–712.CrossRefGoogle Scholar
  13. Brown, P. H., & Hu, H. (1996). Phloem mobility of boron in species dependent: Evidence for phloem mobility in sorbitol rich species. Annals of Botany, 77, 497–505.CrossRefGoogle Scholar
  14. Byers, R. E., Carbaugh, D. H., & Combs, L. D. (2004). The influence of prohexadione calcium sprays on apple tree growth, chemical fruit thinning and return bloom. Journal of the American Pomological Society, 58, 111–117.Google Scholar
  15. Chadha, T. R.(2001). Text book of temperate fruits. Directorate of Information and Publications of Agriculture, ICAR, New Delhi.Google Scholar
  16. Challa, P. (1993). Weed control in orchards. In K. L. Chadha & O. P. Pareek (Eds.), Advances in horticulture II. Fruit crops. New Delhi: Malhotra Publishing House.Google Scholar
  17. Chalmers, D. J., Mitchell, P. D., & Heek, L. V. (1981). Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. Journal of the American Society for Horticultural Science, 106, 307–312.Google Scholar
  18. Coker, E. G. (1959). Root development of apple trees in grass and clean cultivation. Journal of Horticultural Science, 34, 111–121.CrossRefGoogle Scholar
  19. Crassweller, R. M., & Smith, D. E. (2004). Will high density work for processing apples. Acta Horticulturae, 639, 661–665.CrossRefGoogle Scholar
  20. Crew, P. S., & Funk, G. J. (1980). Apple root distribution under drip irrigation. Queensland Agricultural Journal, 106, 425–432.Google Scholar
  21. Diest, J., Kotze, W. A. G., & Joubert, M. (1973). The role of cover crops in movement of phosphate and calcium in soils. Deciduous Fruit Grower, 23, 138–141.Google Scholar
  22. Dorigoni, A. (2008). Bi-axis: An alternative training system for apple orchards. Australian Fruit Grower, 2, 12–16.Google Scholar
  23. Dorigoni, A., Dallabetta, N., & Piffer, I. (2006). Biasse: meno spese per l’impianto e più luce per le mele. L’Informatore Agrario, 40, 2–5.Google Scholar
  24. Ebel, R. C., Proebsting, E. L., & Patterson, M. E. (1993). Regulated deficit irrigation may alter apple maturity, quality and storage life. HortScience, 28, 141–143.Google Scholar
  25. Forshey, C. G., Elfving, D. C., & Stebbins, R. L. (1992). Training and pruning apple trees (p. 166). Alexandria, VA: American Society for Horticultural Science.Google Scholar
  26. Gras, R., & Trocme, S. (1977). The management of soil apple orchards. Annals of Agronomy, 28, 227–259.Google Scholar
  27. Hampson, C. R., Quamme, H. A., & Brownlee, R. T. (2002). Canopy growth, yield and fruit quality of ‘Royal Gala’apple trees grown for eight years in five tree training systems. HortScience, 37, 627–631.Google Scholar
  28. Hampson, C. R., Quamme, H. A., Kappel, F., & Brownlee, R. T. (2004). Varying density with constant rectangularity: I. Effects on apple tree growth, and light interception in three training systems over ten years. HortScience, 39, 501–506.Google Scholar
  29. Haynes, R. J., & Swift, R. S. (1986). Effects of soil acidification and subsequent leaching on levels of extractable nutrients in soils. Plant and Soil, 95, 327–336.CrossRefGoogle Scholar
  30. Heath, Z., & Krueger, B. (2000). Use of walnut shells for weed control. Research Report, Organic Farming Research Foundation Project 99-78 (7 pp).Google Scholar
  31. Heinicke, D. R. (1964). The micro-climate of fruit trees. III. The effect of tree size on light penetration and leaf area in ‘Red Delicious’ apple trees. Proceedings of the American Society for Horticultural Science, 5, 33–41.Google Scholar
  32. Heinicke, D. R. (1975). High density apple orchards—Planning, training, and pruning. USDA Agricultural Handbook 458.Google Scholar
  33. Hewitt, E. G. (1963). Mineral nutrition of plants in culture media. In F. C. Steward (Ed.), Plant physiology—a treatise (Vol. 43, pp. 97–133). New York: Academic Press.Google Scholar
  34. Hoying, S. A., & Robinson, T. L. (2000). The apple orchard planting system puzzle. Acta Horticulturae, 513, 257–260.Google Scholar
  35. Huguet, J. G. (1976). Influence d’une irrigation localisée sur l’enracinement de jeunes pommiers [The effect of localized irrigation on the rooting of young apple trees]. Annales Agronomiques, 27, 343–361.Google Scholar
  36. Hutmacher, R. B., Nightingale, H. I., Rolston, D. E., Biggar, J. W., Dale, F., Vail, S. S., & Peters, D. (1994). Growth and yield responses of almond (Prunus amygdalis) to trickle irrigation. Irrigation Science, 14, 117–126.CrossRefGoogle Scholar
  37. Jackson, J. E. (1980). Light interception and utilization by orchard systems. Horticultural Reviews, 2, 208–267.Google Scholar
  38. Jackson, J. E., & Palmer, J. W. (1981). Light distribution in discontinuous canopies: Calculation of leaf areas and canopy volumes above defined ‘irradiance contours’ for use in productivity modeling. Annals of Botany, 47, 561–565.CrossRefGoogle Scholar
  39. Kallow, G., Reddy, B. M. C., Singh, G., & Lal, B. (2005). Rejuvenation of old and senile orchards (pp. 88–98). Lucknow: Pub. CISH.Google Scholar
  40. Kilili, A. W., Behboudian, M. H., & Mills, T. M. (1996). Water relations, photosynthesis, growth and yield of ‘Braeburn’ apples under reduced irrigation applied at different stages of the growing season. Gartenbauwissenschaft, 61, 267–273.Google Scholar
  41. Kumar, R., Tandon, V., & Mir, M. M. (2012). Impact of different mulching material on growth, yield and quality of strawberry. Progressive Horticulture, 44, 234–236.Google Scholar
  42. Landsberg, J. J., & Jones, H. G. (1981). Apple orchards. In T. T. Kozlowski (Ed.), Water deficits and plant growth (pp. 419–469). New York: Academic Press.Google Scholar
  43. Levin, I., Assaf, R., & Bravdo, B. (1972). Effect of different soil irrigation treatments for apple trees on water uptake from soil layers. Journal of the American Society for Horticultural Science, 97, 521–526.Google Scholar
  44. Levin, I., Assaf, R., & Bravdo, B. A. (1979). Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant and Soil, 52, 31–40.CrossRefGoogle Scholar
  45. Levin, I., Assaf, R., & Bravdo, B. (1980). Irrigation, water status and nutrient uptake in an apple orchard. In D. Atkinson, J. E. Jackson, R. O. Sharples, & W. M. Waller (Eds.), Mineral nutrition of fruit trees (pp. 255–263). London: Butterworths.CrossRefGoogle Scholar
  46. Lord, W. J., Michelson, L. F., & Field, D. L. (1963). Response to irrigation and soil moisture use by McIntosh apple trees in Massachusetts. In:Bulletin 537. Agricultural Experiment Station, University of Massachusetts, Amherst, pp. 1–23.Google Scholar
  47. Mage, F. (1982). Black plastic mulching compared to other orchard soil management methods. Scientific Horticulture, 16, 131–136.CrossRefGoogle Scholar
  48. Manolova, V., & Rankova, Z. (2005). Economic results of using herbicides in the production of some seedling rootstoks. Bulgarian Journal of Agricultural Science, 2, 159–163.Google Scholar
  49. Manolova, V., & Rankova, Z. (2007). Comparative economic evaluation of herbicide use in the production of Prunus mahaleb seedling rootstocks. Agricultural Economics and Managements, 52, 56–58.Google Scholar
  50. Mantinger, H., & Vigel, J. (1999). Superspindel und Schlanke Spindel im Vergleich. Obstbau Weinbau, 9, 259–262.Google Scholar
  51. Melgar, J. C., Mohamed, Y., Serrano, N., Garcia Galavis, P. A. G., Navarro, C., Parra, M. A., Benlloch, M., & Fernagez Escobar, R. (2009). Long term responses of olive trees to salinity. Agriculture Water Management, 96, 1105–1113.CrossRefGoogle Scholar
  52. Millard, P. (1996). Ecophysiology of the nutrient cycling of nitrogen for tree growth. Journal of Plant Nutrition and Soil Science, 159, 1–10.Google Scholar
  53. Miller, S. S. (1983). Response of young ‘Topred Delicious’ apple trees to orchard floor management and fertilization. Journal of the American Society for Horticultural Science, 108, 638–642.Google Scholar
  54. Mills, T. M., Behboudian, M. H., & Clothier, B. E. (1996). Water relations, growth and the composition of ‘Braeburn’ apple fruit under deficit irrigation. Journal of the American Society for Horticultural Science, 121, 286–291.Google Scholar
  55. Mir, M. M., Baba, J. A., Umar, I., Rather, G. H., Rehman, M. U., Banday, S. A., Kumar, A., & Nazir, N. (2015). Effect of soil applied paclobutrazol on vegetative and quality attributes of apricot (Prunus armeniaca L.) Green Farming, 6(4), 813–816.Google Scholar
  56. Miwa, K., & Fujiwara, T. (2010). Boron transport in plants: Co-ordinated regulation of transporters. Annals of Botany, 105, 1103–1108.  https://doi.org/10.1093/aob/mcq044.CrossRefPubMedCentralGoogle Scholar
  57. Mpelasoka, B. S., Behboudian, M. H., Dixon, J., Neal, S. M., & Caspari, H. W. (2000). Improvement of fruit quality and storage potential of ‘Braeburn’ apple through deficit irrigation. Journal of Horticultural Science and Biotechnology, 75, 615–621.CrossRefGoogle Scholar
  58. Neilson, G. H., & Hogue, E. J. (1985). Effect of orchard soil management on the growth and leaf nutrient concentration of young dwarf Red Delicious apple trees. Canadian Journal of Soil Science, 65, 309–315.CrossRefGoogle Scholar
  59. Neilsen, D., & Neilsen, G. H. (2002). Efficient use of nitrogen and water in high density apple orchards. HortTechnology, 12, 19–25.Google Scholar
  60. Neilsen, G. H., Hoyt, P. B., & Neilsen, D. (1995). Soil chemical changes associated with NP-fertigated and drip irrigated high density apple orchards. Canadian Journal of Soil Science, 75, 307–310.CrossRefGoogle Scholar
  61. Neilsen, G. H., Neilsen, D., & Peryea, F. J. (1999). Response of soil and irrigated fruit trees to fertigation or broadcast applications of nitrogen, phosphorus and potassium. HortTechnology, 9, 393–401.Google Scholar
  62. Neilsen, G. H., Parchomchuk, P., Neilsen, D., & Zebarth, B. J. (2000). Drip-fertigation of apple trees affects root distribution and development of K deficiency. Canadian Journal of Soil Science, 80, 353–361.CrossRefGoogle Scholar
  63. Neilsen, D., Millard, P., Herbert, L. C., Neilsen, G. H., Hogue, E. J., Parchomchuk, P., & Zebarth, B. J. (2001). Remobilization and uptake of N by newly planted apple (Malus domestica) trees in response to irrigation method and timing of N application. Tree Physiology, 21, 513–521.CrossRefGoogle Scholar
  64. Ozkan, Y. (2008). The high density planting in Turkey. The yield with Gübretaş, 15, 15–16.Google Scholar
  65. Ozkan, Y., Yildiz, K., Kucuker, E., Cekic, C., Ozgen, M., & Akca, Y. (2012). Early performance of cv. Jonagold apple on M.9 in five tree training systems. Horicultural Science (Prague), 39, 158–163.CrossRefGoogle Scholar
  66. Palmer, J. W. (1977). Diurnal light interception and a computer model of light interception by hedgerow apple orchards. Journal of Applied Ecology, 14, 601–614.CrossRefGoogle Scholar
  67. Parchomchuk, P., Neilsen, G. H., & Hogue, E. J. (1993). Effects of drip fertigation of NH4-N and P on soil pH and cation leaching. Canadian Journal of Soil Science, 73, 157–164.CrossRefGoogle Scholar
  68. Parsons, L. R., Wheaton, T. A., & Castle, W. S. (2001). High application rates of reclaimed water benefit citrus tree growth and fruit production. HortScience, 36, 1273–1277.Google Scholar
  69. Perring, M. A. (1975). The effect of orchard factors on the soil chemical composition of apples. Some effects of soil management and N, P, K fertilizers. Journal of Horticultural Sciences, 50, 425–433.CrossRefGoogle Scholar
  70. Pilbeam, D. J., & Morely, P. S. (2007). Calcium. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 121–144). New York: CRC Press.Google Scholar
  71. Powell, D. B. B. (1974). Some effects of water stress in late spring on apple trees. Journal of Horticultural Science, 49, 257–272.CrossRefGoogle Scholar
  72. Rademacher, W., Van Saarloos, K., Garuz Porte, J. A., Riera Forcades, F., Senechal, Y., Andreotti, C., Spinelli, F., Sabatini, E., & Costa, G. (2004). Impact of prohexadione Ca on the vegetative and reproductive performance of apple and pear trees. European Journal of Horticultural Science, 69, 221–228.Google Scholar
  73. Raese, J. T. (1977). Response of young ‘d Anjou’ pear trees to triazine and triazole herbicides and nitrogen. Journal of the American Society for Horticultural Science, 102, 215–218.Google Scholar
  74. Rankova, Z.(2004). Study on the effect of some soil herbicides on the vegetative habits of yellow plum and peach seedling rootstocks (156 pp). PhD thesis, Fruit Growing Institute, Plovdiv.Google Scholar
  75. Rankova, Z., Gercheva, P., & Ivanova, K. (2004). Screening of soil herbicides under in vitro conditions. Acta Agriculturae Serbica, IX(17), 11–17.Google Scholar
  76. Rankova, Z., Nacheva, L., Gercheva, P., & Bozkova, V. (2006a). Vegetative habits of plum rootstock Wangenheims after treatment with terbacil under in vitro conditions. In VI National Conference “Ecology and helth” Plovdiv, May 2006, pp. 339–344.Google Scholar
  77. Rankova, Z., Nacheva, L., Zapryanova, K., Gercheva, P., & Bozkova, V. (2006b). Effect of soil herbicides napropamid and pendimethalin on rooting and growth of the vegetative plum rootstock Pr. domestica Wangenheims under in vitro conditions. Journal of Mountain Agriculture on the Balkans, 9, 349–359.Google Scholar
  78. Rankova, Z., Nacheva, L., & Gercheva, P. (2009). Growth habits of the vegetative apple rootstock MM 106 after treatment with some soil herbicides under in vitro conditions. Acta Horticulturae, 82, 49–54.CrossRefGoogle Scholar
  79. Redondo Nieto, M., Pulido, L., Reguera, M., Bonilla, I., & Bolanos, L. (2007). Developmentally regulated membrane glycoproteins sharing antigenicity with rhamnogalacturonan II are not detected in nodulated boron deficient Pisum sativum. Plant, Cell & Environment, 30, 1436–1443.CrossRefGoogle Scholar
  80. Robinson, T. L. (2003). Apple orchard systems. In D. C. Ferree & I. J. Warrington (Eds.), Apples: Physiology, production and uses (pp. 345–407). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  81. Robinson, T. L. (2007). Effects of tree density and tree shape on apple orchard performance. Acta Horticulturae, 732, 405–414.CrossRefGoogle Scholar
  82. Ross, J. (1981). The radiation regime and architecture of plant stands (p. 342). The Hague: Dr. W. Junk.CrossRefGoogle Scholar
  83. Sansavini, S., & Corelli, L. (1992). Canopy efficiency of apple as affected by microclimatic factors and tree structure. Acta Horticulturae, 322, 69–77.CrossRefGoogle Scholar
  84. Sansavini, S., & Musacchi, S. (1994). Canopy architecture, training and pruning in the modern European pear orchards: An overview. Acta Horticulturae, 367, 152–172.CrossRefGoogle Scholar
  85. Sarrantonio, M., & Gallandt, E. R. (2003). The role of cover crops in North American cropping systems. Journal of Crop Production, 8, 53–73.CrossRefGoogle Scholar
  86. Sharma, V. K. (2009). Effect of mulching and row spacing on growth and yield of strawberry. Indian Journal of Horticulture, 66, 271–273.Google Scholar
  87. Sharma, Y. P., & Bhutani, V. P. (1988). Effect of N levels and weed control treatments on nutrient removal by weeds and leaf nutrient status of peach. Indian Journal of Agricultural Sciences, 54, 255–259.Google Scholar
  88. Singh, M. V. (2008). Micronutrient deficiencies in crops in India (Chapter 4). In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 93–126). Dordrecht: Springer.CrossRefGoogle Scholar
  89. Sinoquet, H., Stephan, J., Sonohat, G., Lauri, P. É., & Monney, P. (2007). Simple equations to estimate light interception by isolated trees from canopy structure features: Assessment with three-dimensional digitized apple trees. New Phytologist, 175, 94–106.CrossRefGoogle Scholar
  90. Storey, J. B. (2007). Zinc, Chapter 15. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 411–435). Boca Raton: CRC Taylor & Francis Group.Google Scholar
  91. Swiatkiewicz, D., & Blaszczyk, J. (2009). Effect of calcium nitrate spraying on mineral contents and storability of ‘Elise’ apples. Polish Journal of Environment Studies, 18, 971–976.Google Scholar
  92. Tagliavini, M., Quartieri, M., & Millard, P. (1997). Remobilized nitrogen and root uptake of nitrate for leaf growth, flowers and developing fruits of pear (P. communis) trees. Plant and Soil, 195, 137–142.CrossRefGoogle Scholar
  93. Teasdale, J. R. (1993). Interaction of light, soil moisture, and temperature with weed suppression by hairy vetch residue. Weed Science, 41, 46–52.Google Scholar
  94. Тоnev, Т. (2000). Handbook of integrated weed control and culture of farming, book 2 (p. 275). Plovdiv: Higher Institute of Agriculture, pp. 126–127(Bg).Google Scholar
  95. Tyerman, S. D., Bohnert, H. J., Maurel, C., Steudle, E., & Smith, J. A. C. (1999). Plant aquaporins: Their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany, 50, 1055–1071.Google Scholar
  96. Umar, I., Wali, V. K., Rehman, M. U., Mir, M. M., Banday, S. A., & Bisati, I. A. (2010). Effect of subabul (Leucaena leucocephala), urea and biofertilizer application on growth, yield and quality of strawberry cv. Chandler. Applied Biological Research, 12, 50–54.Google Scholar
  97. Wagenmakers, P. S. (1991). Planting systems for fruit trees in temperate climates. Critical Reviews in Plant Sciences, 10, 369–385.CrossRefGoogle Scholar
  98. Watanabe, M., Bessho, H., Suzuki, A., & Komori, S. (2008). Seasonal changes of IAA and cytokinin in shoots of columnar type apple trees. Acta Horticulturae, 774, 75–80.CrossRefGoogle Scholar
  99. Weber, M. S. (2000). The super spindle system. Acta Horticulturae, 513, 271–277.Google Scholar
  100. Weber, M. S. (2001). Optimizing the tree density in apple orchards on dwarf rootstocks. Acta Horticulturae, 557, 229–234.CrossRefGoogle Scholar
  101. Wertheim, S. J. (2005). Planting systems and tree shape. In E. J. Tromp, A. D. Webster, & S. J. Wertheim (Eds.), Fundamentals of temperate zone tree fruit production (pp. 190–203). Leiden: Backhuys Publishers.Google Scholar
  102. Wertheim, S. J., Wagenmakers, J. H., Bootsma, J. H., & Groot, M. J. (2001). Orchard systems for apple and pears: Conditions for success. Acta Horticulturae, 557, 209–227.CrossRefGoogle Scholar
  103. Williams, L. E. (1996). Grape. In E. Zamski & A. A. Schaffer (Eds.), Photo assimilate distribution in plants and crops (pp. 851–881). New York: Marcel Dekker.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Maqbool Mir
    • 1
  • Munib-ur-Rehman
    • 1
  • Gh Hassan Rather
    • 1
  • Umar Iqbal
    • 1
  • Ashaq Hussain Pandit
    • 1
  • Mohammad Amin Mir
    • 1
  • Khalid Mushtaq Bhat
    • 1
  1. 1.Division of Fruit ScienceSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia

Personalised recommendations