Postharvest Biology and Technology of Persimmon

  • Cristina BesadaEmail author
  • Alejandra Salvador


Persimmon production has continued to increase in recent years. It is now being cultivated in more countries and new varieties are also reaching markets. One important feature that differentiates persimmon from other fruit crops is that the fruits from some cultivars are astringent at harvest, while other cultivars produce non-astringent fruits. Therefore, from a postharvest point of view, some cultivars require specific treatments being applied to remove astringency before their commercialization. On the other hand, storage of persimmons is limited by their sensitivity to manifest chilling injury at low temperature; the main chilling injury symptoms are related to textural changes. This chapter presents the postharvest biology and technology aspects of persimmon fruits.


Persimmon Maturity Astringency Chilling injury Pathological disorders Browning 


  1. Agfacts. (2003). Persimmon growing in New South Wales. Agfact H3.1.17. Elizabeth Macarthur Agricultural Research Institute, Camden, NSW, Agriculture. Industry & Investment. NSW Government. Retrieved from
  2. Agustí, M., Juan, M., Yagüe, B., Mesejo, C., Martínez-Fuentes, A., & Almela, V. (2003). Tratamientos para retrasar la maduración del fruto del caqui (Diospyros kaki L.) Comunidad Valenciana Agraria, 24, 27–33.Google Scholar
  3. Argenta, L. C., Vieira, M. J., & Tomazini, A. M. (2009). Conservação da qualidade de caqui ‘Fuyu’ em ambiente refrigerado pela combinação de 1-MCP e atmosfera modificada. Revista Brasileira de Fruticultura, 31(2), 323–333. (In Portuguese with English abstract).CrossRefGoogle Scholar
  4. Arnal, L., & Del Rio, M. A. (2004). Effect of cold storage and removal astringency on quality of persimmon fruit (Diospyros kaki, L.) cv. Rojo Brillante. Revista de Agaroquimica y Tecnologia de Alimentos, 10(3), 179–185.Google Scholar
  5. Arnal, L., Besada, C., Navarro, P., & Salvador, A. (2008). Effect of controlled atmospheres on maintaining quality of persimmon fruit cv. “Rojo Brillante”. Journal of Food Science, 73(1), 26–30.CrossRefGoogle Scholar
  6. Ben-Arie, R., Zutkhi, Y., Sonego, L., & Klein, J. (1991). Modified atmosphere packaging for long-term storage of astringent persimmons. Postharvest Biology and Technology, 1(2), 169–179.CrossRefGoogle Scholar
  7. Ben-Arie, R., Zhou, H. W., Sonego, L., & Zutkhi, Y. (1997). Plant growth regulator effects on the storage and shelf-life ‘Triumph’ persimmons. Acta Horticulturae, 436, 243–250.Google Scholar
  8. Ben-Arie, R., Zilkah, S., Klein, I., & Gamrasni, D. (2008). Persimmon and environment: Soil and water management for high quality fruit production. Advances in Horticultural Science, 22(4), 286–293.Google Scholar
  9. Besada, C., Arnal, L., & Salvador, A. (2008a). Improving storability of persimmon cv. Rojo Brillante by combined use of preharvest and postharvest treatments. Postharvest Biology and Technology, 50(2), 169–175.CrossRefGoogle Scholar
  10. Besada, C., Salvador, A., Arnal, L., & Martínez-Jávega, J. M. (2008b). Hot water treatment for chilling injury reduction of astringent ‘Rojo Brillante’ persimmon at different maturity stages. HortScience, 43(7), 2120–2123.Google Scholar
  11. Besada, C., Jackman, R. C., Olsson, S., & Woolf, A. B. (2010a). Response of ‘Fuyu’ persimmons to ethylene exposure before and during storage. Postharvest Biology and Technology, 57(2), 124–131.CrossRefGoogle Scholar
  12. Besada, C., Salvador, A., Arnal, L., & Martínez-Jávega, J. M. (2010b). Optimization of the duration of deastringency treatment depending on persimmon maturity. Acta Horticulturae, 858, 69–74.CrossRefGoogle Scholar
  13. Besada, C., Novillo, P., Navarro, P., & Salvador, A. (2014). Effect of a low oxygen atmosphere combined with 1-MCP pretreatment on preserving the quality of ‘Rojo Brillante’ and ‘Triumph’ persimmon during cold storage. Scientia Horticulturae, 179, 51–58.CrossRefGoogle Scholar
  14. Besada, C., Llorca, E., Novillo, P., Hernando, I., & Salvador, A. (2015). Short-term high CO2 treatment alleviates chilling injury of persimmon cv. Fuyu by preserving the parenchyma structure. Food Control, 51, 163–170.CrossRefGoogle Scholar
  15. Besada, C., Gil, R., Bonet, L., Quiñones, A., Intrigliolo, D., & Salvador, A. (2016). Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiology and Biochemistry, 100, 105–112.PubMedCrossRefGoogle Scholar
  16. Brackmann, A., Mazaro, S. M., & Saquet, A. A. (1997). Cold storage of persimmons (Diospyros kaki L.) cultivars Fuyu and Rama Forte. Ciencia-Rural, 27(4), 561–565.CrossRefGoogle Scholar
  17. Brackmann, A., Vilela, J. A., Silveira, A. C., Steffens, C., & Sestari, I. (2006). Storage conditions of ‘Fuyu’ persimmon. Revista Brasileira de Agrociência, 12, 183–186.Google Scholar
  18. Buesa, I., Badal, E., Guerra, D., Ballester, C., Bonet, L., & Intrigliolo, D. S. (2013). Regulated deficit irrigation in persimmon trees (Diospyros kaki) cv. ‘Rojo Brillante’. Scientia Horticulturae, 159, 134–142.CrossRefGoogle Scholar
  19. Burmeister, D. M., Ball, S., Green, S., & Woolf, A. B. (1997). Interaction of hot water treatments and controlled atmosphere storage on quality of ‘Fuyu’ persimmons. Postharvest Biology and Technology, 12(1), 71–81.CrossRefGoogle Scholar
  20. Candir, E. E., Ozdemir, A. E., Kaplankiran, M., & Toplu, C. (2009). Physico-chemical changes during growth of persimmon fruits in the East Mediterranean climate region. Scientia Horticulturae, 121(1), 42–48.CrossRefGoogle Scholar
  21. Chen, J., Ni, H., Sun, J., & Cheng, D. (2003). Effects of major secondary chemicals of wheat plants on enzyme activity in Sitobion avenae. Kunchong Xuebao, 46, 144–149. (In Chinese).Google Scholar
  22. Choi, S. T., Park, D. S., Son, J. Y., Park, Y. O., Hong, K. P., & Cho, K. S. (2013). Climate-related changes in fruit growth of ‘Fuyu’ persimmon during the harvest season. Korean Journal of Horticultural Science and Technology, 31(1), 32–37.CrossRefGoogle Scholar
  23. Choi, S. T., Park, D. S., Kim, E. S., Shin, H. Y., & Kang, S. M. (2014). Seasonal growth and characteristics of fruits developed from delayed flowers of ‘Fuyu’ persimmon. Scientia Horticulturae, 177, 108–111.CrossRefGoogle Scholar
  24. Collins, R. J., & Tisdell, J. S. (1995). The influence of storage time and temperature on chilling injury in Fuyu and Suruga persimmon (Diospyros kaki L.) grown in subtropical Australia. Postharvest Biology and Technology, 6(1–2), 149–157.CrossRefGoogle Scholar
  25. Crisosto, C. (2004). ‘Persimmon’. In K. C. Gross, C. Y. Wang, & M. Salveit (Eds.), Agriculture handbook number 66. The commercial storage of fruits, vegetables, and florist and nursery stocks. Retrieved from
  26. DanielI, R., Girardi, C. L., Parussolo, A., Ferri, V. C., & Rombaldi, C. V. (2002). Effect of the application of gibberellic acid and calcium chloride in the retardation of harvest and conservability of persimmon, Fuyu. Revista Brasileira de Fruticultura, 24(1), 44–48.CrossRefGoogle Scholar
  27. Del Bubba, M., Giordani, E., Pippucci, L., Cincinelli, A., Checchini, L., & Galvan, P. (2009). Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. Journal of Food Composition and Analysis, 22(7), 668–677.CrossRefGoogle Scholar
  28. Ebert, G., & Gross, J. (1985). Carotenoid changes in the peel of ripening persimmon (Diospyros kaki) cv Triumph. Phytochemistry, 24(1), 29–32.CrossRefGoogle Scholar
  29. FAOSTAT. (2014). Retrieved from
  30. Gazit, S., & Adato, I. (1972). Effect of carbon dioxide atmosphere on the course of astringency disappearance of persimmon (Diospyros kaki Linn.) fruits. Journal of Food Science, 37(6), 815–817.CrossRefGoogle Scholar
  31. Giordani, E., Doumett, S., Nin, S., & Del Bubba, M. (2011). Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): A review of analytical methods and current knowledge of fruit composition and health benefits. Food Research International, 44(7), 1752–1767.CrossRefGoogle Scholar
  32. Gorinstein, S., Bartnikowska, E., Kulasek, G., Zemser, M., & Trakhtenberg, S. (1998). Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. The Journal of Nutrition, 128(11), 2023–2027.PubMedCrossRefGoogle Scholar
  33. Gorinstein, S., Leontowicz, H., Leontowicz, M., Jesion, I., Namiesnik, J., Drzewiecki, J., & Trakhtenberg, S. (2011). Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition, 27(7–8), 838–846.PubMedCrossRefGoogle Scholar
  34. Grant, T. M., Macrae, E. A., & Redgwell, R. J. (1992). Effect of chilling injury on physicochemical properties of persimmon cell walls. Phytochemistry, 31(11), 3739–3744.CrossRefGoogle Scholar
  35. Hamada, K., Hasegawa, K., Kitajima, A., & Ogata, T. (2008). The relationship between fruit size and cell division and enlargement in cultivated and wild persimmons. The Journal of Horticultural Science and Biotechnology, 83(2), 218–222.CrossRefGoogle Scholar
  36. Ikegami, A., Yonemori, K., Kitajima, A., Sato, A., & Yamada, M. (2005a). Expression of genes involved in proanthocyanidin biosynthesis during fruit development in a Chinese Pollination-constant, Nonastringent (PCNA) Persimmon, ‘Luo Tian Tian Shi’. Journal of American Society for Horticultural Science, 130, 830–835.Google Scholar
  37. Ikegami, A., Kitajima, A., & Yonemori, K. (2005b). Inhibition of flavonoid biosynthetic gene expression coincides with loss of astringency in pollination-constant, non-astringent (PCNA)-type persimmon fruit. Journal of Horticultural Science and Biotechnology, 80(2), 225–228.CrossRefGoogle Scholar
  38. Intrigliolo, D. S., Bonet, L., Ferrer, P., Besada, C., & Salvador, A. (2011). Short-term effects of regulated deficit irrigation of ‘Rojo Brillante’ persimmon (Diospyros kaki)—Yield, fruit quality and post-harvest performance. Acta Horticulturae, 922, 113–120.CrossRefGoogle Scholar
  39. Itamura, H., Kitamura, T., Taira, S., Harada, H., Ito, N., Takahashi, Y., & Fukushima, T. (1991). Relationship between fruit softening, ethylene production and respiration in Japanese persimmon ‘Hiratanenashi’. Journal of the Japanese Society for Horticultural Science, 60(3), 695–701.CrossRefGoogle Scholar
  40. Kader, A. (2004). Postharvest technology of horticultural crops (2nd ed.). Oakland: Division of Agriculture and Natural Resources University of California.Google Scholar
  41. Khademi, O., Besada, C., Mostofi, Y., & Salvador, A. (2014). Changes in pectin methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in persimmon by hot water and 1-MCP treatments. Scientia Horticulturae, 179, 191–197.CrossRefGoogle Scholar
  42. Kim, Y. K., & Lee, J. M. (2005). Extension of storage and shelf-life of sweet persimmon with 1-MCP. Acta Horticulturae, 685, 165–174.CrossRefGoogle Scholar
  43. Kim, Y. H., Lim, S. C., Youn, C. K., Yoon, T., & Kim, T. S. (2004). Effect of ethephon on fruit quality and maturity of ‘Tone Wase’ astringent persimmons (Diospyros Kaki L.) Acta Horticulturae, 653, 187–191.CrossRefGoogle Scholar
  44. Kobiler, I., Akerman, M., Huberman, L., & Prusky, D. (2011). Integration of pre- and postharvest treatments for the control of black spot caused by Alternaria alternata in stored persimmon fruit. Postharvest Biology and Technology, 59(2), 166–171.CrossRefGoogle Scholar
  45. Krammes, J. G., Argenta, L. C., & Vieira, M. J. (2006). Influences of 1-methylcyclopropene on quality of persimmon fruit cv. ‘Fuyu’ after cold storage. Acta Horticulturae, 727, 513–518.CrossRefGoogle Scholar
  46. Kubo, Y., Nakano, R., & Inaba, A. (2003). Cloning of genes encoding cell wall modifying enzymes and their expression in persimmon fruit. Acta Horticulturae, 601, 49–55.CrossRefGoogle Scholar
  47. Kwon, J. H., & Park, C. S. (2004). Ecology of disease outbreak of circular leaf spot of persimmon and inoculum dynamics of Mycosphaerella nawae. Research in Plant Disease, 10(4), 209–216.CrossRefGoogle Scholar
  48. Kwon, J. H., Kim, J., Choi, O., Gang, G. H., Han, S., & Kwak, Y. S. (2013). Anthracnose caused by Colletotrichum horii on sweet persimmon in Korea: Dissemination of conidia and disease development. Journal of Phytopathology, 161(7–8), 497–502.CrossRefGoogle Scholar
  49. Lay-Yee, M., Ball, S., Forbes, S. K., & Woolf, A. B. (1997). Hot-water treatment for insect disinfestation and reduction of chilling injury of ‘Fuyu’ persimmon. Postharvest Biology and Technology, 10(1), 81–87.CrossRefGoogle Scholar
  50. Lee, Y. M., Jang, S. J., & Lee, Y. J. (1997). Effect of preharvest application of MGC-140 and GA3 on the storability of ‘Fuyu’ persimmon (Diospyros kaki L.) Journal of the Korean Society for Horticultural Science (Korea Republic), 38(2), 157–161.Google Scholar
  51. Luo, Z. S., & Xi, Y. F. (2005). Effect of storage temperature on physiology and ultrastructure of persimmon fruit. Journal of Zhejiang University Agriculture and Life Sciences, 31(2), 195–198.Google Scholar
  52. MacRae, E. A. (1987a). Development of chilling injury in New Zealand grown ‘Fuyu’ persimmon during storage. New Zealand Journal of Experimental Agriculture, 15(3), 333–344.CrossRefGoogle Scholar
  53. MacRae, E. A. (1987b). Storage and shelf life of Fuyu and Flat Fuyu persimmon in New Zealand 1984–1986. Division of Horticulture and Processing. DSIR, Postharvest.Google Scholar
  54. Matsuo, T., & Ito, S. (1977). On mechanisms of removing astringency in persimmon fruits by carbon dioxide treatment I. Some properties of the two processes in the de-astringency. Plant and Cell Physiology, 18(1), 17–25.Google Scholar
  55. Matsuo, T., & Itoo, S. (1982). A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: In vitro gelation of kaki-tannin by reacting with acetaldehyde. Agricultural and Biological Chemistry, 46(3), 683–689.Google Scholar
  56. Mowat, A. D., & George, A. P. (1996). Environmental physiology of persimmons. In B. Schaffer & P. Andersen (Eds.), Handbook of environmental physiology of fruit crops (pp. 195–202). Boca Raton: CRC Press Inc..Google Scholar
  57. Nakano, R., Yonemori, K., Sugiura, A., & Kataoka, I. (1997). Effect of gibberellic acid and abscisic acid on fruit respiration in relation to final swell and maturation in persimmon. Acta Horticulturae, 436, 203–214.CrossRefGoogle Scholar
  58. Naor, A. (2006). Irrigation scheduling and evaluation of tree water status in deciduous orchards. Horticultural Reviews, 32, 111–166.Google Scholar
  59. Niikawa, T., Suzuki, T., Ozeki, T., Kato, M., & Ikoma, Y. (2007). Characteristics of carotenoid accumulation during maturation of the Japanese persimmon ‘Fuyu’ [Diospyros kaki]. Horticultural Research (Japan), 6(2), 251–256.CrossRefGoogle Scholar
  60. Novillo, P., Besada, C., Gil, R., & Salvador, A. (2013). Fruit quality and response to deastringency treatment of eight persimmon varieties cultivated under Spanish growing conditions. Acta Horticulturae, 996, 437–442.CrossRefGoogle Scholar
  61. Novillo, P., Salvador, A., Llorca, E., Hernando, I., & Besada, C. (2014). Effect of CO2 deastringency treatment on flesh disorders induced by mechanical damage in persimmon. Biochemical and microstructural studies. Food Chemistry, 145, 454–463.PubMedCrossRefGoogle Scholar
  62. Novillo, P., Besada, C., Tian, L., Bermejo, A., & Salvador, A. (2015a). Nutritional composition of ten persimmon cultivars in the “ready-to-eat crisp” stage. Effect of deastringency treatment. Food and Nutrition Sciences, 6(14), 1296.CrossRefGoogle Scholar
  63. Novillo, P., Salvador, A., Navarro, P., & Besada, C. (2015b). Involvement of the redox system in chilling injury and its alleviation by 1-methylcyclopropene in ‘Rojo Brillante’ Persimmon. HortScience, 50(4), 570–576.Google Scholar
  64. Novillo, P., Salvador, A., Navarro, P., & Besada, C. (2015c). Sensitivity of astringent and non-astringent persimmon cultivars to flesh disorders induced by mechanical damage. Acta Horticulturae, 1079, 605–610.CrossRefGoogle Scholar
  65. Orihuel-Iranzo, B., Miranda, M., Zacarías, L., & Lafuente, M. T. (2010). Temperature and ultra low oxygen effects and involvement of ethylene in chilling injury of ‘Rojo Brillante’ persimmon fruit. Food Science and Technology International, 16(2), 159–167.PubMedCrossRefGoogle Scholar
  66. Palou, L., Montesinos-Herrero, C., Guardado, A., Besada, C., & Del Río, M. A. (2009). Fungi associated with postharvest decay of persimmon in Spain. Acta Horticulturae, 833, 275–280.CrossRefGoogle Scholar
  67. Palou, L., Taberner, V., Guardado, A., & Montesinos-Herrero, C. (2012). First report of Alternaria alternata causing postharvest black spot of persimmon in Spain. Australasian Plant Disease Notes, 7(1), 41–42.CrossRefGoogle Scholar
  68. Palou, L., Montesinos-Herrero, C., Besada, C., & Taberner, V. (2013a). Postharvest fruit rot of persimmon (Diospyros kaki) in Spain caused by Lasiodiplodia theobromae and Neofusicoccum spp. Journal of Phytopathology, 161(9), 625–631.CrossRefGoogle Scholar
  69. Palou, L., Montesinos-Herrero, C., Guardado, A., & Taberner, V. (2013b). First report of Pestalotiopsis clavispora causing postharvest fruit rot of loquat in Spain. Journal of Plant Pathology, 95(Suppl. 4), S4.69.Google Scholar
  70. Palou, L., Montesinos-Herrero, C., Tarazona, I., & Taberner, V. (2013c). Postharvest anthracnose of persimmon fruit caused by Colletotrichum gloeosporioides first reported in Spain. Plant Disease, 97(5), 691–691.CrossRefGoogle Scholar
  71. Park, Y. M., & Lee, Y. J. (2008). Induction of modified atmosphere-related browning disorders in ‘Fuyu’ persimmon fruit. Postharvest Biology and Technology, 47(3), 346–352.CrossRefGoogle Scholar
  72. Pérez, A., Ben-Arie, R., Dinoor, A., Genizi, A., & Prusky, D. (1995). Prevention of black spot disease in persimmon fruit by gibberellic acid and iprodione treatments. Phytopathology, 85(2), 221–225.CrossRefGoogle Scholar
  73. Pérez-Munuera, I., Quiles, A., Larrea, V., Arnal, L., Besada, C., & Salvador, A. (2009a). Microstructure of persimmon treated by hot water to alleviate chilling injury. Acta Horticulturae, 883, 251–256.CrossRefGoogle Scholar
  74. Pérez-Munuera, I., Hernando, I., Larrea, V., Besada, C., Arnal, L., & Salvador, A. (2009b). Microstructural study of chilling injury alleviation by 1-methylcyclopropene in persimmon. HortScience, 44(3), 742–745.Google Scholar
  75. Pesis, E., Levi, A., & Ben-Arie, R. (1988). Role of acetaldehyde production in the removal of astringency from persimmon fruits under various modified atmospheres. Journal of Food Science, 53(1), 153–156.CrossRefGoogle Scholar
  76. Prusky, D., Ben-Arie, R., & Guelfat-Reich, S. (1981). Etiology and histology of Alternaria rot of persimmon fruits. Phytopathology, 71(11), 1124–1128.CrossRefGoogle Scholar
  77. Prusky, D., Eshel, D., Kobiler, I., Yakoby, N., Beno-Moualem, D., Ackerman, M., & Arie, R. B. (2001). Postharvest chlorine treatments for the control of the persimmon black spot disease caused by Alternaria alternata. Postharvest Biology and Technology, 22(3), 271–277.CrossRefGoogle Scholar
  78. Prusky, D., Kobiler, I., Akerman, M., & Miyara, I. (2006). Effect of acidic solutions and acidic prochloraz on the control of postharvest decay caused by Alternaria alternata in mango and persimmon fruit. Postharvest Biology and Technology, 42(2), 134–141.CrossRefGoogle Scholar
  79. Salvador, A., Arnal, L., Monterde, A., & Cuquerella, J. (2004). Reduction of chilling injury symptoms in persimmon fruit cv.‘Rojo Brillante’ by 1-MCP. Postharvest Biology and Technology, 33(3), 285–291.CrossRefGoogle Scholar
  80. Salvador, A., Arnal, L., Monterde, A., & Martínez-Jávega, J. M. (2005). Influence of ripening stage at harvest on chilling injury symptoms of persimmon cv. Rojo Brillante stored at different temperatures. Food Science and Technology International, 11(5), 359–365.CrossRefGoogle Scholar
  81. Salvador, A., Arnal, L., Carot, J. M., Carvalho, C. P., & Jabaloyes, J. M. (2006). Influence of different factors on firmness and color evolution during the storage of persimmon cv. ‘Rojo Brillante’. Journal of Food Science, 71(2), S169–S175.CrossRefGoogle Scholar
  82. Salvador, A., Arnal, L., Besada, C., Larrea, V., Quiles, A., & Pérez-Munuera, I. (2007). Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biology and Technology, 46(2), 181–188.CrossRefGoogle Scholar
  83. Salvador, A., Arnal, L., Besada, C., Larrea, V., Hernando, I., & Pérez-Munuera, I. (2008). Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15 C: Physiological and microstructural study. Postharvest Biology and Technology, 49(3), 340–347.CrossRefGoogle Scholar
  84. Santos-Buelga, C., & Scalbert, A. (2000). Proanthocyanidins and tannin-like compounds–nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture, 80(7), 1094–1117.CrossRefGoogle Scholar
  85. Senter, S. D., Chapman, G. W., Forbus, W. R., & Payne, J. A. (1991). Sugar and nonvolatile acid composition of persimmons during maturation. Journal of Food Science, 56(4), 989–991.CrossRefGoogle Scholar
  86. Sugiura, A., & Tomana, T. (1983). Relationships of ethanol production by seeds of different types of Japanese persimmons and their tannin content [Diospyros kaki, pollination, astringency]. HortScience, 18, 319–321.Google Scholar
  87. Sugiura, A., Zheng, G. H., & Yonemori, K. (1991). Growth and ripening of persimmon fruit at controlled temperatures during growth stage III. HortScience, 26(5), 574–576.Google Scholar
  88. Taira, S., Itamura, H., Abe, K., & Watanabe, S. (1989). Comparison of the characteristics of removal of astringency in two Japanese persimmon cultivars, ‘Denkuro’ and ‘Hiratanenashi’. Journal of the Japanese Society for Horticultural Science, 58(2), 319–325.CrossRefGoogle Scholar
  89. Taira, S., Itamura, H., Abe, K., Oor, K., & Watanabe, S. (1990). Effect of harvest maturity on removal of astringency in Japanese persimmon (Diospyros kaki Thunb.), ‘Hratanenashi’ fruits. Journal of the Japanese Society for Horticultural Science, 58(4), 813–818.CrossRefGoogle Scholar
  90. Taira, S., Oba, S., & Watanabe, S. (1992a). Removal of astringency from ‘Hiratanenashi’ persimmon fruit with a mixture of ethanol and carbon dioxide. Journal of the Japanese Society for Horticultural Science, 61(2), 437–443.CrossRefGoogle Scholar
  91. Taira, S., Satoh, I., & Watanabe, S. (1992b). Relationship between differences in the ease of removal of astringency among fruits of Japanese persimmon (Diospyros kaki Thunb.) and their ability to accumulate ethanol and acetaldehyde. Journal of the Japanese Society for Horticultural Science, 60(4), 1003–1009.CrossRefGoogle Scholar
  92. Taira, S., Ono, M., & Matsumoto, N. (1997). Reduction of persimmon astringency by complex formation between pectin and tannins. Postharvest Biology and Technology, 12(3), 265–271.CrossRefGoogle Scholar
  93. Taira, S., Matsumoto, N., & Ono, M. (1998). Accumulation of soluble and insoluble tannins during fruit development in nonastringent and astringent persimmon. Journal of the Japanese Society for Horticultural Science, 67(4), 572–576.CrossRefGoogle Scholar
  94. Tanaka, T., Takahashi, R., Kouno, I., & Nonaka, G. I. (1994). Chemical evidence for the de-astringency (insolubilization of tannins) of persimmon fruit. Journal of the Chemical Society, Perkin Transactions, 1(20), 3013–3022.CrossRefGoogle Scholar
  95. Tessmer, M. A., Besada, C., Hernando, I., Appezzato-da-Glória, B., Quiles, A., & Salvador, A. (2016). Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biology and Technology, 120, 52–60.CrossRefGoogle Scholar
  96. Tsviling, A., Nerya, O., Gizis, A., Sharabi-Nov, A., & Ben-Arie, R. (2003). Extending the shelf-life of ‘Triumph’ persimmons after storage, with 1-MCP. Acta Horticulturae, 599, 53–58.CrossRefGoogle Scholar
  97. Weir, B. S., & Johnston, P. R. (2010). Characterisation and neotypification of Gloeosporium kaki Hori as Colletotrichum horii nom. nov. Mycotaxon, 111(1), 209–219.CrossRefGoogle Scholar
  98. Wills, R., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals (262 pp). Wallingford: CAB International.Google Scholar
  99. Woolf, A. B., & Ben Arie, R. (2011). Persimmon (Diospyros kaki L.) In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits (pp. 166–193). Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  100. Woolf, A. B., MacRae, E. A., Spooner, K. J., & Redgwell, R. J. (1997a). Changes to physical properties of the cell wall and polyuronides in response to heat treatment of ‘Fuyu’ persimmon that alleviate chilling injury. Journal of the American Society for Horticultural Science, 122(5), 698–702.Google Scholar
  101. Woolf, A. B., Ball, S., Spooner, K. J., Lay-Yee, M., Ferguson, I. B., Watkins, C. B., & Forbes, S. K. (1997b). Reduction of chilling injury in the sweet persimmon ‘Fuyu’ during storage by dry air heat treatments. Postharvest Biology and Technology, 11(3), 155–164.CrossRefGoogle Scholar
  102. Woolf, A., Jackman, R., Olsson, S., Manning, M., Rheinlander, P., Mowat, A., & Harker, R. (2008). Meeting consumer requirements from a New Zealand perspective. Advances in Horticultural Science, 22(4), 274–280.Google Scholar
  103. Yamada, M., Taira, S., Ohtsuki, M., Sato, A., Iwanami, H., Yakushiji, H., & Li, G. (2002). Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among Oriental astringent persimmons of Japanese and Chinese origin. Scientia Horticulturae, 94(1), 63–72.CrossRefGoogle Scholar
  104. Yokozawa, T., Kim, Y. A., Kim, H. Y., Lee, Y. A., & Nonaka, G. I. (2007). Protective effect of persimmon peel polyphenol against high glucose-induced oxidative stress in LLC-PK 1 cells. Food and Chemical Toxicology, 45(10), 1979–1987.PubMedCrossRefGoogle Scholar
  105. Yonemori, K., & Matsushima, J. (1985). Property of development of the tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. Journal of the Japanese Society for Horticultural Science, 54(2), 201–208.CrossRefGoogle Scholar
  106. Yonemori, K., & Suzuki, Y. (2009). Differences in three-dimensional distribution of tannin cells in flesh tissue between astringent and non-astringent type persimmon. Acta Horticulturae, 833, 119–124.CrossRefGoogle Scholar
  107. Yonemori, K., Ikegami, A., Kanzaki, S., & Sugiura, A. (2003). Unique features of tannin cells in fruit of pollination constant non-astringent persimmons. Acta Horticulturae, 601, 31–35.CrossRefGoogle Scholar
  108. Zhang, Y., Rao, J., Sun, Y., & Li, S. (2010). Reduction of chilling injury in sweet persimmon fruit by 1-MCP. Acta Horticulturae Sinica, 37(4), 547–552.Google Scholar
  109. Zheng, G., & Sugiura, A. (1990). Changes in sugar composition in relation to invertase activity in the growth and ripening of persimmon (Diospyros kaki) fruits. Journal of the Japanese Society for Horticultural Science, 59(2), 281–287.CrossRefGoogle Scholar
  110. Zhou, C., Zhao, D., Sheng, Y., Tao, J., & Yang, Y. (2011). Carotenoids in fruits of different persimmon cultivars. Molecules, 16(1), 624–636.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Postharvest DepartmentInstituto Valenciano de Investigaciones Agrarias (IVIA)ValenciaSpain

Personalised recommendations