Postharvest Biology and Technology of Strawberry

  • Sadaf Parvez
  • Idrees Ahmed Wani


Strawberry is one of the most cultivated and consumed berry in the world. It is widely appreciated for its characteristic aroma, bright red color, juicy texture, and sweetness. Strawberries are highly perishable, with a short postharvest life. Their short postharvest life is mainly due to their susceptibility towards mechanical injury, physiological deterioration, water loss, and microbial decay. Owing to higher perishability, the shelf life enhancement of strawberry fruit is crucial and demanding. Various techniques like controlled atmosphere storage, modified atmosphere packaging, gamma irradiation, coatings, chemical treatments, etc. have been used for the shelf life enhancement of strawberry fruit.


Strawberry Ripening Maturity Controlled atmosphere Modified atmosphere packaging Irradiation 1-MCP Active packaging 


  1. Aaby, K., Ekeberg, D., & Skrede, G. (2007). Characterization of phenolic compounds in strawberry (Fragariax ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agricultural and Food Chemistry, 55, 4395–4406.CrossRefPubMedGoogle Scholar
  2. Aaby, K., Mazur, S., Nes, A., & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry, 132, 86–97.CrossRefPubMedGoogle Scholar
  3. Adamo, M., Capitani, D., Mannina, L., Cristinzio, M., Ragni, P., Tata, A., & Coppola, R. (2004). Truffles decontamination treatment by ionizing radiation. Radiation Physics and Chemistry, 71(1–2), 167–170.CrossRefGoogle Scholar
  4. Aday, M. S., & Caner, C. (2010). Understanding the effects of various edible coatings on the storability of fresh cherry. Packaging Technology and Science, 23, 441–456.CrossRefGoogle Scholar
  5. Aday, M. S., & Caner, C. (2011). The applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries. Packaging Technology and Science, 24, 123–136.CrossRefGoogle Scholar
  6. Aday, M. S., Caner, C., & Rahvali, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62, 179–187.CrossRefGoogle Scholar
  7. Aguayo, E., Jansasithorn, R., & Kader, A. A. (2006). Combined effects of 1-methylcyclopropene, calcium chloride dip, and/or atmospheric modification on quality changes in fresh-cut strawberries. Postharvest Biology and Technology, 40(3), 269–278.CrossRefGoogle Scholar
  8. Aharoni, Y., Hartsell, P. L., Stewart, J. K., & Young, D. K. (1979). Control of western flower thrips on harvested strawberries with acetaldehyde in air, 50% carbon dioxide or 1% oxygen. Journal of Economic Entomology, 72, 820–822.CrossRefGoogle Scholar
  9. Almenar, E., Hernández-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2006). Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.) Journal of Agricultural and Food Chemistry, 54, 86–91.CrossRefPubMedGoogle Scholar
  10. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & Gonzalez-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Science and Technology, 37, 687–695.CrossRefGoogle Scholar
  11. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221, 731–738.CrossRefGoogle Scholar
  12. Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: Development and control (pp. 418–442). Elsevier Science B.V.Google Scholar
  13. Barrios, S., Lema, P., & Lareo, C. (2014). Modeling respiration rate of strawberry (cv. San Andreas) for modified atmosphere packaging design. International Journal of Food Properties, 17, 2039–2051.CrossRefGoogle Scholar
  14. Battino, M., Beekwilder, J., Denoyes-Rothan, B., Laimer, M., McDougall, G. J., & Mezzetti, B. (2009). Bioactive compounds in berries relevant to human health. Nutrition Reviews, 67, S145–S150.CrossRefPubMedGoogle Scholar
  15. Bhat, R., & Stamminger, R. (2015). Preserving strawberry quality by employing novel food preservation and processing techniques—recent updates and future scope—An overview. Journal of Food Process Engineering, 38, 536–554.CrossRefGoogle Scholar
  16. Bohling, H. (1986). Risks and possibilities of handling and quality preservation of fruit, vegetables and cut flowers during long distance transportation C. E. C. Workshop. November 25–27, Thessaloniki, Greece.Google Scholar
  17. Caner, C., Aday, M. S., & Demir, M. (2008). Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. European Food Research and Technology, 227, 1575–1583.CrossRefGoogle Scholar
  18. Castro, I., Gonçalves, O., Teixeira, J. A., & Vicente, A. A. (2002). Comparative study of Selva and Camarosa strawberries from the commercial market. Journal of Food Science, 67, 2132–2137.CrossRefGoogle Scholar
  19. Cheng, G. W., & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116, 865–869.Google Scholar
  20. Choi, H. J., Bae, Y. S., Lee, J. S., Park, M. H., & Kim, J. G. (2016). Effects of carbon dioxide treatment and modified atmosphere packaging on the quality of long distance transporting “Maehyang” strawberry. Agricultural Sciences, 7, 813–821.CrossRefGoogle Scholar
  21. Cordenunsi, B. R., Genovese, M. I., Nascimento, J. R. O., Hassimotto, N. M. A., Santos, R. J., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91, 113–121.CrossRefGoogle Scholar
  22. Couey, H. M., & Wells, J. M. (1970). Low oxygen or high carbon dioxide atmospheres to control post-harvest decay of strawberries. Phytopathology, 60, 47–49.CrossRefGoogle Scholar
  23. Couey, H. M., Follstad, M. N., & Uota, M. (1966). Low-oxygen atmospheres for control of postharvest decay of fresh strawberries. Phytopathology, 56, 1339–1341.Google Scholar
  24. Dhital, R., Joshi, P., Becerra-Mora, N., Umagiliyage, A., Chai, T., Kohli, P., & Choudhary, R. (2017). Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. LWT-Food Science and Technology, 80, 257–264.CrossRefGoogle Scholar
  25. Emond, J. P., & Chau, K. V. (1990). Use of perforations in modified atmosphere packaging. American Society of Agricultural Engineers, paper no. 90-6512.Google Scholar
  26. Emond, J. P., Castaigne, F., Toupin, C. J., & Desilets, D. (1991). Mathematical modelling of gas exchange in modified atmosphere packaging. Transactions of the American Society of Agricultural Engineers, 34, 239–245.CrossRefGoogle Scholar
  27. Eshghi, S., Hashemi, M., Mohammadi, A., Badii, F., Hoseini, Z. M., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food and Bioprocess Technology, 7(8), 2397–2407.CrossRefGoogle Scholar
  28. Fan, X., Niemira, B. A., & Sokorai, K. J. B. (2003). Sensorial, nutritional and microbiological quality of fresh cilantro leaves as influenced by ionizing radiation and storage. Food Research International, 36, 713–719.CrossRefGoogle Scholar
  29. Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., & Zhang, B. (2009). Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria×ananassa) preservation quality. Postharvest Biology and Technology, 53, 84–90.CrossRefGoogle Scholar
  30. FAOSTAT. FAO Statistics Division (2017). Accessed 09.09.17
  31. Fishman, S., Rodov, V., & Ben-Yehoshua, S. (1996). Mathematical model for perforation effect on oxygen and water vapor dynamics in modified-atmosphere packages. Journal of Food Science, 61, 956–961.CrossRefGoogle Scholar
  32. Freeman, S., Katan, T., & Ezra Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82(6), 596–605.CrossRefGoogle Scholar
  33. Garcia, L. C., Pereira, L. M., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2011). Effect of antimicrobial starch edible coating on shelf-life of fresh strawberries. Packaging Technology and Science, 25, 413–425.CrossRefGoogle Scholar
  34. Garcia-Viguera, C., Zafrilla, P., & Tomas-Barberan, F. T. (1998). The use of acetone as an extraction solvent for anthocyanins from strawberry fruits. Phytochemical Analysis, 9, 274–277.CrossRefGoogle Scholar
  35. Geraldine, R. M., Soares, N. F. F., Botrel, D. A., & Gonçalves, L. A. (2008). Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydrate Polymers, 72, 403–409.CrossRefGoogle Scholar
  36. Giampieri, F., Tulipani, S., Alvarez-Suarez, J., Quiles, J., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28, 9–19.CrossRefGoogle Scholar
  37. Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J. L., Ferreiro, M. S., Tulipani, S., & Battino, M. (2013). The potential impact of strawberry on human health. Natural Product Research, 27, 448–455.CrossRefPubMedGoogle Scholar
  38. Giuggioli, N. R., Girgenti, V., Baudino, C., & Peano, C. (2015). Influence of modified atmosphere packaging storage on postharvest quality and aroma compounds of strawberry fruits in a short distribution chain. Journal of Food Processing and Preservation, 39, 3154–3164.CrossRefGoogle Scholar
  39. Given, N. K., Venis, M. A., & Grierson, D. (1988). Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening in the strawberry fruit. Journal of Plant Physiology, 133, 25–30.CrossRefGoogle Scholar
  40. Guerreiro, A. C., Gago, C. M. L., Maria, L., Faleiro, M. L., Miguel, M. G. C., Maria, D. C., & Antunes, M. D. C. (2015). The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biology and Technology, 110, 51–60.CrossRefGoogle Scholar
  41. Guynot, M. E., Sanchis, V., Ramos, A. J., & Marin, S. (2003). Mold-free shelf-life extension of bakery products by active packaging. Journal of Food Science, 68, 2547–2552.CrossRefGoogle Scholar
  42. Han, C., Zhao, Y., Leonard, S. W., & Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.CrossRefGoogle Scholar
  43. Harvey, J. M., Harris, C. M., Tietjen, W. J., & Seriol, T. (1980). Quality maintenance in truck shipments of California strawberries (13 pp). U.S. Department of Agriculture, Advances in Agricultural Technology AAT-W-12.Google Scholar
  44. Hertog, M. L. A. T. M., & Banks, N. H. (2003). Improving MAP through conceptual models. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 351–376). Cambridge; Boca Raton: Woodhead Publishing Limited, CRC Press.Google Scholar
  45. Hirata, T., Makino, Y., Ishikawa, Y., Katsuura, S., & Hasekawa, Y. (1996). A theoretical model for designing modified atmosphere packaging with a perforation. Transactions of the American Society of Agricultural Engineers, 39, 1499–1504.CrossRefGoogle Scholar
  46. Husaini, A. M., & Abdin, M. Z. (2007). Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria x ananassa Duch. In Vitro Cellular and Developmental Biology-Plant, 43, 567–584.CrossRefGoogle Scholar
  47. Hussain, P. R., Meena, R. S., Dar, M. A., Mir, M. A., Shafi, F., & Wani, A. M. (2007). Effect of gamma-irradiation and refrigerated storage on mold growth and keeping quality of strawberry (Fragaria sp) cv. ‘Confitura’. Journal of Food Science and Technology, 44, 513–516.Google Scholar
  48. Hussain, P. R., Dar, M. A., Ali, M., & Wani, A. M. (2012). Effect of edible coating and gamma irradiation on inhibition of mould growth and quality retention of strawberry during refrigerated storage. International Journal of Food Science and Technology, 47(11), 2318–2324.CrossRefGoogle Scholar
  49. Iannetta, P. P. M., Laarhovenb, L. J., Medina-Escobar, N., James, E. K., McManuse, M. T., Davies, H. V., & Harren, F. J. M. (2006). Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiologia Plantarum, 127, 247–259.CrossRefGoogle Scholar
  50. Jiang, Y., Joyce, D. C., & Macnish, A. J. (1999). Responses to banana fruit to treatment with 1-methylcyclopropene. Plant Growth Regulation, 28, 77–82.CrossRefGoogle Scholar
  51. Jiang, Y., Joyce, D. C., & Terry, L. A. (2001). 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biology and Technology, 23, 227–232.CrossRefGoogle Scholar
  52. Jimenez-Escrig, A., Santos-Hidalgo, A. B., & Saura-Calixto, F. (2006). Common sources and estimated intake of plant sterols in the Spanish diet. Journal of Agricultural and Food Chemistry, 54, 3462–3471.CrossRefPubMedGoogle Scholar
  53. Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., & Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111.CrossRefGoogle Scholar
  54. Jouki, M., & Khazaei, N. (2014). Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packaging and Shelf Life, 1(1), 49–55.CrossRefGoogle Scholar
  55. Kader, A. A. (1991). Quality and its maintenance in relation to the post-harvest physiology of strawberry. In A. Dale & J. J. Luby (Eds.), The strawberry into the 21st century: Proceedings of the Third North American Strawberry Conference (Chap. 29, pp. 145–152). Portland: Timber Press.Google Scholar
  56. Kader, A. A. (1992). Modified atmospheres during transport and storage. In A. A. Kader (Ed.), Postharvest technology of horticulture crops (pp. 85–95). Berkeley: University of California, Division of Agriculture and Natural Resources, Publication 3311.Google Scholar
  57. Kader, A. A. (2002). Postharvest technology of horticultural crops (3rd ed.). Oakland: University of California, Division of Agriculture and Natural Resources Publication 3311.Google Scholar
  58. Ku, V. V. V., & Wills, R. B. H. (1999). Effect of 1-methylcyclopropene on the storage life of broccoli. Postharvest Biology and Technology, 17, 127–132.CrossRefGoogle Scholar
  59. Leshem, Y. Y., & Pinchasov, Y. (2000). Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.) Journal of Experimental Botany, 51, 1471–1473.PubMedGoogle Scholar
  60. Li, C., & Kader, A. A. (1989). Residual effects of controlled atmospheres on postharvest physiology and quality of strawberries. Journal of the American Society for Horticultural Science, 114, 629–634.Google Scholar
  61. Liming, X., & Tiezhong, Z. (2007). Influence of light intensity on extracted colour feature values of different maturity in strawberry. New Zealand Journal of Agricultural Research, 50, 559–565.CrossRefGoogle Scholar
  62. Lopes-da-Silva, F., de Pascual-Teresa, S., Rivas-Gonzalo, J. C., & Santuos-Buelga, C. (2002). Identification of anthocyanin pigments in strawberry (cv. Camarosa) by LC using DAD and ESI-MS detection. European Food Research and Technology, 214, 248–253.CrossRefGoogle Scholar
  63. Maas, J. L. (1984). Fungal diseases of the fruit. In J. L. Maas (Ed.), Compendium of strawberry diseases (pp. 56–78). St. Paul: American Phytopathological Society.Google Scholar
  64. Mahajan, P. V., Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008). Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biology and Technology, 48, 408–414.CrossRefGoogle Scholar
  65. Manning, K. (1993). Soft fruits. In G. B. Seymour, J. E. Taylor, & G. A. Tucker (Eds.), Biochemistry of fruit ripening (pp. 347–377). London: Chapman & Hall.CrossRefGoogle Scholar
  66. Maraei, R. W., & Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. Journal of Radiation Research and Applied Sciences, 10, 80–87.CrossRefGoogle Scholar
  67. Mattila, P., Hellstrom, J., & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54, 7193–7199.CrossRefPubMedGoogle Scholar
  68. Mingchi, L., & Kojimo, T. (2005). Study on fruit injury susceptibility of strawberry grown under different soil moisture to storage and transportation. Journal of Fruit Science, 22, 238–242.Google Scholar
  69. Montero, T. M., Mollá, E. M., Esteban, R. M., & Lόpez-Andréu, F. J. (1996). Quality attributes of strawberry during ripening. Scientia Horticulturae, 65, 239–250.CrossRefGoogle Scholar
  70. Mukkun, L., & Singh, Z. (2009). Methyl jasmonate plays a role in fruit ripening of ‘Pajaro’ strawberry through stimulation of ethylene biosynthesis. Scientia Horticulturae, 123, 5–10.CrossRefGoogle Scholar
  71. Nielsen, T., & Leufvén, A. (2008). The effect of modified atmosphere packaging on the quality of Honeoye and Korona strawberries. Food Chemistry, 107, 1053–1063.CrossRefGoogle Scholar
  72. Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (1995). Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biology and Technology, 6, 17–28.CrossRefGoogle Scholar
  73. O’Connor, R. E., & Mitchell, G. E. (1991). Effect of irradiation on microorganisms in strawberries. International Journal of Food Microbiology, 12, 247–255.CrossRefPubMedGoogle Scholar
  74. Oregel-Zamudio, E., Angoa-Pérez, M. V., Oyoque-Salcedo, G., Aguilar-González, C. N., & Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279.CrossRefGoogle Scholar
  75. Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Stasio, M. D., & Volpe, M. G. (2016). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9(11), 1951–1960.CrossRefGoogle Scholar
  76. Panda, A. K., Goyal, R. K., Godara, A. K., & Sharma, V. K. (2016). Effect of packaging materials on the shelf-life of strawberry cv. Sweet Charlie under room temperature storage. Journal of Applied and Natural Science, 8(3), 1290–1294.Google Scholar
  77. Perkins-Veazie, P. M., Huber, D. J., & Brecht, J. K. (1996). In vitro growth and ripening of strawberry fruit in presence of ACC, STS or propylene. Annals of Applied Biology, 128, 105–116.CrossRefGoogle Scholar
  78. Quaranta, H. O., & Piccini, J. L. (1984). Radiation preservation of strawberry fruit: A review. Radiation Effects, 81(1–2), 1–7.CrossRefGoogle Scholar
  79. Rennie, T. J., & Tavoularis, S. (2009). Perforation-mediated modified atmosphere packaging: Part I. Development of a mathematical model. Postharvest Biology and Technology, 51, 1–9.CrossRefGoogle Scholar
  80. Romanazzi, G., Nigro, F., Ippolito, A., & Salerno, M. (2001). Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biology and Technology, 22, 1–6.CrossRefGoogle Scholar
  81. Sandhya, S. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Science and Technology, 43, 381–392.CrossRefGoogle Scholar
  82. Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., & Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT-Food Science and Technology, 74, 14–20.CrossRefGoogle Scholar
  83. Sanz, C., Olías, R., & Pérez, A. G. (2002). Quality assessment of strawberries packed with perforated polypropylene punnets during cold storage. Food Science and Technology International, 8(2), 65–71.CrossRefGoogle Scholar
  84. Shamaila, M., Baumann, T. E., Eaton, G. W., Powrie, W. D., & Skura, B. J. (1992). Quality attributes of strawberry cultivars grown in British Columbia. Journal of Food Science, 57(3), 696–699.CrossRefGoogle Scholar
  85. Sistrunk, W. A., & Morris, J. A. (1985). Strawberry quality: Influence of cultural and environmental factors. In H. E. Pattee (Ed.), Evaluation of quality of fruits and vegetables (pp. 217–256). Westport: AVI Publishing Company.Google Scholar
  86. Smith, R. B., Skog, L. J., & Dale, A. (2003). Strawberries. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of food sciences and nutrition (pp. 5624–5628). London: Elsevier.CrossRefGoogle Scholar
  87. Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35.CrossRefGoogle Scholar
  88. Sommer, N. F., Fortlage, R. J., Mitchell, F. G., & Maxie, E. C. (1973). Reduction of postharvest losses of strawberry fruits from gray mold. Journal of the American Society for Horticultural Science, 98, 285–288.Google Scholar
  89. Spayd, S. E., & Morris, J. R. (1981). Physical and chemical characteristics of puree from once-over harvested strawberries. Journal of the American Society for Horticultural Science, 106, 101–105.Google Scholar
  90. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.CrossRefGoogle Scholar
  91. Tapia, M. S., Rojas-Graü, M. A., Carmona, A., Rodriguez, F. J., Soliva-Fortuny, R., & Martin-Bellose, O. (2008). Use of alginate and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22, 1493–1503.CrossRefGoogle Scholar
  92. Torrieri, E., Perone, N., Cavella, S., & Masi, P. (2010). Modelling the respiration rate of minimally processed broccoli (Brassica rapa var. sylvestris) for modified atmosphere package design. International Journal of Food Science and Technology, 45, 2186–2193.CrossRefGoogle Scholar
  93. Trevino-Garza, M. Z., García, S., Flores-Gonzalez, M. S., & Arevalo-Nino, K. (2015). Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Science, 80(8), M1823–M1830.CrossRefPubMedGoogle Scholar
  94. Tulipani, S., Romandini, S., Busco, F., Bompadre, S., Mezzetti, B., & Battino, M. (2009). Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chemistry, 117, 181–188.CrossRefGoogle Scholar
  95. Vachon, C., D’Aprano, G., Lacroix, M., & Letendre, M. (2003). Effect of edible coating process and irradiation treatment of strawberry Fragaria spp. on storage-keeping quality. Journal of Food Science, 68, 608–611.CrossRefGoogle Scholar
  96. Vargas, M., Albors, A., Chiralt, A., & González-Martinez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coating. Postharvest Biology and Technology, 41, 164–171.CrossRefGoogle Scholar
  97. Velde, F. V. D., Tarola, A. M., Güemes, D., & Pirovani, M. E. (2013). Bioactive compounds and antioxidant capacity of Camarosa and Selva strawberries (Fragaria x ananassa Duch.) Foods, 2(2), 120–131.CrossRefGoogle Scholar
  98. Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52, 80–92.CrossRefGoogle Scholar
  99. Vu, K. D., Hollingsworth, R. G., Leroux, E., Salmieri, S., & Lacroix, M. (2011). Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International, 44(1), 198–203.CrossRefGoogle Scholar
  100. Wedge, D. E., Smith, B. J., Quebedeaux, J. P., & Constantin, R. J. (2007). Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection, 26(9), 1449–1458.CrossRefGoogle Scholar
  101. Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., & Hu, Q. H. (2010). Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4°C. Journal of Food Science, 75(3), 236–240.CrossRefGoogle Scholar
  102. Zhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78, 281–287.CrossRefGoogle Scholar
  103. Zhang, H., Ma, L., Song Jiang, S., Lin, H., Zhang, X., Ge, L., & Xu, Z. (2010). Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. International Journal of Food Microbiology, 141, 122–125.CrossRefPubMedGoogle Scholar
  104. Zheng, Y., Zhenfeng, Y., & Xuehong, C. (2008). Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control, 19, 470–474.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sadaf Parvez
    • 1
  • Idrees Ahmed Wani
    • 1
  1. 1.Department of Food Science & TechnologyUniversity of KashmirSrinagarIndia

Personalised recommendations