Advertisement

Postharvest Biology and Technology of Berries

  • Sunil Kumar
  • Murlimanohar Baghel
  • Ashok Yadav
  • Mahesh Kumar Dhakar
Chapter

Abstract

The common term ‘berry fruit’ includes different fruits, such as blueberry, currant, gooseberry, raspberry, and blackberry. These fruits are the richest sources of natural antioxidants. Almost all berries are non-climacteric and are considered highly perishable, being susceptible to mechanical injury during transportation, picking, and storage. The postharvest life of berries is limited to a few days and only a small percentage of these fruits can be consumed fresh. In order to minimize undesirable changes in quality attributes during the postharvest period, a series of techniques to extend the shelf life of perishable fruit can be adopted. Postharvest technology comprises different methods of harvesting, packaging, rapid cooling, storage under refrigeration, as well as modified and controlled atmospheres, and transportation under controlled conditions. This chapter will deal with various aspects of berries, viz., fruit maturation, ripening, postharvest biological factors, and causes of postharvest losses and different postharvest techniques to extend the postharvest shelf life.

Keywords

Small berries Raspberry Postharvest biology Perishable Technology Shelf life 

References

  1. Abdallah, A. Y., & Palta, J. P. (1989). Changes in biophysical and biochemical properties of cranberry (Vaccinium macrocarpon Ait.) fruit during growth and development. In IV International Symposium on Vaccinium Culture (Vol. 241, pp. 360–365).Google Scholar
  2. Adams-Phillips, L., Barry, C., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9(7), 331–338.CrossRefPubMedGoogle Scholar
  3. Aghdam, M. S., Pouraghdam, M. B. H., Paliyath, G., & Farmani, B. (2012). The language of calcium in postharvest life of fruits, vegetables and flowers. Scientia Horticulturae, 144, 102–115.CrossRefGoogle Scholar
  4. Anttonen, M. J., & Karjalainen, R. O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis, 18(8), 759–769.CrossRefGoogle Scholar
  5. Astuti, N. K., Maghfoer, M. D., & Soelistyono, R. (2013). Calcium chloride applications to improve fruit quality on bruised and diseased of pineapple (Ananas comosos (L) Merr). Applied Chemistry, 5, 30–34.Google Scholar
  6. Bailey, L. H. (1949). Manual of cultivated plants (pp. 519–526). New York: Macmillan.Google Scholar
  7. Beaudry, R. M. (1993). Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient. Postharvest Biology and Technology, 3(3), 249–258.CrossRefGoogle Scholar
  8. Benvenuti, S., Pellati, F., Melegari, M., & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69, 164–169.CrossRefGoogle Scholar
  9. Bergman, H. F. (1929). Changes in the rate of respiration of the fruits of the cultivated blueberry during ripening. Science, 70(1801), 15–15.CrossRefPubMedGoogle Scholar
  10. Biale, J. B., & Young, R. E. (1981). Respiration and ripening in fruits. Retrospect and prospect. In J. Friend & M. J. Rhodes (Eds.), Recent advances in the biochemistry of fruits and vegetables (pp. 1–40). New York: Academic.Google Scholar
  11. Bialka, K. L., Demirci, A., & Puri, V. M. (2008). Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. Journal of Food Engineering, 85(3), 444–449.CrossRefGoogle Scholar
  12. Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38(1), 155–178.CrossRefGoogle Scholar
  13. Brennan, R. (2005). Current and gooseberries (Ribes L.) In J. Janick (Ed.), The encyclopedia of fruits and nut crops (pp. 191–295). Wallingford: CABI International.Google Scholar
  14. Brody, A. L., Zhuang, H., & Han, J. H. (2010). Modified atmosphere packaging for fresh-cut fruits and vegetables. Ames: Wiley-Blackwell.Google Scholar
  15. Burden, J. N., & Sexton, R. (1990). The role of ethylene in the shedding of red raspberry fruit. Annals of Botany, 66, 111–120.CrossRefGoogle Scholar
  16. Burdon, J. N., & Sexton, R. (1990). Fruit abscission and ethylene production of red raspberry cultivars. Scientia Horticulturae, 43(1–2), 95–102.CrossRefGoogle Scholar
  17. Burdon, J. N., & Sexton, R. (1993). Ethylene co-ordinates petal abscission in red raspberry (Rubus idaeus L.) flowers. Annals of Botany, 72(4), 289–294.CrossRefGoogle Scholar
  18. Burton, C. L., & Schulte-Pason, N. L. (1987). Carbon dioxide as an indicator of fruit impact damage. HortScience, 22(2), 281–282.Google Scholar
  19. Cameron, A. C., Fenton, C. A. L., Yu, Y., Adams, D. O., & Yang, S. F. (1979). Increased production of ethylene by plant tissues treated with 1-aminocyclopropane-1-carboxylic acid [Growth regulators]. HortScience., 14, 178–180.Google Scholar
  20. Cantín, C. M., Minas, I. S., Goulas, V., Jiménez, M., Manganaris, G. A., Michailides, T. J., & Crisosto, C. H. (2012). Sulfur dioxide fumigation alone or in combination with CO 2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology, 67, 84–91.CrossRefGoogle Scholar
  21. Castrejón, A. D. R., Eichholz, I., Rohn, S., Kroh, L. W., & Huyskens-Keil, S. (2008). Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chemistry, 109(3), 564–572.CrossRefGoogle Scholar
  22. Ceponis, M. J., & Cappellini, R. A. (1983). Control of postharvest decays of blueberries by carbon dioxide-enriched atmospheres. Plant Disease, 67, 169–170.CrossRefGoogle Scholar
  23. Cha, D. S., & Chinnan, M. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44, 223–237.CrossRefPubMedGoogle Scholar
  24. Chandler, F. B. (1952). Preliminary report on the development of cranberry fruit. Cranberries, 17(4), 6–7.Google Scholar
  25. Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology, 40, 106–115.CrossRefGoogle Scholar
  26. Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2007). Natural volatile treatments increase free-radical scavenging capacity of strawberries and blackberries. Journal of the Science of Food and Agriculture, 87, 1463–1472.CrossRefGoogle Scholar
  27. Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio (2nd ed.p. 785). Lavras: UFLA.Google Scholar
  28. Cho, E., Seddon, J. M., Rosner, B., Willett, W. C., & Hankinson, S. C. (2004). Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Archives of Ophthalmology, 122, 883–892.CrossRefPubMedGoogle Scholar
  29. Clifford, M. N., & Scalbert, A. (2000). Ellagitannins, occurrence in food, bioavailability and cancer prevention. Journal of the Science of Food and Agriculture, 80, 1118–1125.CrossRefGoogle Scholar
  30. Connor, A. M., Luby, J. J., Hancock, J. F., Berkheimer, S., & Hanson, E. J. (2002). Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. Journal of Agricultural and Food Chemistry, 50(4), 893–898.CrossRefPubMedGoogle Scholar
  31. Costa-Guimaraes, I., Menezes, E. G. T., Abreu, P. S. D., Rodrigues, A. C., Borges, P. R. S., Batista, L. R., Marcelo, A. C., & Lima, L. C. D. O. (2013). Physicochemical and microbiological quality of raspberries (Rubus idaeus) treated with different doses of gamma irradiation. Food Science and Technology (Campinas), 33(2), 316–322.CrossRefGoogle Scholar
  32. Crowe, K. M., Bushway, A. A., Bushway, R. J., Davis-Dentici, K., & Hazen, R. A. (2007). A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium). International Journal of Food Microbiology, 116(1), 25–31.CrossRefPubMedGoogle Scholar
  33. Dai, J., Patel, J. D., & Mumper, R. J. (2007). Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. Journal of Medicinal Food, 10(2), 258–265.CrossRefPubMedGoogle Scholar
  34. Donno, D., Cavanna, M., Beccaro, G. L., Mellano, M. G., Torello-Marinoni, D., Cerutti, A. K., & Bounous, G. (2013). Currants and strawberries as bioactive compound sources: Determination of antioxidant profiles with HPLC-DAD/MS. Journal of Applied Botany and Food Quality, 86, 1–10.Google Scholar
  35. Fan, L., Forney, C. F., Song, J., Doucette, C., Jordan, M. A., McRae, K. B., & Walker, B. A. (2008). Effect of hot water treatments on quality of highbush blueberries. Journal of Food Science, 70, 292–296.CrossRefGoogle Scholar
  36. FAO. (2014). FAOSTAT database collections. Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://faostat.fao.org
  37. Forney, C. F. (2009). Postharvest issues in blueberry and cranberry and methods to improve market-life. In IX International Vaccinium Symposium (Vol. 810, pp. 785–798).Google Scholar
  38. Forney, C. F., Kalt, W., Jordan, M. A., Vinqvist-Tymchuk, M. R., & Fillmore, S. A. (2012). Blueberry and cranberry fruit composition during development. Journal of Berry Research, 2(3), 169–177.Google Scholar
  39. Galletta, G. J., & Ballington, J. R. (1996). Blueberries, cranberries and lingonberries. In J. Janick & J. N. Moore (Eds.), Fruit breeding, Vol. II: Vine and small fruits crops (pp. 1–107). New York: Wiley.Google Scholar
  40. Garcia, J. M., Herrera, S., & Morilla, A. (1996). Effects of postharvest dips in calcium chloride on strawberry. Journal of Agricultural and Food Chemistry, 44(1), 30–33.CrossRefGoogle Scholar
  41. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Biology, 52(1), 725–749.CrossRefGoogle Scholar
  42. Giovannoni, J. J. (2004). Genetic regulation of fruit development and ripening. The Plant Cell, 16(Suppl 1), S170–S180. Retrieved from http://www.nutrition-and-you.com/.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Goulart, B. L., Hammer, P. E., Evensen, K. B., Janisiewicz, W., & Takeda, F. (1992). Pyrrolnitrin, Captan+ Benomyl, and high CO2 enhance raspberry shelf life at 0 or 18C. Journal of the American Society for Horticultural Science, 117(2), 265–270.Google Scholar
  44. Gunes, G., Liu, R. H., & Watkins, C. B. (2002). Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. Journal of Agricultural and Food Chemistry, 50(21), 5932–5938.CrossRefPubMedGoogle Scholar
  45. Hall, I. V., & Forsyth, F. R. (1967). Production of ethylene by flowers following pollination and treatments with water and auxin. Canadian Journal of Botany, 45(7), 1163–1166.CrossRefGoogle Scholar
  46. Hanson, E. J., Beggs, J. L., & Beaudry, R. M. (1993). Applying calcium chloride postharvest to improve blueberry firmness. HortScience, 28, 1033–1034.Google Scholar
  47. Hassanpour, H. (2015). Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Science and Technology, 60(1), 495–501.CrossRefGoogle Scholar
  48. Hertog, M., Boerrigter, H., van den Boogaard, G., Tijskens, L., & van Schaik, A. (1999). Predicting keeping quality of strawberries (cv. ‘Elsanta’) packed under modified atmospheres: An integrated model approach. Postharvest Biology and Technology, 15, 1–12.CrossRefGoogle Scholar
  49. Horvitz, S. (2017). Postharvest handling of berries. In Postharvest handling (pp. 107–123). InTech.Google Scholar
  50. Joles, D. W., Cameron, A. C., Shirazi, A., Petracek, P. D., & Beaudry, R. M. (1994). Modified-atmosphere packaging of ‘Heritage’ red raspberry fruit: Respiratory response to reduced oxygen, enhanced carbon dioxide, and temperature. Journal of the American Society for Horticultural Science, 119(3), 540–545.Google Scholar
  51. Kader, A. A. (2001). A summary of CA requirements and recommendations for fruits other than apples and pears (pp. 737–740). In VIII International Controlled Atmosphere Research Conference 600.Google Scholar
  52. Kader, A. A. (2002). Postharvest technology of horticultural crops (Vol. 3311). UCANR Publications.Google Scholar
  53. Kahkonen, M. P., Hopia, A. I., & Heinonen, M. (2001). Berry phenolics and their antioxidative activity. Journal of Agricultural and Food Chemistry, 49, 4076–4082.CrossRefPubMedGoogle Scholar
  54. Kalt, W., & McDonald, J. E. (1996). Chemical composition of lowbush blueberry cultivars. Journal of the American Society for Horticultural Science, 121(1), 142–146.Google Scholar
  55. Kalt, W., Forney, C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638–4644.CrossRefPubMedGoogle Scholar
  56. Kalt, W., Lawand, C., Ryan, D. A., McDonald, J. E., Donner, H., & Forney, C. F. (2003). Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. Journal of the American Society for Horticultural Science, 128(6), 917–923.Google Scholar
  57. Kalt, W., Howell, A. B., MacKinnon, S. L., & Goldman, I. L. (2007). Selected bioactivities of Vaccinium berries and other fruit crops in relation to their phenolic contents. Journal of the Science of Food and Agriculture, 87, 2279–2285.CrossRefGoogle Scholar
  58. Kim, G., & Wills, R. (1998). Interaction of enhanced carbon dioxide and reduced ethylene on the storage life of strawberries. Journal of Horticultural Science and Biotechnology, 73, 181–184.CrossRefGoogle Scholar
  59. Kiple, K. F., Ornelas, K. C., & Blake, A. (2000). Book reviews—The Cambridge World History of Food. Nature, 408(6815), 908–908.CrossRefGoogle Scholar
  60. Kowalenko, C. G. (2005). Accumulation and distribution of micronutrients in Willamette red raspberry plants. Canadian Journal of Plant Science, 85, 179–191.CrossRefGoogle Scholar
  61. Krüger, E., Schöpplein, E., Rasim, S., Cocca, G., & Fischer, H. (2003). Effects of ripening stage and storage time on quality parameters of red raspberry fruit. European Journal of Horticultural Science, 68(4), 176–182.Google Scholar
  62. Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220.CrossRefGoogle Scholar
  63. Leja, M., Mareczek, A., & Ben, J. (2003). Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry, 80(3), 303–307.CrossRefGoogle Scholar
  64. Lurie, S. (2009). Stress physiology and latent damage. In W. J. Florkowski, R. L. Shewfelt, B. Brueckner, & S. E. Prussia (Eds.), Postharvest handling: A systems approach (pp. 443–459). San Diego: Academic.CrossRefGoogle Scholar
  65. Manganaris, G. A., Goulas, V., Vicente, A. R., & Terry, L. A. (2014). Berry antioxidants: Small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825–833.  https://doi.org/10.1002/jsfa.6432.CrossRefPubMedGoogle Scholar
  66. Mertz, C., Gancel, A. L., Gunata, Z., Alter, P., Dhuique-Mayer, C., Vaillant, F., Perez, A. M., & Brat, P. (2009). Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. Journal of Food Composition and Analysis, 22(5), 381–387.CrossRefGoogle Scholar
  67. Mitcham, E. J., Clayton, M., & Biasi, W. V. (1998). Comparison of devices for measuring cherry fruit firmness. HortScience, 33(4), 723–727.Google Scholar
  68. Monselise, S. P. (1986). CRC handbook of fruit set and development (No. 634.02 C7).Google Scholar
  69. Mullen, W., McGinn, J., Lean, M. E. J., MacLean, M. R., Gardner, P., Duthie, G. G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50, 5191–5196.CrossRefPubMedGoogle Scholar
  70. Nile, S. H., & Park, S. W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30, 134–144.CrossRefPubMedGoogle Scholar
  71. Pelayo, C., Ebeler, S. E., & Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 50C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171–183.CrossRefGoogle Scholar
  72. Perkins-Veazie, P., & Kalt, W. (2002). Postharvest storage of blackberry fruit does not increase antioxidant levels. Acta Horticulturae, 585, 521–524.CrossRefGoogle Scholar
  73. Perkins-Veazie, P., & Nonnecke, G. (1992). Physiological changes during ripening of raspberry fruit. HortScience, 27(4), 331–333.Google Scholar
  74. Perkins-Veazie, P., Clark, J. R., Collins, J. K., & Magee, J. (1995). Southern highbush blueberry clones differ in postharvest fruit quality. Fruit Varieties Journal, 49(1), 46–52.Google Scholar
  75. Perkins-Veazie, P., Collins, J. K., & Clark, J. R. (1996). Cultivar and maturity affect postharvest quality of fruit from erect blackberries. HortScience, 31(2), 258–261.Google Scholar
  76. Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285.CrossRefGoogle Scholar
  77. Petersen, K., Nielsen, P. V., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10, 52–68.CrossRefGoogle Scholar
  78. Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., & Mainland, C. M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46, 2686–2693.CrossRefGoogle Scholar
  79. Reynoso, R. O., & De Michelis, A. (1994). Parameters affecting freezing, storage and transport of individually frozen Schöeneman raspberries. International Journal of Refrigeration, 17(3), 209–213.CrossRefGoogle Scholar
  80. Rigby, B., & Dana, M. N. (1971). Seed number and berry volume in cranberry. HortScience, 6, 495–496.Google Scholar
  81. Rimando, A. M., Nagmani, R., Feller, D. R., & Yokoyama, W. (2005). Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor a-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. Journal of Agricultural and Food Chemistry, 53, 3403–3407.CrossRefPubMedGoogle Scholar
  82. Rivera, S. A., Zoffoli, J. P., & Latorre, B. A. (2013). Determination of optimal sulfur dioxide time and concentration product for postharvest control of gray mold of blueberry fruit. Postharvest Biology and Technology, 83, 40–46.CrossRefGoogle Scholar
  83. Robbins, J., Moore, P. P., & Patterson, M. (1989a). Fruit respiration rates and firmness of red raspberry and related Rubus genotypes. Acta Horticulturae, 262, 311–317.CrossRefGoogle Scholar
  84. Robbins, J., Sjulin, T. M., & Patterson, M. (1989b). Postharvest storage characteristics and respiration rates in five cultivars of red raspberry. HortScience, 24, 980–982.Google Scholar
  85. Rommel, A., & Wrolstad, R. E. (1993). Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors. Journal of Agricultural and Food Chemistry, 41(11), 1951–1960.CrossRefGoogle Scholar
  86. Samtani, J., & Kushad, M. M. (2015). A longer marketing life for blackberry and raspberry fruit (pp. 423–701). Virginia Cooperative Extension, Virginia State University, publication.Google Scholar
  87. Sandhya. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Science and Technology, 43(3), 381–392.CrossRefGoogle Scholar
  88. Sluis, A. A., Dekker, M., Jongen, W. M., & deJager, A. (2001). Polyphenolic antioxidants in apples. Effect of storage conditions on four cultivars (Vol. 600, pp. 533–540). In VIII International Controlled Atmosphere Research Conference.Google Scholar
  89. Smith, R. B. (1992). Controlled atmosphere storage of ‘Redcoat’ strawberry fruit. Journal of the American Society for Horticultural Science, 117, 260–264.Google Scholar
  90. Smith, B. J., Magee, J. B., & Gupton, C. L. (1996). Susceptibility of rabbiteye blueberry cultivars to postharvest diseases. Plant Disease, 80(2), 215–218.CrossRefGoogle Scholar
  91. Smittle, D. A., & Miller, W. R. (1988). Rabbiteye blueberry storage life and fruit quality in controlled atmospheres and air storage. Journal of the American Society for Horticultural Science, 113, 723–728.Google Scholar
  92. Sommer, N. F. (1985). Role of controlled environments in suppression of postharvest diseases. Canadian Journal of Plant Pathology, 7(3), 331–339.CrossRefGoogle Scholar
  93. Sturm, K., Koron, D., & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83(3), 417–422.CrossRefGoogle Scholar
  94. Tamada, T. (2004). Blueberry production in Japan—today and in the future. In VIII International Symposium on Vaccinium Culture (Vol. 715, pp. 267–272).Google Scholar
  95. Turmanidze, T., Gulua, L., Jgenti, M., & Wicker, L. (2016). Effect of calcium chloride treatments on quality characteristics of blackberry, raspberry and strawberry fruits after cold storage. Turkish Journal of Agriculture-Food Science and Technology, 4(12), 1127–1133.CrossRefGoogle Scholar
  96. Vicente, A. R., Manganaris, G. A., Sozzi, G. O., & Crisosto, C. H. (2009). Nutritional quality of fruits and vegetables. In W. J. Florkowski, R. L. Shewfelt, B. Brueckner, & S. E. Prussia (Eds.), Postharvest handling: A systems approach (pp. 57–106). San Diego: Academic.CrossRefGoogle Scholar
  97. Vvedenskaya, I. O., & Vorsa, N. (2004). Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Science, 167(5), 1043–1054.CrossRefGoogle Scholar
  98. Walsh, C. S., Popenoe, J., & Solomos, T. (1983). Thornless blackberry is a climacteric fruit. HortScience, 18(4), 482–483.Google Scholar
  99. Westwood, M. N. (1993). Temperate-zone. Pomology, physiology and culture. Portland: Timber Press.Google Scholar
  100. Wills, R. B. H. (1998). Enhancement of senescence in non-climacteric fruit and vegetables by low ethylene levels. Acta Horticulturae, 464, 159–162.CrossRefGoogle Scholar
  101. Yahia, E. M., & Ornelas-Paz, J. D. J. (2010). Chemistry, stability and biological actions of carotenoids. Fruit and vegetable phytochemicals (pp. 177–222).Google Scholar
  102. Zhao, Y. (Ed.). (2007). Berry fruit: Value-added products for health promotion. Boca Raton: CRC Press.Google Scholar
  103. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170.CrossRefPubMedGoogle Scholar
  104. Zoffoli, J. P., & Latorre, B. A. (2011). Table grape (Vitis vinifera L.) In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits. V. 3, Cocona to mango (pp. 179–212). Cambridge: Woodhead Publishing Limited.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sunil Kumar
    • 1
  • Murlimanohar Baghel
    • 1
  • Ashok Yadav
    • 1
  • Mahesh Kumar Dhakar
    • 2
  1. 1.Division of Fruits and Horticultural TechnologyICAR—Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.ICAR Research Complex for Eastern Region, Research CentreRanchiIndia

Personalised recommendations