Advertisement

Postharvest Biology and Technology of Kiwifruit

  • Nirmal Kumar Meena
  • Murlimanohar Baghel
  • S. K. Jain
  • Ram Asrey
Chapter

Abstract

Kiwifruit is one of the most recently domesticated temperate fruit crops. The consumption of fresh kiwifruits is booming due to its numerous health benefits. The postharvest physiology of kiwifruit is rather complex and is very sensitive to exogenous ethylene. The lack of proper maturity harvest indices is a major drawback in postharvest management, except for the soluble solids content (SSC), which is widely used as a harvest index. Many pre- and postharvest factors are involved in the deterioration of fresh fruit quality and storage life. Therefore, the development of novel techniques to maintain the quality and shelf life of fruits after harvesting is a major challenge. Recent postharvest and storage techniques like the use of ethylene scrubber and blockers, surface coatings, postharvest fungicides, heat treatments, ionizing radiation, and the use of bioagents, controlled atmosphere (CA) storage, and modified atmosphere packaging (MAP), along with cold chain management, are helping to address the call for preserving quality.

Keywords

Kiwifruit Physiological factors Postharvest biology Physicochemical properties Postharvest treatments 

References

  1. Abe, K., & Watada, A. E. (1991). Ethylene absorbent to maintain quality of lightly processed fruits and vegetables. Journal of Food Science, 56(6), 1589–1592.CrossRefGoogle Scholar
  2. Abeles, F. B., Morgan, M. P., & Saltveit, M. E., Jr. (1992). Ethylene in plant biology (p. 414). San Diego: Academic.Google Scholar
  3. Acican, T., Alibaş, K., & Özelkök, I. S. (2007). Mechanical damage to apples during transport in wooden crates. Biosystems Engineering, 96(2), 239–248.CrossRefGoogle Scholar
  4. Ahmadi, E. (2012). Bruise susceptibilities of kiwifruit as affected by impact and fruit properties. Research in Agricultural Engineering, 58(3), 107–113.CrossRefGoogle Scholar
  5. Antunes, M. D. C. (2007). The role of ethylene in kiwifruit ripening and senescence. Stewart Postharvest Review, 3(2), 1–8.CrossRefGoogle Scholar
  6. Antunes, M. D. C., & Sfakiotakis, E. M. (1995). The effect of controlled atmosphere and ultra low oxygen on storage ability and quality of ‘Hayward’ kiwifruit. In III International Symposium on Kiwifruit (Vol. 444, pp. 613–618).Google Scholar
  7. Antunes, M. D., & Sfakiotakis, E. M. (2002). Chilling induced ethylene biosynthesis in ‘Hayward’ kiwifruit following storage. Scientia Horticulturae, 92(1), 29–39.CrossRefGoogle Scholar
  8. Antunes, M. D. C., & Sfakiotakis, E. M. (2008). Changes in fatty acid composition and electrolyte leakage of ‘Hayward’ kiwifruit during storage at different temperatures. Food Chemistry, 110(4), 891–896.PubMedCrossRefGoogle Scholar
  9. Antunes, M. D. C., Pateraki, I., Kanellis, A. K., & Sfakiotakis, E. M. (2000). Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of ‘Hayward’ kiwifruit. The Journal of Horticultural Science and Biotechnology, 75(5), 575–580.CrossRefGoogle Scholar
  10. Antunes, M. D. C., Neves, N., Curado, F., Rodrigues, S., & Panagopoulos, T. (2005). The effect of pre and postharvest calcium applications on ‘Hayward’ kiwifruit storage ability. Acta Horticulturae, 682(2), 909–916.CrossRefGoogle Scholar
  11. Arpaia, M. L., Mitchell, F. G., Kader, A. A., & Mayer, G. (1986). Ethylene and temperature effects on softening and white core inclusions of kiwifruit stored in air or controlled atmospheres. Journal of the American Society for Horticultural Science, 111(1), 149–153.Google Scholar
  12. Arpaia, M. L., Labavitch, J. M., Greve, C., & Kader, A. A. (1987). Changes in the cell wall components of kiwifruit during storage in air or controlled atmosphere. Journal of the American Society for Horticultural Science, 112(3), 474–481.Google Scholar
  13. Asiche, W. O., Mitalo, O. W., Kasahara, Y., Tosa, Y., Mworia, E. G., Ushijima, K., Nakano, R., & Kubo, Y. (2017). Effect of storage temperature on fruit ripening in three kiwifruit cultivars. The Horticulture Journal, OKD-028.Google Scholar
  14. Atkinson, R. G., & MacRae, E. A. (2007). Kiwifruits: Biotechnology in agriculture and forestry. In E. C. Pua & M. R. Davey (Eds.), Transgenic crops V (Vol. 60, pp. 329–346).Google Scholar
  15. Atkinson, R. G., Gunaseelan, K., Wang, M. Y., Luo, L., Wang, T., Norling, C. L., Johnston, S. L., Maddumage, R., Schröder, R., & Schaffer, R. J. (2011). Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. Journal of Experimental Botany, 62(11), 3821–3835.PubMedCrossRefGoogle Scholar
  16. Bal, E., & Celik, S. (2010). The effects of postharvest treatments of salicylic acid and potassium permanganate on the storage of kiwifruit. Bulgarian Journal of Agriculture Sciences, 16(2), 576–584.Google Scholar
  17. Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951.CrossRefGoogle Scholar
  18. Bauchot, A. D., Hallett, I. C., Redgwell, R. J., & Lallu, N. (1999). Cell wall properties of kiwifruit affected by low temperature breakdown. Postharvest Biology and Technology, 16(3), 245–255.CrossRefGoogle Scholar
  19. Bautista-Baños, S., Long, P. G., & Ganesh, S. (1997). Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biology and Technology, 12(2), 137–145.CrossRefGoogle Scholar
  20. Beever, D. J., & Hopkirk, G. (1990). Fruit development and fruit physiology. In I. J. Warrington & G. C. Wetson (Eds.), Kiwifruit: Science and management (pp. 97–126). Auckland: Ryan Richards Publisher.Google Scholar
  21. Ben-Arie, R., Gross, J., & Sonego, L. (1982). Changes in ripening-parameters and pigments of the Chinese gooseberry (kiwi) during ripening and storage. Scientia Horticulturae, 18(1), 65–70.CrossRefGoogle Scholar
  22. Benítez, S., Achaerandio, I., Pujolà, M., & Sepulcre, F. (2015). Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT-Food Science and Technology, 61(1), 184–193.CrossRefGoogle Scholar
  23. Beutel, J. A., Winter, F. H., Manners, S. C., & Miller, M. W. (1976). A new crop for California: Kiwifruit. California Agriculture, 30(10), 5–7.Google Scholar
  24. Biggs, A. R. (1999). Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Disease, 83(11), 1001–1005.CrossRefGoogle Scholar
  25. Boquete, E. J., Trinchero, G. D., Fraschina, A. A., Vilella, F., & Sozzi, G. O. (2004). Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage. Postharvest Biology and Technology, 32(1), 57–65.CrossRefGoogle Scholar
  26. Brackett, R. E. (1994). Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables. In Minimally processed refrigerated fruits and vegetables (pp.269–312). Springer.Google Scholar
  27. Burdon, J. (2015). Soluble solids revisited: A maturity or harvest index for kiwifruit. Proc. XIII IS on Kiwifruit. Acta Horticulturae, 1096, 257–266.CrossRefGoogle Scholar
  28. Burdon, J., & Clark, C. (2001). Effect of postharvest water loss on ‘Hayward’ kiwifruit water status. Postharvest Biology and Technology, 22(3), 215–225.CrossRefGoogle Scholar
  29. Burdon, J., & Lallu, N. (2011). Kiwifruit (Actinidia spp.). Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
  30. Burdon, J., McLeod, D., Lallu, N., Gamble, J., Petley, M., & Gunson, A. (2004). Consumer evaluation of “Hayward” kiwifruit of different at-harvest dry matter contents. Postharvest Biology and Technology, 34(3), 245–255.CrossRefGoogle Scholar
  31. Burg, S. P. (1968). Ethylene, plant senescence and abscission. Plant Physiology, 43(9 Pt B), 1503.PubMedPubMedCentralGoogle Scholar
  32. Chattopadhayay, T. K. (2008). A textbook on pomology (Vol. IV). Ludhiana: Kalyani Publishers.Google Scholar
  33. Chiaramonti, N., & Barboni, T. (2010). Relationship between the physicochemical parameters and the ethylene emission during cold storage of kiwifruits. International Journal of Food Science & Technology, 45(7), 1513–1516.CrossRefGoogle Scholar
  34. Cook, D. W. M., Long, P. G., & Ganesh, S. (1999). The combined effect of delayed application of yeast biocontrol agents and fruit curing for the inhibition of the postharvest pathogen Botrytis cinerea in kiwifruit. Postharvest Biology and Technology, 16, 233–243.CrossRefGoogle Scholar
  35. Costa, G., & Ferguson, A. R. (2013, November). Bacterial canker of kiwifruit: Response to a threat. In I International Symposium on Bacterial Canker of Kiwifruit (Vol. 1095, pp. 27–40).Google Scholar
  36. Crisosto, C. H., & Kader, A. A. (1999). Kiwifruit postharvest quality maintenance guidelines. Davis: Department of Pomology, University of California.Google Scholar
  37. Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (1999). Kiwifruit. Fresh Produce Facts, University of California. Retrieved from http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Fruit_English/?uid=30&ds=798
  38. Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (2000). Produce facts kiwi fruit. Management of fruit ripening. Postharvest Horticulture Research, 9, 40–41.Google Scholar
  39. Crisosto, C. H., Hasey, J., Cantin, C., Garibay, S., & Crisosto, G. M. (2008). New kiwifruit dry weight protocol. Cooperative Extension. University of California. Central Valley Postharvest Newsletter, 17, 11–15.Google Scholar
  40. Cruz-Castillo, J. G., Woolley, D. J., & Lawes, G. S. (2002). Kiwifruit size and CPPU response are influenced by the time of anthesis. Scientia Horticulturae, 95(1), 23–30.CrossRefGoogle Scholar
  41. Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81(10), 988–1000.CrossRefGoogle Scholar
  42. Drummond, L. (2013). The composition and nutritional value of kiwifruit. Advances in Food and Nutrition Research, 68, 33–57.PubMedCrossRefGoogle Scholar
  43. Du, J., Gemma, H., & Iwahori, S. (1997). Effect of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66, 15–22.CrossRefGoogle Scholar
  44. FAOSTAT. 2014. Food and Agriculture Organization of the United Nations. http://faostat.fao.org.
  45. Faivre-Rampant, O., Charpentier, J. P., Kevers, C., Dommes, J., Van Onckelen, H., Jay-Allemand, C., & Gaspar, T. (2002). Cuttings of the non-rooting rac tobacco mutant overaccumulate phenolic compounds. Functional Plant Biology, 29(1), 63–71.CrossRefGoogle Scholar
  46. Fanglun, J. I. N., Zhang, F., Xuan, Y. U. E., Ming, L. I., & Xuexi, A. O. (2016). Correlation between leaf size and fruit quality of kiwi. Agricultural Science & Technology, 17(11), 2469–2472.Google Scholar
  47. Fattahi, J., Fifall, R., & Babri, M. (2010). Postharvest quality of kiwifruit (Actinidia deliciosa cv. Hayward) affected by pre-storage application of salicylic acid. South Western Journal of Horticulture, Biology and Environment, 1, 175–186.Google Scholar
  48. Feng, J., MacKay, B. R., Maguire, K. M., Benge, J. R. & Jeffery, P. B. (2002). Suggestions on rationalized methodologies to investigate kiwifruit storage life. In XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, 628, 591–598.Google Scholar
  49. Ferguson, A. R. (1984). Kiwifruit: A botanical review. Horticultural Reviews, 6, 1–64.Google Scholar
  50. Ferguson, I. B., & Boyd, L. M. (2002). Inorganic nutrients and fruit quality. In M. Knee (Ed.), Fruit quality and its biological basis (pp. 15–45). Sheffield: Sheffield Academic Press.Google Scholar
  51. Ferguson, A. R., & Huang, H. W. (2007). Genetic resources of kiwifruit: Domestication and breeding. Horticultural Reviews, 33, 1–121.Google Scholar
  52. Fisk, C. L. (2006). Investigation of postharvest quality and storability of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’). A thesis submitted to Oregon State University.Google Scholar
  53. Fisk, C. L., Silver, A. M., Strik, B. C., & Zhao, Y. (2008). Postharvest quality of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) associated with packaging and storage conditions. Postharvest Biology and Technology, 47(3), 338–345.CrossRefGoogle Scholar
  54. Fonseca, S. C., Oliveira, F. A., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52(2), 99–119.CrossRefGoogle Scholar
  55. Gallego, P. P., & Zarra, I. (1997). Changes in cell wall composition and water-soluble polysaccharides during kiwifruit development. Annals of Botany, 79(6), 695–701.CrossRefGoogle Scholar
  56. Gerasopoulos, D., & Drogoudi, P. D. (2005). Summer-pruning and preharvest calcium chloride sprays affect storability and low temperature breakdown incidence in kiwifruit. Postharvest Biology and Technology, 36, 303–308.CrossRefGoogle Scholar
  57. Gerasopoulos, D., Chlioumis, G., & Sfakiotakis, E. (2006). Non-freezing points below zero induce low temperature breakdown of kiwifruit at harvest. Journal of the Science of Food and Agriculture, 86(6), 886–890.CrossRefGoogle Scholar
  58. Ghani, M. A. A., Awang, Y., & Sijam, K. (2011). Disease occurrence and fruit quality of pre-harvest calcium treated red flesh dragon fruit (Hylocereus polyrhizus). African Journal of Biotechnology, 10(9), 1550–1558.Google Scholar
  59. Gil, M. I., Aguayo, E., & Kader, A. A. (2006). Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. Journal of Agricultural and Food Chemistry, 54(12), 4284–4296.PubMedCrossRefGoogle Scholar
  60. Guo, X-M., Xiao, X., Wang G-X., & Gao, R. F. (2013). Vascular anatomy of kiwifruit and its implication for the origin of carpels. Frontiers in Plant Science, 4, 391.Google Scholar
  61. Hall, A. J., Richardson, A. C., & Snelgar, W. P. (2004, June). Modelling fruit development in ‘Hayward’ kiwifruit. In VII International Symposium on Modelling in Fruit Research and Orchard Management (Vol. 707, pp. 41–47).Google Scholar
  62. Hall, A. J., Minchin, P. E., Clearwater, M. J., & Génard, M. (2013). A biophysical model of kiwifruit (Actinidia deliciosa) berry development. Journal of Experimental Botany, 64(18), 5473–5483.  https://doi.org/10.1093/jxb/ert317.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hassall, A. K., Pringle, G. J., & MacRae, E. A. (1998). Development, maturation, and postharvest responses of Actinidia arguta (Sieb. et Zucc.) Planch, ex Miq. fruit. New Zealand Journal of Crop and Horticultural Science, 26(2), 95–108.CrossRefGoogle Scholar
  64. Heatherbell, D. A. (1975). Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruit (Actinidia chinensis planch.) Journal of the Science of Food and Agriculture, 26(6), 815–820.PubMedCrossRefGoogle Scholar
  65. Hewett, E. W., Kim, H. O., & Lallu, N. (1999, January). Postharvest physiology of kiwifruit: The challenges ahead. In IV International Symposium on Kiwifruit (Vol. 498, pp. 203–216).Google Scholar
  66. Hopping, M. E. (1976). Structure and development of fruit & seeds in Chinese gooesberry (Actinidia chinensis Planch.). Newzeeland Journal of Botany, 14, 63–68.Google Scholar
  67. Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., Meng, M., & Yu, J. (2013). Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 4, 2640.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hyodo, H., & Fukasawa, R. (1985). Ethylene production in kiwifruit. Journal of the Japanese Society for Horticultural Science, 54(2), 209–215.CrossRefGoogle Scholar
  69. Iwasawa, H., Morita, E., Yui, S., & Yamazaki, M. (2011). Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biological and Pharmaceutical Bulletin, 34(1), 128–134.PubMedCrossRefGoogle Scholar
  70. Jhalegar, M. J., Sharma, R. R., Pal, R. K., & Rana, V. (2012). Effect of postharvest treatments with polyamines on physiological and biochemical attributes of kiwifruit (Actinidia deliciosa) cv. Allison. Fruits, 67(1), 13–22.CrossRefGoogle Scholar
  71. Johnson, R. S., Mitchell, F. G., Crisosto, C. H., Olson W. H., & Costa, G. (1997). Nitrogen influences kiwifruit storage life. In: Proceedings of the Third International. Symposium on Kiwifruit. E.Stakiotakis & J. Porlingis (Eds.), Acta Horticulturae (Vol. 444, pp. 285–289). ISHS.Google Scholar
  72. Jordan, R. B., & Seelye, R. J. (2009). Relationship between taste perception, density and soluble solids concentration in kiwifruit (Actinidia deliciosa). New Zealand Journal of Crop and Horticultural Science, 37, 303–317.CrossRefGoogle Scholar
  73. Jordan, R. B., Walton, E. F., Klages, K. U., & Seelye, R. J. (2000). Postharvest fruit density as an indicator of dry matter and ripened soluble solids of kiwifruit. Postharvest Biology and Technology, 20(2), 163–173.CrossRefGoogle Scholar
  74. Kader, A. A. (1985). Ethylene-induced senescence and physiological disorders in harvested horticultural crops. HortScience, 20(1), 54–57.Google Scholar
  75. Kader, A. A. (2002a). Postharvest biology and technology: An overview. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (3rd ed.). Oakland: University of California, Division of Agriculture and Natural Resources, Publication.Google Scholar
  76. Kader, A. A. (Ed.). (2002b). Postharvest technology of horticultural crops (3rd ed.).University of California, Agriculture and Natural Resources, Oakland, Publication 3311.Google Scholar
  77. Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70(1), R11–R19.CrossRefGoogle Scholar
  78. Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15(3), 233–247.CrossRefGoogle Scholar
  79. Koukounaras, A., & Sfakiotakis, E. (2007). Effect of 1-MCP prestorage treatment on ethylene and CO2 production and quality of ‘Hayward’ kiwifruit during shelf-life after short, medium and long term cold storage. Postharvest Biology and Technology, 46(2), 174–180.CrossRefGoogle Scholar
  80. Kusano, T., Yamaguchi, K., Berberich, T., & Takahashi, Y. (2007). Advances in polyamine research in 2007. Journal of Plant Research, 120(3), 345–350.PubMedCrossRefGoogle Scholar
  81. Lai, R., Woolley, D. J., & Lawes, G. S. (1989). Effect of leaf to fruit ratio on fruit growth of kiwifruit (Actinidia deliciosa). Scientia Horticulturae, 39(3), 247–255.CrossRefGoogle Scholar
  82. Lallu, N., Searle, A. N., & Macrae, E. A. (1989). An investigation of ripening and handling strategies for early season kiwifruit (Actinidia deliciosa cv Hayward). Journal of the Science of Food and Agriculture, 47(4), 387–400.CrossRefGoogle Scholar
  83. Lallu, N., Burdon, J., Yearsley, C. W., & Billing, D. (2003). Commercial practices used for controlled atmosphere storage of ‘Hayward’ kiwifruit. Acta Horticulturae, 610, 245–251.CrossRefGoogle Scholar
  84. Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220.CrossRefGoogle Scholar
  85. Lee, J. G., Lee, D. H., Park, S. Y., Hur, J. S., & Koh, Y. J. (2001). First report of Diaporthe actinidiae, the causal organism of stem-end rots of kiwifruit in Korea. The Plant Pathology Journal, 17(2), 110–113.CrossRefGoogle Scholar
  86. Lewis, D. H., Burge, G. K., Hopping, M. E., & Jameson, P. E. (1996). Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and CPPU application. Physiologia Plantarum, 98(1), 187–195.CrossRefGoogle Scholar
  87. Li, H., Suo, J., Han, Y., Liang, C., Jin, M., Zhang, Z., & Rao, J. (2017). The effect of 1-methylcyclopropene, methyl jasmonate and methyl salicylate on lignin accumulation and gene expression in postharvest ‘Xuxiang’ kiwifruit during cold storage. Postharvest Biology and Technology, 124, 107–118.CrossRefGoogle Scholar
  88. Lim, S., Han, S. H., Kim, J., Lee, H. J., Lee, J. G., & Lee, E. J. (2016). Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chemistry, 190, 150–157.PubMedCrossRefGoogle Scholar
  89. Litz, R. E. (Ed.). (2005). Biotechnology of fruit and nut crops (Vol. 29). CABI.Google Scholar
  90. Lorenzo, E. R., Lastra, B., Otero, V., & Gallego, P. P. (2006, February). Effects of three plant growth regulators on kiwifruit development. In VI International Symposium on Kiwifruit (Vol. 753, pp. 549–554).Google Scholar
  91. Ma, Q., Suo, J., Huber, D. J., Dong, X., Han, Y., Zhang, Z., & Rao, J. (2014). Effect of hot water treatments on chilling injury and expression of a new C-repeat binding factor (CBF) in ‘Hongyang’ kiwifruit during low temperature storage. Postharvest Biology and Technology, 97, 102–110.CrossRefGoogle Scholar
  92. MacRae, E. A., Lallu, N., Searle, A. N., & Bowen, J. H. (1989). Changes in the softening and composition of kiwifruit (Actinidia deliciosa) affected by maturity at harvest and postharvest treatments. Journal of the Science of Food and Agriculture, 49(4), 413–430.CrossRefGoogle Scholar
  93. Manolopoulou, H., & Papadopoulou, P. (1998). A study of respiratory and physico-chemical changes of four kiwi fruit cultivars during cool-storage. Food Chemistry, 63(4), 529–534.CrossRefGoogle Scholar
  94. Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217.CrossRefGoogle Scholar
  95. Marsh, K., Attanayake, S., Walker, S., Gunson, A., Boldingh, H., & MacRae, E. (2004). Acidity and taste in kiwifruit. Postharvest Biology and Technology, 32(2), 159–168.CrossRefGoogle Scholar
  96. Martínez-Romero, D., Bailén, G., Serrano, M., Guillén, F., Valverde, J. M., Zapata, P., Castillo, S., & Valero, D. (2007). Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: A review. Critical Reviews in Food Science and Nutrition, 47(6), 543–560.PubMedCrossRefGoogle Scholar
  97. Matsumoto, S., Obara, T., & Luh, B. S. (1983). Changes in chemical constituents of kiwifruit during postharvest ripening. Journal of Food Science, 48(2), 607–611.CrossRefGoogle Scholar
  98. McDonald, B., & Harman, J. E. (1982). Controlled-atmosphere storage of kiwifruit. I. Effect on fruit firmness and storage life. Scientia Horticulturae, 17(2), 113–123.CrossRefGoogle Scholar
  99. McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13(2), 131–141.CrossRefGoogle Scholar
  100. Minas, I. S., Vicente, A. R., Dhanapal, A. P., Manganaris, G. A., Goulas, V., Vasilakakis, M., Crisosto, C. H., & Molassiotis, A. (2014). Ozone-induced kiwifruit ripening delay is mediated by ethylene biosynthesis inhibition and cell wall dismantling regulation. Plant Science, 229, 76–85.PubMedCrossRefGoogle Scholar
  101. Mitchell, F. G. (1990). Postharvest physiology and technology of kiwifruit. Acta Horticulturae, 282, 291–307.CrossRefGoogle Scholar
  102. Mitchell, F. G., Mayer, G., & Sommer, N. F. (1979). Storage practices to control flesh softening of kiwifruits (p. 18). Davis: Department of Pomology. Progress Report to Kiwi Growers of California, University of California.Google Scholar
  103. Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527.CrossRefGoogle Scholar
  104. Nardozza, S., Kashuba, P., McCaughan, L., Philippe, M., Wohlers, M., Montefiori, M., Currie, M., & Richardson, A. (2015). Leaves are important to obtain consistent red flesh pigmentation in Actinidia chinensis fruit. Scientia Horticulturae, 197, 496–503.CrossRefGoogle Scholar
  105. Nishiyama, I., Yamashita, Y., Yamanaka, M., Shimohashi, A., Fukuda, T., & Oota, T. (2004). Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. Journal of Agricultural and Food Chemistry, 52(17), 5472–5475.PubMedCrossRefGoogle Scholar
  106. NZPA [New Zealand Press Association]. (2007). High fruit losses hit kiwifruit packager’s profits. Retrieved from http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=10433666
  107. O’Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1994). Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 59(6), 1202–1206.CrossRefGoogle Scholar
  108. OECD. (1992). International standardisation of fruit and vegetables. Kiwifruit. Paris: OECD Publications Service.Google Scholar
  109. Ohara, H., Izawa, J., Kimura, S., Hiroi, N., Matsui, H., Hirata, N., & Takahashi, E. (1997). Induction of fruit set and growth of parthenocarpic ‘Hayward’ kiwifruit with plant growth regulators. Journal of the Japanese Society for Horticultural Science, 66, 467–473.CrossRefGoogle Scholar
  110. Park, Y. S. (1996). The shelf life of kiwifruits in room temperature and cold storage following controlled atmosphere storage. Journal of the Korean Society for Horticultural Science, 37(1), 58–63.Google Scholar
  111. Park, Y. S., & Kim, B. W. (1995). Changes in fruit firmness, fruit composition, respiration and ethylene production of kiwifruit during storage. Journal of the Korean Society for Horticultural Science, 36(1), 67–73.Google Scholar
  112. Park, Y. S., & Kim, S. R. (2002). Effects of prestorage conditioning and hot water dip on fruit quality of non-astringent ‘Fuyu’ persimmons during cold storage. Journal of the Korean Society for Horticultural Science, 43(1), 58–63.Google Scholar
  113. Patterson, K. J., Snelgar, W. P., Richardson, A. C., & McPherson, H. G. (1999, January). Flower quality and fruit size of Hayward kiwifruit. In IV International Symposium on Kiwifruit (Vol. 498, pp. 143–150).Google Scholar
  114. Patterson, K., Burdon, J., & Lallu, N. (2003). ‘Hort16A’ kiwifruit: Progress and issues with commercialization. Acta Horticulturae, 610, 267–273.CrossRefGoogle Scholar
  115. Paull, R. E., & Duarte, O. (2011). Tropical fruits (Vol. 1). CABI.Google Scholar
  116. Perera, C. O., & Hallett, I. C. (1991). Characteristics of the irritant (catch) factor in processed kiwifruit. In II International Symposium on Kiwifruit (Vol. 297, pp. 675–680).Google Scholar
  117. Petkou, I. T., Pritsa, T. S., & Sfakiotakis, E. M. (2004). Effects of polyamines on ethylene production, respiration and ripening of kiwifruit. The Journal of Horticultural Science and Biotechnology, 79(6), 977–980.CrossRefGoogle Scholar
  118. Possingham, J. V., Coote, M., & Hawker, J. S. (1980). The plastids and pigments of fresh and dried Chinese gooseberries (Actinidia chinensis). Annals of Botany, 45(5), 529–533.CrossRefGoogle Scholar
  119. Pratt, H. K., & Reid, M. S. (1974). Chinese gooseberry: Seasonal patterns in fruit growth and maturation, ripening, respiration and the role of ethylene. Journal of the Science of Food and Agriculture, 25(7), 747–757.CrossRefGoogle Scholar
  120. Pyke, N. B., & Alspach, P. A. (1986). Inter-relationships of fruit weight, seed number and seed weight in Kiwifruit. New Zealand. Horticultural Science, 20, 153–156.Google Scholar
  121. Pyke, N. B., Manktelow, D. G., Elmer, P. A. G., & Tate, K. G. (1994). Postharvest dipping of kiwifruit in iprodione to control stem-end rot caused by Botrytis cinerea. New Zealand Journal of Crop and Horticultural Science, 22(1), 81–86.CrossRefGoogle Scholar
  122. Qian, Y. Q., & Yu, D. P. (1992). Advances in Actinidia research in China. Acta Horticulturae, 297, 51–55.CrossRefGoogle Scholar
  123. Ramina, A., Tonutti, P., McGlasson, B., Layne, D. R., & Bassi, D. (2008). Ripening, nutrition and postharvest physiology. The peach: Botany, production and uses 550-574. In D. R. Layne & B. D. Bassi (Eds.) CAB International Oxforshire, UK.Google Scholar
  124. Redgwell, R. J., & Fry, S. C. (1993). Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiology, 103(4), 1399–1406.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Richardson, A. C., McAneney, K. J., & Dawson, T. E. (1997). Carbohydrate dynamics in kiwifruit. Journal of Horticultural Science, 72(6), 907–917.CrossRefGoogle Scholar
  126. Robson, P. R., Donnison, I. S., Wang, K., Frame, B., Pegg, S. E., Thomas, A., & Thomas, H. (2004). Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnology Journal, 2(2), 101–112.PubMedCrossRefGoogle Scholar
  127. Schotsmans, W. C., Prange, R. K., & Binder, B. M. (2009). 1-Methylcyclopropene: Mode of action and relevance in postharvest horticulture research. Horticultural Reviews, 35, 263–313.Google Scholar
  128. Scienza, A., Visai, C., Conca, E., & Valenti, L. (1983). Relazione tra lo sviluppo, la maturazione del frutto e la presenza di ormoni endogeni in Actinidia chinensis. In Atti del II Incontro Frutticolo SOI sull’Actinidia, Udine, 1983, Udine, Italy, Centro Regionale per la Sperimentazione Agraria per il Friuli-Venezia Giulia e Sezione Frutticoltura della SOI (pp. 401–421).Google Scholar
  129. Sfakiotakis, E., Antunes, M. D., Stavroulakis, G., Niklis, N., Ververidis, P., & Gerasopoulos, D. (1997). Ethylene biosynthesis and its regulation in ripening “Hayward” kiwifruit. InBiology and biotechnology of the plant hormone ethylene (pp. 47–56). Dordecht: Springer.CrossRefGoogle Scholar
  130. Sfakiotakis, E., Chlioumis, G., & Gerasopoulos, D. (2005). Preharvest chilling reduces low temperature breakdown incidence of kiwifruit. Postharvest Biology and Technology, 38(2), 169–174.CrossRefGoogle Scholar
  131. Sharma, R. R., Pal, R. K., & Rana, V. (2012). Effect of heat shrinkable films on storability of kiwifruits under ambient conditions. Indian Journal of Horticulture, 69(3), 404–408.Google Scholar
  132. Singletary, K. (2012). Kiwifruit: Overview of potential health benefits. Nutrition Today, 47(3), 133–147.CrossRefGoogle Scholar
  133. Snelgar, W. P., & Thorp, T. G. (1988). Leaf area, final fruit weight and productivity in kiwifruit. Scientia Horticulturae, 36(3–4), 241–249.CrossRefGoogle Scholar
  134. Solaimani, M., Mostofi, Y., Motallebiazar, A., Fattahi Moghadam, J., & Ghasemnezhad, M. (2009). Effects of MeSA vapor treatment on the postharvest quality of Hayward kiwifruit. In 6th International Postharvest Symposium. Turkey.Google Scholar
  135. Sommer, N. F., Fortlage, R. J., & Edwards, D. C. (1983). Minimizing postharvest diseases of kiwifruit. California Agriculture, 37(1–2), 16–18.Google Scholar
  136. Souty, M., Reich, M., Breuils, L., Chambroy, Y., Jacquemin, G., & Audergon, J. M. (1993, September). Effects of postharvest calcium treatments on shelf-life and quality of apricot fruit. In X International Symposium on Apricot Culture (Vol. 384, pp. 619–624).Google Scholar
  137. Spadaro, D., Galliano, A., Pellegrino, C., Gilardi, G., Garibaldi, A., & Gullino, M. L. (2010). Dry matter, mineral composition, and commercial storage practices influence the development of skin pitting caused by Cadophora luteo-olivacea on kiwifruit ‘Hayward’. Journal of Plant Pathology, 92, 349–356.Google Scholar
  138. Stonehouse, W., Gammon, C. S., Beck, K. L., Conlon, C. A., von Hurst, P. R., & Kruger, R. (2012). Kiwifruit: Our daily prescription for health 1. Canadian Journal of Physiology and Pharmacology, 91(6), 442–447.CrossRefGoogle Scholar
  139. Tabatabaekoloor, R., Hashemi, S. J., & Taghizade, G. (2013). Vibration damage to kiwifruits during road transportation. International Journal of Agriculture and Food Science Technology, 4(5), 467–474.Google Scholar
  140. Tagliavini, M., Scudellari, D., Marangoni, B., & Toselli, M. (1995). Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In Iron nutrition in soils and plants (pp. 191–195). Dordrecht: Springer.Google Scholar
  141. Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control, 89, 61–67.CrossRefGoogle Scholar
  142. Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282–288.CrossRefGoogle Scholar
  143. Testolin, R., & Ferguson, A. R. (2009). Kiwifruit (Actinidia spp.) production and marketing in Italy. New Zealand Journal of Crop and Horticultural Science, 37(1), 1–32.CrossRefGoogle Scholar
  144. Tustin, D. S., Cashmore, W. M., & Bensley, R. B. (2001). Pomological and physiological characteristics of Slender Pyramid central leader apple (Malus domestica) planting systems grown on intermediate vigour, semi-dwarfing, and dwarfing rootstocks. New Zealand Journal of Crop and Horticultural Science, 29(3), 195–208.CrossRefGoogle Scholar
  145. Van Zeebroeck, M., Ramon, H., De Baerdemaeker, J., Nicolaï, B. M., & Tijskens, E. (2007). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45(2), 157–167.CrossRefGoogle Scholar
  146. Vergano, P. J., Testin, R. F., & Newall, W. C. (1991). Peach bruising: Susceptibility to impact, vibration, and compression abuse. Transactions of the ASAE, 34(5), 2110–2116.CrossRefGoogle Scholar
  147. Vissers, M. C., Carr, A. C., Pullar, J. M., & Bozonet, S. M. (2013). The bioavailability of vitamin C from kiwifruit. Advances in Food and Nutrition Research, 68, 125–147.PubMedCrossRefGoogle Scholar
  148. Vursavuş, K. K., & Özgüven, F. (2004). Determining the effects of vibration parameters and packaging method on mechanical damage in golden delicious apples. Turkish Journal of Agriculture and Forestry, 28(5), 311–320.Google Scholar
  149. Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41(3), 244–251.CrossRefGoogle Scholar
  150. Watada, A. E., Abe, K., & Yamuchi, N. (1990). Physiological activities of partially processed fruits and vegetables. Food Technology, 44(5), 116–122.Google Scholar
  151. Wegrzyn, T. F., & MacRae, E. A. (1992). Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience, 27(8), 900–902.Google Scholar
  152. Wildman, T., & Luh, B. S. (1981). Effect of sweetener types on quality and composition of canned kiwi nectars. Journal of Food Science, 46(2), 387–390.CrossRefGoogle Scholar
  153. Wright, H. B., & Heatherbell, D. A. (1967). A study of respiratory trends and some associated physio-chemical changes of Chinese gooseberry fruit Actinidia chinensis (Yang-tao) during the later stages of development. New Zealand Journal of Agricultural Research, 10(3–4), 405–414.CrossRefGoogle Scholar
  154. Xie, M., Jiang, G. H., Zhang, H. Q., & Kawada, K. (2003, September). Effect of preharvest Ca-chelate treatment on the storage quality of kiwifruit. In V International Symposium on Kiwifruit (Vol. 610, pp. 317–324).Google Scholar
  155. Xiloyannis, C., Celano, G., Montanaro, G., & Dichio, B. (2002, September). Calcium absorption and distribution in mature kiwifruit plants. In V International Symposium on Kiwifruit (Vol. 610, pp. 331–334).Google Scholar
  156. Xu, S., Chen, X., & Sun, D. W. (2001). Preservation of kiwifruit coated with an edible film at ambient temperature. Journal of Food Engineering, 50(4), 211–216.CrossRefGoogle Scholar
  157. Yang, Q., Zhang, Z., Rao, J., Wang, Y., Sun, Z., Ma, Q., & Dong, X. (2013). Low-temperature conditioning induces chilling tolerance in ‘Hayward’ kiwifruit by enhancing antioxidant enzyme activity and regulating endogenous hormones levels. Journal of the Science of Food and Agriculture, 93(15), 3691–3699.PubMedCrossRefGoogle Scholar
  158. Zhang, Y., Chen, K., Zhang, S., & Ferguson, I. (2003). The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28(1), 67–74.CrossRefGoogle Scholar
  159. Zhang, Z. H., Rao, J. P., Wang, M. L., & Zhang, Z. Y. (2006). Effect of oxalic acid treatment on the fruit russet elimination and storability of kiwifruit. Journal of Fruit Science, 23(6), 888–891.Google Scholar
  160. Zhu, Y., Yu, J., Brecht, J. K., Jiang, T., & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537–543.PubMedCrossRefGoogle Scholar
  161. Zina, A. M., & Bundino, S. (1983). Contact urticaria to Actinidia chinensis. Contact Dermatitis, 9(1), 85–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nirmal Kumar Meena
    • 1
  • Murlimanohar Baghel
    • 2
  • S. K. Jain
    • 3
  • Ram Asrey
    • 1
  1. 1.Division of Food Science & Postharvest TechnologyICAR—Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of Fruits and Horticultural TechnologyICAR—Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.Department of Postharvest Technology, College of Horticulture and Forestry (CH&F) JhalawarAgriculture UniversityKotaIndia

Personalised recommendations