Advertisement

Annelida: Hirudinea (Leeches): Heterogeneity in Leech Immune Responses

  • Annalisa Grimaldi
  • Gianluca Tettamanti
  • Magda de Eguileor
Chapter

Abstract

This chapter provides a comprehensive picture of some of the most significant information on the type of cells and mechanisms involved in the regulation of the inflammation, immune response, and tissue regeneration processes in the medicinal leech. This annelid represents a useful experimental model for investigating the immune system, being cost effective, easily manipulable, and devoid of significant ethical considerations and regulatory restrictions in relation to its use. Moreover, this invertebrate model shows an innate immune response and a wound healing process characterized by the same responses as observed in vertebrates, involving the same cellular mechanisms and also the same types of molecules—as specific growth factors—playing a pivotal role in guiding, controlling, and regulating the angiogenesis and innate immune response.

References

  1. Acquati F, Bertilaccio S, Grimaldi A, Monti L, Cinquetti R, Bonetti P, Lualdi M, Vidalino L, Fabbri M, Sacco MG, van Rooijen N, Campomenosi P, Vigetti D, Passi A, Riva C, Capella C, Sanvito F, Doglioni C, Gribaldo L, Macchi P, Sica A, Noonan DM, Ghia P, Taramelli R (2011) Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase. Proc Natl Acad Sci U S A 108:1104–1109. https://doi.org/10.1073/pnas.1013746108 CrossRefPubMedGoogle Scholar
  2. Acquati F, Lualdi M, Bertilaccio S, Monti L, Turconi G, Fabbri M, Grimaldi A, Anselmo A, Inforzato A, Collotta A, Cimetti L, Riva C, Gribaldo L, Ghia P, Taramelli R (2013) Loss of function of ribonuclease T2, an ancient and phylogenetically conserved RNase, plays a crucial role in ovarian tumorigenesis. Proc Natl Acad Sci U S A 110:8140–8145. https://doi.org/10.1073/pnas.1222079110 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ali D, Ahmed M, Alarifia S, Ali H (2014) Ecotoxicity of single-wall carbon nanotubes to freshwater snail Lymnaea luteola L.: impacts on oxidative stress and genotoxicity. Environ Toxicol 30:674–682. https://doi.org/10.1002/tox.21945 CrossRefPubMedGoogle Scholar
  4. Alkassab F, Gourh P, Tan FK, McNearney T, Fischbach M, Ahn C, Arnett FC, Mayes MD (2007) An allograft inflammatory factor 1 (AIF1) single nucleotide polymorphism (SNP) is associated with anticentromere antibody positive systemic sclerosis. Rheumatology 46:1248–1251. https://doi.org/10.1093/rheumatology/kem057 CrossRefPubMedGoogle Scholar
  5. Arnaout MA (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037–1050Google Scholar
  6. Autieri MV, Carbone C, Mu A (2000) Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury. Arterioscler Thromb Vasc Biol 20:1737–1744CrossRefPubMedGoogle Scholar
  7. Baranzini N, Pedrini E, Girardello R, Tettamanti G, de Eguileor M, Taramelli R, Acquati F, Grimaldi A (2017) Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech. Cell Tissue Res 368:337–351. https://doi.org/10.1007/s00441-016-2557-9 CrossRefPubMedGoogle Scholar
  8. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86:379–387. https://doi.org/10.1016/j.aquatox.2007.11.019 CrossRefPubMedGoogle Scholar
  9. Blanco GA, Escalada AM, Alvarez E, Hajos S (1997) LPS-induced stimulation of phagocytosis in the sipunculan worm Themiste petricola: possible involvement of human CD14, CD11B and CD11C cross-reactive molecules. Dev Comp Immunol 21:349–362CrossRefPubMedGoogle Scholar
  10. Cabañas C, Sánchez-Madrid F (1999) CD11c (leukocyte integrin CR4 alpha subunit). J Biol Regul Homeost Agents 13:134–136PubMedGoogle Scholar
  11. Carpenter G (2000) The EGF receptor: a nexus for trafficking and signaling. BioEssays 22:697–707. https://doi.org/10.1002/1521-1878(200008)22:8<697::AID-BIES3>3.0.CO;2-1CrossRefPubMedGoogle Scholar
  12. Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. https://doi.org/10.1152/physrev.00019.2003 CrossRefPubMedGoogle Scholar
  13. Cossarizza A, Cooper EL, Suzuki MM, Salvioli S, Capri M, Gri G, Quaglino D, Franceschi C (1996) Earthworm leukocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 224:174–182. https://doi.org/10.1006/excr.1996.0125 CrossRefPubMedGoogle Scholar
  14. Cossu G, Biressi S (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16:623–631. https://doi.org/10.1016/j.semcdb.2005.07.003 CrossRefPubMedGoogle Scholar
  15. Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342. https://doi.org/10.1016/S1471-4906(01)01930-5 CrossRefPubMedGoogle Scholar
  16. Damert A, Miquerol L, Gertsenstein M, Risau W, Nagy A (2002) Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129:1881–1892PubMedGoogle Scholar
  17. de Eguileor M, Tettamanti G, Grimaldi A, Boselli A, Scarì G, Valvassori R, Cooper EL, Lanzavecchia G (1999) Histopathological changes after induced injury in leeches. J Invertebr Pathol 74:14–28CrossRefPubMedGoogle Scholar
  18. de Eguileor M, Grimaldi A, Tettamanti G, Valvassori R, Cooper EL, Lanzavecchia G (2000a) Lipopolysaccharide-dependent induction of leech leukocytes that cross-react with vertebrate cellular differentiation markers. Tissue Cell 32:437–445. https://doi.org/10.1054/tice.2000.0132 CrossRefPubMedGoogle Scholar
  19. de Eguileor M, Grimaldi A, Tettamanti G, Valvassori R, Cooper EL, Lanzavecchia G (2000b) Different types of response to foreign antigens by leech leukocytes. Tissue Cell 32:40–48. https://doi.org/10.1054/tice.1999.0085 CrossRefPubMedGoogle Scholar
  20. de Eguileor M, Grimaldi A, Tettamanti G, Congiu T, Protasoni M, Reguzzoni M, Valvassori R, Lanzavecchia G (2001a) Ultrastructure and functional versatility of hirudinean botryoidal tissue. Tissue Cell 33:332–341. https://doi.org/10.1054/tice.2001.0181 CrossRefPubMedGoogle Scholar
  21. de Eguileor M, Grimaldi A, Tettamanti G, Ferrarese R, Congiu T, Protasoni M, Perletti G, Valvassori R, Lanzavecchia G (2001b) Hirudo medicinalis: a new model for testing activators and inhibitors of angiogenesis. Angiogenesis 4:299–312. https://doi.org/10.1023/A:1016025803370 CrossRefPubMedGoogle Scholar
  22. de Eguileor M, Tettamanti G, Grimaldi A, Congiu T, Ferrarese R, Perletti G, Valvassori R, Cooper EL, Lanzavecchia G (2003) Leeches: immune response, angiogenesis and biomedical applications. Curr Pharm Des 9:133–147. https://doi.org/10.2174/1381612033392198 CrossRefPubMedGoogle Scholar
  23. de Eguileor M, Tettamanti G, Grimaldi A, Perletti G, Congiu T, Rinaldi L, Valvassori R (2004) Hirudo medicinalis: Avascular tissues for clear-cut angiogenesis studies? Curr Pharm Des 10:1979–1988CrossRefPubMedGoogle Scholar
  24. De Luca K, Frances-Duvert V, Asensio M-J, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T (2009) The TLR1/2 agonist PAM3CSK4 instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 23:2063–2074. https://doi.org/10.1038/leu.2009.155 CrossRefPubMedGoogle Scholar
  25. De Zoysa M, Nikapitiya C, Kim Y, Oh C, Kang D-H, Whang I, Kim S-J, Lee J-S, Choi CY, Lee J (2010) Allograft inflammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury. Fish Shellfish Immunol 29:319–326. https://doi.org/10.1016/j.fsi.2010.04.006 CrossRefPubMedGoogle Scholar
  26. Deininger MH, Seid K, Engel S, Meyermann R, Schluesener HJ (2000) Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas. Acta Neuropathol 100:673–680CrossRefPubMedGoogle Scholar
  27. Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514:115–121CrossRefPubMedGoogle Scholar
  28. Drago F, Sautière PE, Le Marrec-Croq F, Accorsi A, Van Camp C, Salzet M, Lefebvre C, Vizioli J (2014) Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1). Dev Neurobiol 74:987–1001. https://doi.org/10.1002/dneu.22179 CrossRefPubMedGoogle Scholar
  29. Falabella P, Riviello L, Pascale M, Di Lelio I, Tettamanti G, Grimaldi A, Iannone C, Monti M, Pucci P, Tamburro AM, deEguileor M, Gigliotti S, Pennacchio F (2012) Functional amyloids in insect immune response. Insect Biochem Mol Biol 42:203–211. https://doi.org/10.1016/j.ibmb.2011.11.011 CrossRefPubMedGoogle Scholar
  30. Fischer E, Lovas M, Németh P (1976) Zincporphyrin pigments in the botryoid tissue of Haemopis sanguisuga L. and their localization by diaminobenzidine-H2o2 reaction. Acta Histochem 55:32–41CrossRefPubMedGoogle Scholar
  31. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:0100–0107. https://doi.org/10.1371/journal.pbio.0040006 CrossRefGoogle Scholar
  32. Franceschi C, Cossarizza A, Monti D, Ottaviani E (1991) Cytotoxicity and immunocyte markers in cells from the freshwater snail Planorbarius corneus (L.) (Gastropoda pulmonata): implications for the evolution of natural killer cells. Eur J Immunol 21:489–493. https://doi.org/10.1002/eji.1830210235 CrossRefPubMedGoogle Scholar
  33. Gerber H-P, Ferrara N (2003) The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med 81:20–31. https://doi.org/10.1007/s00109-002-0397-4 CrossRefPubMedGoogle Scholar
  34. Girardello R, Drago F, de Eguileor M, Valvassori R, Vizioli J, Tettamanti G, Grimaldi A (2015a) Cytokine impregnated biomatrix: a new tool to study multi-wall carbon nanotubes effects on invertebrate immune cells. J Nanomedicine Nanotechnol 6:323. https://doi.org/10.4172/2157-7439.1000323 CrossRefGoogle Scholar
  35. Girardello R, Tasselli S, Baranzini N, Valvassori R, de Eguileor M, Grimaldi A (2015b) Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS One 10:e0144361. https://doi.org/10.1371/journal.pone.0144361 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gondois-Rey F, Chéret A, Mallet F, Bidaut G, Granjeaud S, Lécuroux C, Ploquin M, Müller-Trutwin M, Rouzioux C, Avettand-Fenoël V, De Maria A, Pialoux G, Goujard C, Meyer L, Olive D (2017) A mature NK profile at the time of HIV primary infection is associated with an early response to cART. Front Immunol 8:54. https://doi.org/10.3389/fimmu.2017.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Granick JL, Simon SI, Borjesson DL (2012) Hematopoietic stem and progenitor cells as effectors in innate immunity. Bone Marrow Res 2012:1–8. https://doi.org/10.1155/2012/165107 CrossRefGoogle Scholar
  38. Grimaldi A (2015) Anellidi. In: Piccin (ed) Compendio di immunobiologia compar1. Grimaldi, A. in Compendio di immunobiologia comparata - Ottaviani E. (ed. Piccin) 19–33 (2015). ata - Ottaviani E. pp 19–33Google Scholar
  39. Grimaldi A (2016) Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis. Invertebr Surviv J 13:257–268Google Scholar
  40. Grimaldi A, Tettamanti G, Rinaldi L, Perletti G, Valvassori R, De Eguileor M (2004) Role of cathepsin B in leech wound healing. Invertebr Surviv J 1:38–46Google Scholar
  41. Grimaldi A, Tettamanti G, Perletti G, Valvassori R, de Eguileor M (2006) Hematopoietic cell formation in leech wound healing. Curr Pharm Des 12:3033–3041. https://doi.org/10.2174/138161206777947443 CrossRefPubMedGoogle Scholar
  42. Grimaldi A, Bianchi C, Greco G, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2008) In vivo isolation and characterization of stem cells with diverse phenotypes using growth factor impregnated biomatrices. PLoS One 3:e1910. https://doi.org/10.1371/journal.pone.0001910 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Grimaldi A, Banfi S, Gerosa L, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2009) Identification, isolation and expansion of myoendothelial cells involved in leech muscle regeneration. PLoS One 4:e7652. https://doi.org/10.1371/journal.pone.0007652 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grimaldi A, Banfi S, Bianchi C, Gabriella G, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M (2010) The leech: a novel invertebrate model for studying muscle regeneration and diseases. Curr Pharm Des 16:968–977. https://doi.org/10.2174/138161210790883417 CrossRefPubMedGoogle Scholar
  45. Grimaldi A, Banfi S, Vizioli J, Tettamanti G, Noonan DM, de Eguileor M (2011) Cytokine loaded biopolymers as a novel strategy to study stem cells during wound-healing processes. Macromol Biosci 11:1008–1019. https://doi.org/10.1002/mabi.201000452 CrossRefPubMedGoogle Scholar
  46. Grimaldi A, Girardello R, Malagoli D, Falabella P, Tettamanti G, Valvassori R, Ottaviani E, de Eguileor M (2012a) Amyloid/melanin distinctive mark in invertebrate immunity. Invertebr Surviv J 9:153–162Google Scholar
  47. Grimaldi A, Tettamanti G, Congiu T, Girardello R, Malagoli D, Falabella P, Valvassori R, Ottaviani E, de Eguileor M (2012b) The main actors involved in parasitization of Heliothis virescens larva. Cell Tissue Res 350:491–502CrossRefPubMedGoogle Scholar
  48. Grimaldi A, Ferrarese R, Tettamanti G, Valvassori R, de Eguileor M (2013) Ras activation in Hirudo medicinalis angiogenic process. Invertebr Surviv J 10:7–14Google Scholar
  49. Guo H, Fang B, Liao L, Zhao Z, Liu J, Chen H, Hsu SH, Cui Q, Zhao RC (2003) Hemangioblastic characteristics of fetal bone marrow–derived Flk1+CD31−CD34− cells. Exp Hematol 31:650–658. https://doi.org/10.1016/S0301-472X(03)00087-0 CrossRefPubMedGoogle Scholar
  50. Hayashi Y, Engelmann P (2013) Earthworm’s immunity in the nanomaterial world: new room , future challenges. Invertebr Surviv J 10:69–76Google Scholar
  51. Hildbrand P, Cirulli V, Prinsen RC, Smith KA, Torbett BE, Salomon DR, Crisa L (2004) The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 104:2010–2019. https://doi.org/10.1182/blood-2003-12-4219 CrossRefPubMedGoogle Scholar
  52. Holness CL, da Silva RP, Fawcett J, Gordon S, Simmons DL (1993) Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem 268:9661–9666PubMedGoogle Scholar
  53. Jeong H-K, Ji K, Kim J, Jou I, Joe E-H (2013) Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes. Mol Brain 6:28. https://doi.org/10.1186/1756-6606-6-28 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kielian TL, Blecha F (1995) CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology 29:187–205CrossRefPubMedGoogle Scholar
  55. Kostich M, Fire A, Fambrough DM (2000) Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci 113:2595–2606PubMedGoogle Scholar
  56. Kranenburg O, Moolenaar WH (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20:1540–1546. https://doi.org/10.1038/sj.onc.1204187 CrossRefPubMedGoogle Scholar
  57. Kruse M, Steffen R, Batel R, Müller IM, Müller WE (1999) Differential expression of allograft inflammatory factor 1 and of glutathione peroxidase during auto- and allograft response in marine sponges. J Cell Sci 112:4305–4313PubMedGoogle Scholar
  58. Li J, Chen J, Zhang Y, Yu Z (2013) Expression of allograft inflammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii. Fish Shellfish Immunol 34:365–371. https://doi.org/10.1016/j.fsi.2012.11.012 CrossRefPubMedGoogle Scholar
  59. Luhtala N, Parker R (2010) T2 family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35:253–259. https://doi.org/10.1016/j.tibs.2010.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M (2010) Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 11:407. https://doi.org/10.1186/1471-2164-11-407 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mandal A, Viswanathan C (2015) Natural killer cells: in health and disease. Hematol Oncol Stem Cell Ther 8:47–55. https://doi.org/10.1016/j.hemonc.2014.11.006 CrossRefPubMedGoogle Scholar
  62. Mitchell GB, Khandaker MH, Rahimpour R, Xu L, Lazarovits AI, Pickering JG, Suria H, Madrenas J, Pomerantz DK, Feldman RD, Kelvin DJ (1999) CD45 modulation of CXCR1 and CXCR2 in human polymorphonuclear leukocytes. Eur J Immunol 29:1467–1476. https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1467::AID-IMMU1467>3.0.CO;2-5CrossRefPubMedGoogle Scholar
  63. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812. https://doi.org/10.1016/j.immuni.2006.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ovando F, Gimpel C, Cardenas C, Da Silva JRMC, De Lorgeril J, Gonzalez M (2012) Cloning and expression analysis of allograft inflammatory factor type 1 in coelomocytes of Antarctic sea urchin (Sterechinus neumayeri). J Shellfish Res 31:875–883. https://doi.org/10.2983/035.031.0336 CrossRefGoogle Scholar
  65. Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP (2015) Ligand recognition specificity of leukocyte integrin α M β 2 (mac-1, CD11b/CD18) and its functional consequences. Biochemistry 54:1408–1420. https://doi.org/10.1021/bi5013782 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Porchet-Henneré E, Dugimont T, Fischer A (1992) Natural killer cells in a lower invertebrate, Nereis diversicolor. Eur J Cell Biol 58:99–107PubMedGoogle Scholar
  67. Quaglino D, Cooper EL, Salvioli S, Capri M, Suzuki MM, Ronchetti IP, Franceschi C, Cossarizza A (1996) Earthworm coelomocytes in vitro: cellular features and “granuloma” formation during cytotoxic activity against the mammalian tumor cell target K562. Eur J Cell Biol 70:278–278PubMedGoogle Scholar
  68. Raaijmakers MHGP, Scadden DT (2008) Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol 15:301–306. https://doi.org/10.1097/MOH.0b013e328303e14c CrossRefPubMedGoogle Scholar
  69. Roach T, Slater S, Koval M, White L, McFarland EC, Okumura M, Thomas M, Brown E (1997) CD45 regulates Src family member kinase activity associated with macrophage integrin-mediated adhesion. Curr Biol 7:408–417. https://doi.org/10.1016/S0960-9822(06)00188-6 CrossRefPubMedGoogle Scholar
  70. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J (1996) Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 24:406–415PubMedGoogle Scholar
  71. Sándor N, Lukácsi S, Ungai-Salánki R, Orgován N, Szabó B, Horváth R, Erdei A, Bajtay Z (2016) CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic cells over CD11b/CD18. PLoS One 11:e0163120. https://doi.org/10.1371/journal.pone.0163120 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sawada J, Li F, Komatsu M (2015) R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells. J Vasc Res 52:347–359. https://doi.org/10.1159/000444526 CrossRefPubMedGoogle Scholar
  73. Sawyer RT (1986) Leech biology and behaviour 1: anatomy, physiology and behaviour. Oxford University Press, OxfordGoogle Scholar
  74. Schikorski D, Cuvillier-Hot V, Leippe M, Boidin-Wichlacz C, Slomianny C, Macagno E, Salzet M, Tasiemski A (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181:1083–1095. https://doi.org/10.4049/jimmunol.181.2.1083. [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schorn T, Drago F, De Eguileor M, Valvassori R, Vizioli J, Tettamanti G, Grimaldi A (2015a) The allograft inflammatory Factor-1 ( AIF-1 ) homologous in Hirudo medicinalis (medicinal leech) is involved in immune response during wound healing and graft rejection processes abstract allograft inflammatory factor-1 ( AIF-1 ) is a 17 kDa cytokine-in. ISJ 1:129–141Google Scholar
  76. Schorn T, Drago F, Tettamanti G, Valvassori R, de Eguileor M, Vizioli J, Grimaldi A (2015b) Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech. Cell Tissue Res 359:853–864. https://doi.org/10.1007/s00441-014-2054-y CrossRefPubMedGoogle Scholar
  77. Seaman WE (2000) Natural killer cells and natural killer T cells. Arthritis Rheum 43:1204–1217. https://doi.org/10.1002/1529-0131(200006)43:6<1204::AID-ANR3>3.0.CO;2-ICrossRefPubMedGoogle Scholar
  78. Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10:581–587. https://doi.org/10.1016/S0952-7915(98)80227-6 CrossRefPubMedGoogle Scholar
  79. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC (1989) Cooperative interactions of LFA-1 and mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83:2008–2017. https://doi.org/10.1172/JCI114111 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sommerville LJ, Kelemen SE, Ellison SP, England RN, Autieri MV (2012) Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet. Atherosclerosis 220:45–52. https://doi.org/10.1016/j.atherosclerosis.2011.07.095 CrossRefPubMedGoogle Scholar
  81. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434. https://doi.org/10.1038/346425a0 CrossRefPubMedGoogle Scholar
  82. St-Pierre J, Ostergaard HL, Thomas M, D’Oro U, Ashwell J, Hermiston M, Xu Z, Weiss A, Saunders A, Johnson P, Roach T, Slater S, Koval M, White L, McFarland EC, Arroyo A, Campanero M, Sanchez-Mateos P, Zapata J, Ursa M, Shenoi H, Seavitt J, Zheleznyak A, Thomas M, Brown E, Li R, Wong N, Jabali M, Johnson P, Wong N, Lai J, Maeshima N, Johnson P, Wong N, Lai J, Birkenhead D, Shaw A, Johnson P, Avraham H, Park S, Schinkmann K, Avraham S, Schlaepfer D, Hauck C, Sieg D, Hatch W, Ganju R, Hiregowdara D, Avraham S, Groopman J, Duong L, Rodan G, Okigaki M, Davis C, Falasca M, Harroch S, Felsenfeld D, Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Herzog H, Nicholl J, Hort Y, Sutherland G, Shine J, Lev S, Moreno H, Martinez R, Canoll P, Peles E, Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Yu H, Li X, Marchetto G, Dy R, Hunter D, Ostergaard H, Lysechko T, Dikic I, Tokiwa G, Lev S, Courtneidge S, Schlessinger J, Felsch J, Cachero T, Peralta E, Park S, Avraham H, Avraham S, Shen Y, Schaller M, Lulo J, Yuzawa S, Schlessinger J, Deakin N, Turner C, Turner C, Tumbarello D, Brown M, Turner C, Robertson L, Ostergaard H, Weng Z, Taylor J, Turner C, Brugge J, Seidel-Dugan C, Schaller M, Parsons J, Li X, Earp H, Petit V, Boyer B, Lentz D, Turner C, Thiery J, Romanova L, Hashimoto S, Chay K, Blagosklonny M, Sabe H, Brown M, Turner C, Robertson L, Mireau L, Ostergaard H, Rose D, Achuthan A, Elsegood C, Masendycz P, Hamilton J, Scholz G, Romanova L, Mushinski J, Fernandis A, Cherla R, Ganju R, Roach J, Choi S, Schaub R, Leach R, Roodman G, Brissette W, Baker D, Stam E, Umland J, Griffiths R, Fleetwood A, Lawrence T, Hamilton J, Cook A, Falk L, Hogan M, Vogel S, Pelegrin P, Surprenant A, Byth K, Conroy L, Howlett S, Smith A, May J, Ashwell J, D’Oro U, Thomas M, Brown E, Alexander D, Zhu J, Brdicka T, Katsumoto T, Lin J, Weiss A, Bellis S, Miller J, Turner C, Thomas J, Cooley M, Broome J, Salgia R, Griffin J, Ostergaard H, Lou O, Arendt C, Berg N, Levkau B, Herren B, Koyama H, Ross R, Raines E, Carragher N, Fincham V, Riley D, Frame M, Chay K, Park S, Mushinski J, Shim S, Kook S, Kim J, Song W, Harrington E, Smeglin A, Newton J, Ballard G, Rounds S, Ogimoto M, Katagiri T, Mashima K, Hasegawa K, Mizuno K, Dupere-Minier G, Desharnais P, Bernier J, Klaus S, Sidorenko S, Clark E, Lesage S, Steff A, Philippoussis F, Page M, Trop S, Blaylock M, Sexton D, Walsh G, Ferguson B, Ostergaard H, Kuranaga E, Miura M, Perrin B, Huttenlocher A, Liu X, Schnellmann R, Carragher N, Levkau B, Ross R, Raines E, Carragher N, Westhoff M, Riley D, Potter D, Dutt P, Franco S, Rodgers M, Perrin B, Han J, Bennin D, Cortesio C, Boateng L, Piazza T, Bennin D, Huttenlocher A, Calle Y, Carragher N, Thrasher A, Jones G, Turner C, Turner C, Korade-Mirnics Z, Corey S, Han S, Mistry A, Chang J, Cunningham D, Griffor M, Roach T, Slater S, White L, Zhang X, Majerus P, Marzia M, Chiusaroli R, Neff L, Kim N, Chishti A, Ogimoto M, Arimura Y, Katagiri T, Mitomo K, Woodgett J, Hesslein D, Takaki R, Hermiston M, Weiss A, Lanier L, Deszo E, Brake D, Cengel K, Kelley K, Freund G, Bijian K, Zhang L, Shen S, Zhang M, Moran M, Round J, Low T, Patel V, Richardson A, Malik R, Hildebrand J, Parsons J, Salgia R, Avraham S, Pisick E, Li J, Raja S, Schaller M, Sasaki T, Hiregowdara D, Avraham H, Fu Y, London R, Avraham S (2013) A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of Paxillin degradation. PLoS One 8:e71531. https://doi.org/10.1371/journal.pone.0071531 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tang PM-K, Zhou S, Meng X-M, Wang Q-M, Li C-J, Lian G-Y, Huang X-R, Tang Y-J, Guan X-Y, Yan BP-Y, To K-F, Lan H-Y (2017) Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun 8:14677. https://doi.org/10.1038/ncomms14677 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tettamanti G, Grimaldi A, Ferrarese R, Palazzi M, Perletti G, Valvassori R, Cooper EL, Lanzavecchia G, de Eguileor M (2003a) Leech responses to tissue transplantation. Tissue Cell 35:199–2012CrossRefPubMedGoogle Scholar
  85. Tettamanti G, Grimaldi A, Valvassori R, Rinaldi L, de Eguileor M (2003b) Vascular endothelial growth factor is involved in neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea). Cytokine 22:168–179CrossRefPubMedGoogle Scholar
  86. Tettamanti G, Grimaldi A, Rinaldi L, Arnaboldi F, Congiu T, Valvassori R, de Eguileor M (2004) The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96:443–455. https://doi.org/10.1016/j.biolcel.2004.04.008 CrossRefPubMedGoogle Scholar
  87. Tettamanti G, Malagoli D, Benelli R, Albini A, Grimaldi A, Perletti G, Noonan DM, de Eguileor M, Ottaviani E (2006) Growth factors and chemokines: a comparative functional approach between invertebrates and vertebrates. Curr Med Chem 13:2737–2750. https://doi.org/10.2174/092986706778521986 CrossRefPubMedGoogle Scholar
  88. Utans U, Arceci RJ, Yamashita Y, Russell ME (1995) Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clin Invest 95:2954–2962. https://doi.org/10.1172/JCI118003 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510. https://doi.org/10.1038/ni1582 CrossRefPubMedGoogle Scholar
  90. Wang L, Chopp M, Gregg SR, Zhang RL, Teng H, Jiang A, Feng Y, Zhang ZG (2008) Neural progenitor cells treated with EPO induce angiogenesis through the production of Vegf. J Cereb Blood Flow Metab 28:1361–1368. https://doi.org/10.1038/jcbfm.2008.32 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Watano K, Iwabuchi K, Fujii S, Ishimori N, Mitsuhashi S, Ato M, Kitabatake A, Onoe K (2001) Allograft inflammatory factor-1 augments production of interleukin-6, −10and −12 by a mouse macrophage line. Immunology 104:307–316. https://doi.org/10.1046/j.1365-2567.2001.01301.x CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wells SJ, Bray RA, Stempora LL, Farhi DC (1996) CD117/CD34 expression in leukemic blasts. Am J Clin Pathol 106:192–195CrossRefPubMedGoogle Scholar
  93. Zhang L, Zhao J, Li C, Su X, Chen A, Li T, Qin S (2011) Cloning and characterization of allograft inflammatory factor-1 (AIF-1) from manila clam Venerupis philippinarum. Fish Shellfish Immunol 30:148–153. https://doi.org/10.1016/j.fsi.2010.09.021 CrossRefPubMedGoogle Scholar
  94. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Péault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–1034. https://doi.org/10.1038/nbt1334 CrossRefPubMedGoogle Scholar
  95. Zhu JW, Doan K, Park J, Chau AH, Zhang H, Lowell CA, Weiss A (2011) Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity 35:757–769. https://doi.org/10.1016/j.immuni.2011.09.011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Annalisa Grimaldi
    • 1
  • Gianluca Tettamanti
    • 1
  • Magda de Eguileor
    • 1
  1. 1.Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly

Personalised recommendations