Biodiversity of Temperate Fruits

  • Aejaz Ahmad Dar
  • Reetika Mahajan
  • Padma Lay
  • Susheel Sharma


Temperate fruit crops have a wide range of diversity morphologically, biochemically, and genetically, and, thus, they have an important role in preserving endangered plant material for future use through different programs. The effective growth and survival of temperate crops, and their fruit production, depends mainly on temperature, light, rainfall, humidity, frost, fertilizers, and soil requirements. The application of biotechnology in postharvest technology of fresh fruits is applicable in reducing their losses in both quantity and quality from harvest to consumption. The study of biodiversity with implications of genetic engineering allows researchers to detect and map genes, identify their functions, and transfer specific genes for specific traits into plants for the development of fruit crops.


Temperate fruits Biodiversity Morphological Biochemical Genetic Plant biotechnology 


  1. Ahmed, N., Mir, J. I., Mir, R. R., Rather, N. A., Rashid, R., Wani, S. H., Shafi, W., Mir, H., & Sheikh, M. A. (2012). SSR and RAPD analysis of genetic diversity in walnut (Juglans regia L.) genotypes from Jammu and Kashmir, India. Physiology and Molecular Biology of Plants, 18, 149–160.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allard, R. W. (1999). Principles of plant breeding. New York: Wiley.Google Scholar
  3. Aran, M., Fatahi, R., & Zamani, Z. (2012). Molecular and morphological discrimination of selected plum seedlings for rootstock breeding. Journal of Fruit Ornamental Plant Research, 20(1), 5–19. Scholar
  4. Barranco, D., & Rallo, L. (2000). Olive cultivars in Spain. HortTechnology, 10, 107–110.Google Scholar
  5. Baulcombe, D. C. (1996). Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell, 8, 1833–1844.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belakud, B., Bahadur, V., & Prasad, V. M. (2015). Performance of strawberry (Fragaria x ananassa Duch.) varieties for yield and biochemical parameters. The Pharma Innovation Journal, 4, 5–8.CrossRefGoogle Scholar
  7. Bloknina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany, 91, 179–194.CrossRefGoogle Scholar
  8. Callahan, A., Scorza, R., Morgens, P., Mante, S., Cordts, J., & Cohen, R. (1991). Breeding for cold hardiness: Searching for genes to improve fruit quality in cold-hardy peach germplasm. HortScience, 26, 522–526.Google Scholar
  9. Cantini, C., Cimato, A., & Sani, G. (1999). Morphological evaluation of olive germplasm present in Tuscany region. Euphytica, 109, 173–181.CrossRefGoogle Scholar
  10. Casa, A. M., Mitchell, S. E., Smith, O. S., Register, J. I., Wessler, S. R., & Kresovich, S. (2002). Evaluation of Hpr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theoretical and Applied Genetics, 104, 104–110.CrossRefPubMedGoogle Scholar
  11. Chalak, L., Chehade, A., Elbitar, A., Cosson, P., Zanetto, A., Dirlewanger, E., & Laigret, F. (2006). Morphological and molecular characterization of peach accessions (Prunus persica L.) cultivated in Lebanon. Lebanese Science Journal, 7, 23.Google Scholar
  12. Chalak, L., Chehade, A., & Kadri, A. (2007). Morphological characterization of cultivated almonds in Lebanon. Fruits, 62, 177–186. Scholar
  13. Cipriani, G., Lot, G., Huang, W. G., Marrazzo, M. T., Peterlunger, E., & Testolin, R. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica L. Batsch): Isolation, characterisation and cross-species amplification in Prunus. Theoretical and Applied Genetics, 99, 65–72.CrossRefGoogle Scholar
  14. Çagˇlarırmak, N. (2003). Biochemical and physical properties of some walnut genotypes (Juglans regia L.) Molecular Nutrition & Food Research, 47, 28–32.Google Scholar
  15. Dempsey, G. (1996). CIMMYT Natural Resources Group Papueder, CIMMYT.Google Scholar
  16. Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., et al. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, 101, 9891–9896.CrossRefGoogle Scholar
  17. Đurić, G., Žabić, M., Rodić, M., Stanivuković, S., Bosančić, B., & Pašalić, B. (2015). Biochemical and pomological assessment of European pear accessions from Bosnia and Herzegovina. Horticultural Science (Prague), 42, 176–184.CrossRefGoogle Scholar
  18. Encyclopedia of Food and Culture. (2003). The Gale Group Inc. Retrieved from
  19. Escarpa, A., & Gonzalez, M. (1998). High-performance liquid chromatography with diode-array detection for the performance of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography A, 823, 331–337.CrossRefPubMedGoogle Scholar
  20. Frankel, O. H., Brown, A. H. D., & Burdon, J. J. (1995). The conservation of plant biodiversity. Cambridge: Cambridge University Press.Google Scholar
  21. FAO Statistical database 2014, (accessed: 12 June 2017)
  22. Gambino, G., & Gribaudo, I. (2012). Genetic transformation of fruit trees: Current status and remaining challenges. Transgenic Research, 21, 1163–1181.CrossRefPubMedGoogle Scholar
  23. Ganji Moghadam, A., Mokhtaryan, A., & Kiani, M. (2006). Investigation on genetic variation of sour cherry (Prunus cerasus L.) population for selection of dwarf genotypes using morphological characters. Seed and Plant, 22, 430–417 (in Persian).Google Scholar
  24. Ganry, J. (2006). The nutritional value of fruits and vegetables. Fruits, 61, 223–224.CrossRefGoogle Scholar
  25. Gerrano, A. S. (2010). Biodiversity in plant, grain and nutritional characteristics of sorghum [Sorghum bicolor (L.) Moench] accessions from Ethiopia and South Africa. Dissertation, University of Bloemfontein, South Africa.Google Scholar
  26. Giovannoni, J. J., DellaPenna, D., Bennett, A. B., & Fischer, R. L. (1989). Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polynronide degradation but not fruit softening. Plant Cell, 1, 53–63.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gölles, R., da Câmara Machado, A., Minafra, A., Savino, V., Saldarelli, G., Martelli, G. P., Pühringer, H., Katinger, H., & Laimer da Câmara Machado, M. (2000). Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Acta Horticulture, 528, 305–311.Google Scholar
  28. Goncalves, L. S., Rodrigues, R., Junior, A. T., & Karasawa, M. (2009). Heirloom tomato gene bank: Assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genetics and Molecular Research, 8, 364–374k.CrossRefPubMedGoogle Scholar
  29. Gribaudo, I., Scariot, V., Gambino, G., Schubert, A., Gölles, R., & Laimer, M. (2003). Transformation of Vitis vinifera L. cv Nebbiolo with the coat protein gene of Grapevine FanLeaf Virus (GFLV). VII International Conference on Grape Genetics and Breeding. Acta Horticulture, 603, 309–314.Google Scholar
  30. Gross, B. L., Henk, A. D., Richards, C. M., Fazio, G., & Volk, G. M. (2014). Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. American Journal of Botany, 101, 1770–1779.CrossRefPubMedGoogle Scholar
  31. Hammerstone, J., Lazarus, S., & Schmitz, H. (2000). Procyanidin content and variation in some commonly consumed foods. The Journal of Nutrition, 130, 2086S–2092S.CrossRefPubMedGoogle Scholar
  32. Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sunderland: Sinauer Associates.Google Scholar
  33. Hend, B. T., Ghada, B., Sana, B. M., Mohamed, M., et al. (2009). Genetic relatedness among Tunisian plum cultivars by random amplified polymorphic DNA analysis and evaluation of phenotypic characters. Scientia Horticulturae, 121, 440–446.CrossRefGoogle Scholar
  34. Hokanson, S. C., Lamboy, W. F., Szewc-McFadden, A. K., & McFerson, J. R. (2001). Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica, 118, 281–294.CrossRefGoogle Scholar
  35. Hoogendijk, M. & Williams, D. (2001). Characterizing the genetic diversity of home garden crops: Some examples from Americas. In 2nd International Home Gardens Workshop, 17–19, Witzenhausen, Federal Republic of Germany (pp 34–40).Google Scholar
  36. Hurtado, M. A., Badenes, M. L., Llacer, G., Westman, A., Beck, E., & Abbott, G. A. (2001). Contribution to apricot genetic analysis with RFLP, RAPD and AFLP markers. Acta Horticulture, 546, 417–420.CrossRefGoogle Scholar
  37. Kader, A. A. (2000). Opportunities in using biotechnology to maintain postharvest quality. Perishables Handling Quarterly, 104, 2–3.Google Scholar
  38. Kan, T., Gundogdu, M., Ercisli, S., Muradoglu, F., Celik, F., et al. (2014). Phenolic compounds and vitamins in wild and cultivated apricot (Prunus armeniaca L.) fruits grown in irrigated and dry farming conditions. Biological Research, 47, 46.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Karlidag, H., Ercisli, S., Sengul, M., & Tosun, M. (2009). Physico-chemical diversity in fruits of wild-growing sweet cherries (Prunus avium L.) Biotechnology and Biotechnological Equipment, 23, 1325–1329.CrossRefGoogle Scholar
  40. Kazi, N. A., Yadav, J. P. & Agale, M. G. (2015). Nutritional value of fruits. SJIF III/XVI, 2937–2943.Google Scholar
  41. Khomdram, S., Barthakur, S., & Shantibala Devi, G. S. (2014). Biochemical and molecular analysis of wild endemic fruits of the Manipur region of India. International Journal of Fruit Science, 14, 253–266.CrossRefGoogle Scholar
  42. Khoramdel, M., Nasiri, A. J., & Abdollahi, H. (2013). Genetic diversity of selected Iranian quinces using SSRs from apples and pears. Biochemical Genetics, 51, 426–442.CrossRefGoogle Scholar
  43. Korte, A. M., Maiss, E., Kramer, I., & Casper, R. (1995). Biosafety considerations of different plum pox potyvirus (PPV) genes used for transformation of plants. XVI international symposium on fruit tree virus diseases. Acta Horticulture, 368, 280–284.CrossRefGoogle Scholar
  44. Kremer, A., Petit, R. G., & Pons, O. (1998). Measures of polymorphism within and among populations. In A. Karp, P. G. Issac, & D. S. Ingram (Eds.), Molecular tools for screening biodiversity, plants and animals. (pp. 301–311). London: Chapman and Hall.CrossRefGoogle Scholar
  45. Laimer, M. (2003). The development of transformation of temperate woody fruit crops. In M. Laimer & W. Rücker (Eds.), Plant tissue culture: 100 years since Gottlieb Haberlandt (pp. 217–242). Wien: Springer.CrossRefGoogle Scholar
  46. Laimer, M. (2005). Biotechnologie und Immaterialgüterrecht: Die Sicht einer Naturwissenschaftlerin. In C. Baudenbacher & J. Simon (Eds.), Neueste Entwi cklungen im europäischen und internationalen Immaterialgüterre cht. 8. St. Galler Intl. Immaterialgüterrechtsforum IIF 2004 (Vol. 6, pp. 207–225). Basel: Helbing and Lichtenhahn.Google Scholar
  47. Laimer, M., Mendonça, D., Maghuly, F., Marzban, G., Leopold, S., Khan, M., Balla, I., & Katinger, H. (2005). Biotechnology of temperate fruit trees and grapevines. Acta Biochimica Polonica, 52, 673–678.PubMedGoogle Scholar
  48. Litz, R. E., & Padilla, G. (2012). Genetic transformation of fruit trees. In P. M. Priyadarshan & R. J. Schnell (Eds.), Genomics of tree crops (pp. 117–153). Berlin: Springer.CrossRefGoogle Scholar
  49. Liu, J., Jiao, Z., Yang, W., Zhang, C., Liu, H., & Lv, Z. (2015a). Variation in phenolics, flavanoids, antioxidant and tyrosinase inhibitory activity of peach blossoms at different developmental stages. Molecules, 20, 20460–20472.CrossRefPubMedGoogle Scholar
  50. Liu, Q., Song, Y., Liu, L., Zhang, M., Sun, J., Zhang, S., & Wu, J. (2015b). Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genetics & Genomes, 11, 128el. CrossRefGoogle Scholar
  51. Luedeling, E., Girvetz, E. H., Semenov, M. A., & Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS One, 6, e20155.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Machado, M. A., Cristofani-Yaly, M., & Bastianel, M. (2011). Breeding, genetic and genomic of citrus for disease resistance. Revista Brasileira de Fruticultura, 33, 158. Scholar
  53. Manzoor, M., Anwar, F., Mahmood, Z., Rashid, U., & Ashraf, M. (2012). Variation in minerals, phenolics and antioxidant activity of peel and pulp of different varieties of peach (Prunus persica L.) fruit from Pakistan. Molecules, 17, 6491–6506.CrossRefPubMedGoogle Scholar
  54. Messina, R., Lain, O., Marrazzo, M. T., Cipriani, G., & Testolin, R. (2004). New set of microsatellite loci isolated in apricot. Molecular Ecology Resources, 4, 432–434.Google Scholar
  55. Nisar, H., Ahmed, M., Anjum, M. A., & Hussain, S. (2015). Genetic diversity in fruit nutritional composition, anthocyanins, phenolics and antioxidant capacity of plum (Prunus domestica) genotypes. Acta Scientiarum Polonorum Hortorum Cultus, 14, 45–61.Google Scholar
  56. Niwa, T., Doi, U., Kato, Y., & Osawa, T. (2001). Antioxidant properties of phenolic antioxidants isolate from corn steep liquor. Journal of Agricultural and Food Chemistry, 49, 177–182.CrossRefPubMedGoogle Scholar
  57. Pereira-Lorenzo, S., Ferreira dos Santos, A. R., Ramos-Cabrer, A. M., Sau, F., & Díaz-Hernández, M. B. (2012). Morphological variation in local pears from north-western Spain. Scientia Horticulturae, 138, 176–182.CrossRefGoogle Scholar
  58. Pérez-Romero, L. F., Suárez, M. P., Dapena, E., & Rallo, P. (2015). Molecular and morphological characterization of local apple cultivars in southern Spain. Genetics and Molecular Research, 14, 1487–1501.CrossRefPubMedGoogle Scholar
  59. Pinar, H., Unlu, M., Ercisli, S., Uzun, A., Bircan, M., Yilmaz, K. U., & Agar, G. (2013). Determination of genetic diversity among wild grown apricots from Sakit valley in Turkey using SRAP markers. Journal of Applied Botany and Food Quality, 86, 55–58.Google Scholar
  60. Prieto, H. (2011). Genetic transformation strategies in fruit crops. In M. Alvarez (Ed.), Genetic transformation (pp. 81–99). Rijeka: InTech.Google Scholar
  61. Rai, M. K., & Shekhawat, N. S. (2013). Recent advances in genetic engineering for improvement of fruit crops. Plant Cell, Tissue and Organ Culture, 116, 1. Scholar
  62. Rao, R., Bencivenni, M., La Mura, M., Araujo-Burgos, T., et al. (2010). Molecular characterization of Vesuvian apricot cultivars: Implications for the certification and authentication of protected plant material. The Journal of Horticultural Science and Biotechnology, 85, 42–47.CrossRefGoogle Scholar
  63. Retamales, J. B. (2011). World temperate fruit production: Characteristics and challenges. Revista Brasileira de Fruticultura, 33, 121. Scholar
  64. Romero, C., Pedryc, A., Munoz, V., Llacer, G., & Badenes, M. L. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome, 46, 244–252.CrossRefPubMedGoogle Scholar
  65. Rotondi, A., Magli, M., Ricciolini, C., & Baldoni, L. (2003). Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica, 132, 129–137.CrossRefGoogle Scholar
  66. Sharma, K., Xuan, H., & Sedlak, P. (2015). Assessment of genetic diversity of Czech sweet cherry cultivars using microsatellite markers. Biochemical Systematics and Ecology, 63, 6–12.CrossRefGoogle Scholar
  67. Slavin, J. L. (2012). Health benefits of fruits and vegetables. Advances in Nutrition: An International Review Journal, 3, 506–516.CrossRefGoogle Scholar
  68. Tulipani, S., Mezzetti, B., Capocasa, F., Bompadre, S., Beekwilde, J., et al. (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry, 56, 696–704.CrossRefPubMedGoogle Scholar
  69. Tuteja, N., Verma, S., Sahoo, R. K., Raveendar, S., & Reddy, I. B. L. (2012). Recent advances in development of marker free transgenic plants: Regulation and biosafety concern. Journal of Biosciences, 37, 162–197.CrossRefGoogle Scholar
  70. USDA National Agricultural Statistics Service. (2014). Noncitrus fruits and nuts 2013 summary. Retrieved August 8, 2014, from
  71. Van der Sluis, A., Dekker, M., de Jager, A., & Jongen, W. (2001). Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions. Journal of Agricultural and Food Chemistry, 49, 3606–3613.CrossRefPubMedGoogle Scholar
  72. Warburton, M. L., & Bliss, F. A. (1996). Genetic diversity in peach (Prunus persica L. Batch) revealed by randomly amplified polymorphic DNA (RAPD) markers and compared to inbreeding coefficients. Journal of the American Society for Horticultural Science, 12, 1012–1019.Google Scholar
  73. Waterhouse, P. A., Wang, M. B., & Lough, T. (2001). Gene silencing as an adaptive defense against viruses. Nature, 411, 834–842.CrossRefPubMedGoogle Scholar
  74. Yamamoto, T., Kimura, T., Sawamura, Y., Kotobuki, K., Ban, Y., Hayashi, T., & Matsuta, N. (2001). SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics, 102, 865–870.CrossRefGoogle Scholar
  75. Zhang, D., Cervantes, J., Huaman, Z., Carey, E., & Ghislain, M. (2000). Assessing genetic diversity of sweet potato (Ipomoea batatas L.) cultivars from tropical America using AFLP. Genetic Resources and Crop Evolution, 47, 659–665.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aejaz Ahmad Dar
    • 1
  • Reetika Mahajan
    • 1
  • Padma Lay
    • 1
  • Susheel Sharma
    • 1
  1. 1.School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of JammuJammuIndia

Personalised recommendations