Advertisement

Pathogens and Cancer: Clonal Processes and Evolution

  • Edwin L. Cooper
Chapter

Abstract

There is evidence of interrelations between the immune system and the development of cancer. The intersection between the two: cancer <-> immune response may depend upon the interaction with pathogens. Hosts and pathogens interact so that clones may develop. Cancer and clonal development, like other biological events evolved, seem to share an affinity: cancer and clonality are considered evolutionary processes. From a phylogenetic perspective, information supports an area of affinity. A mechanism has been identified, the existence of suppression via p53, a well-known suppressor. Returning to the relation between the development of clonal responses and an inducer may depend upon the characteristics of the pathogen. Nonpathogenic antigens induce short-lived specific responses generated and mediated by clones that are specific and therefore express specific destruction. Most pathogens (viruses, fungi, bacteria) are harmful, but some do not induce infections. The living world includes a staggering array of life, and each life form may be vulnerable to attack by pathogens that cause disease and, ultimately, death.

Keywords

Clonality Pathogen Cancer Immunity p53 

Notes

Acknowledgements

I wish to express sincere appreciation to Hillary Brown, whose dedication helped immeasurably to prepare the final version. Nora Wells, Jason Lee, Nicola Overstreet, and Ralph Albert, my students, also worked during the early stages to develop this manuscript.

With kind permission from Springer Science+Business Media: Earthworm Innate Immune System, chapter 14/article title, 24, 2011, 229–45, Engelmann P, Cooper EL, Opper B, Nemeth P Fig. 14.1. Soil Biol.

Reprinted with permission from Macmillan Publishers Ltd. on behalf of Cancer Research UK: Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381): 306–13.

We also acknowledge the reproduced/adapted with permission Figs. 2, 3, 5 and 6 from Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20(3): 315–28, and Lemmi Carlos AE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5:73–80.

References

  1. Assaily W (2005) p53: Guardian of multicellularity? A short essay on multicellular evolution and p53. Hypothesis 1(1):14–15Google Scholar
  2. Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunol 21(1):81–86Google Scholar
  3. Barber BJ (2004) Neoplastic diseases of commercially important marine bivalves. Aquat Living Resour 17(4):449–466CrossRefGoogle Scholar
  4. Belyi VA et al (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2(6):1–18CrossRefGoogle Scholar
  5. Bilej M, Sima P, Slipka J (1992) Repeated antigenic challenge induces earthworm coelomocyte proliferation. Immunol Lett 32(2):181–184Google Scholar
  6. Bosch TC (2014) Rethinking the role of immunity: lessons from Hydra. Trends Immunol 35(10):495–502CrossRefGoogle Scholar
  7. Bryant PJ, Watson KL, Justice RW, Woods DF (1993) Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila. Dev Suppl 119:239–249Google Scholar
  8. Burnet FM (1976) A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin 26(2):119–121CrossRefPubMedGoogle Scholar
  9. Ciocan CM, Rotchell JM (2005) Conservation of cancer genes in the marine invertebrate Mytilus edulis. Environ Sci Technol 39(9):3029–3033CrossRefPubMedGoogle Scholar
  10. Cooper EL (1968) Transplantation immunity in annelids. Transplantation 6(3):322–337CrossRefPubMedGoogle Scholar
  11. Cooper EL (1969) Specific tissue graft rejection in earthworms. Science 166(3911):1414–1415CrossRefPubMedGoogle Scholar
  12. Cooper EL (2010a) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78CrossRefPubMedGoogle Scholar
  13. Cooper EL (2010b) Self/not self, innate immunity, danger, cancer potential. Phys Life Rev 7:85–87CrossRefGoogle Scholar
  14. Cooper EL (2010c) Earthworms: harnessing one of nature’s cancer killers. Oncol News Int 19(7):1–3Google Scholar
  15. Cooper EL (2016) Commentary: blurring borders: innate immunity with adaptive features. Front Immunol 7:358Google Scholar
  16. Cooper EL, Overstreet N (2014) Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 11(1):113–134CrossRefPubMedGoogle Scholar
  17. Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232(1):67–72CrossRefPubMedGoogle Scholar
  18. Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Transplantation 41(4):514–520CrossRefPubMedGoogle Scholar
  19. Cooper EL, Cossarizza A, Suzuki MM, Salvioli S, Capri M, Quaglino D, Franceschi C (1995) Autogeneic but not allogeneic earthworm effector coelomocytes kill the mammalian tumor cell target K562. Cell Immunol 166(1):113–122CrossRefPubMedGoogle Scholar
  20. Cooper EL, Kauschke E, Cossarizza A (2002) Digging for innate immunity since Darwin and Metchnikoff. Bioessays 24(4):319–333CrossRefPubMedGoogle Scholar
  21. Cooper EL et al (2012) Earthworms dilong: ancient, inexpensive, noncontroversial models may help clarify approaches to integrated medicine emphasizing neuroimmune systems. Evid Based Complement Alternat Med 2012(164152):1–11CrossRefGoogle Scholar
  22. Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612CrossRefPubMedGoogle Scholar
  23. Díaz Cosín DJ, Novo M, Fernández R (2011) Reproduction of earthworms: sexual selection and parthenogenesis. In: Karaca A (ed) Biology of earthworms. Springer, Heidelberg, pp 1–19Google Scholar
  24. Domazet-Lošo T, Klimovich A, Anokhin B, Anton-Erxleben F, Hamm MJ, Lange C, Bosch TC (2014) Naturally occurring tumours in the basal metazoan Hydra. Nat Commun 5(4222):1–8Google Scholar
  25. Dungan CF, Hamilton RM, Hudson KL, McCollough CB, Reece KS (2002) Two epizootic diseases in Chesapeake Bay commercial clams, Mya arenaria and Tagelus plebeius. Dis Aquat Org 50(1):67–78CrossRefPubMedGoogle Scholar
  26. Engelmann P, Pálinkás L, Cooper EL, Németh P (2005) Monoclonal antibodies identify four distinct annelid leukocyte markers. Dev Comp Immunol 29(7):599–614CrossRefPubMedGoogle Scholar
  27. Engelmann P, Cooper EL, Opper B, Nemeth P (2011) Chapter 14 earthworm innate immune system. Soil Biol 24:229–245CrossRefGoogle Scholar
  28. Farley CA, Plutschak DL, Scott RF (1991) Epizootiology and distribution of transmissible sarcoma in Maryland softshell clams, Mya arenaria, 1984–1988. Environ Health Perspect 90:35–41CrossRefPubMedPubMedCentralGoogle Scholar
  29. Francis J, Wreesman S, Yong S, Reigstad K, Krutzik S, Cooper EL (2007) Analysis of the earthworm coelomocyte cell surface for the presence of Toll-like immune receptors. Eur J Soil Biol 43:S92–S96CrossRefGoogle Scholar
  30. Gateff E, Wismar J, Habtemichael N, Loffler T, Dreschers S, Kaiser S, Protin U (1996) Functional analysis of Drosophila developmental genes instrumental in tumor suppression. In Vivo 10(2):211–215PubMedGoogle Scholar
  31. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313CrossRefPubMedPubMedCentralGoogle Scholar
  32. Holbrook LA, Butler RA, Cashon RE, Van Beneden RJ (2009) Soft-shell clam (Mya arenaria) p53: a structural and functional comparison to human p53. Gene 433(1–2):81–87CrossRefPubMedGoogle Scholar
  33. Homa J, Bzowska M, Klimek M, Plytycz B (2008) Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from the earthworm, Dendrobaena veneta. Dev Comp Immunol 32(1):9–14Google Scholar
  34. Homa J, Zorska A, Wesolowski D, Chadzinska M (2013) Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J Comp Physiol B 183(3):313–322CrossRefPubMedGoogle Scholar
  35. Hostetter RK, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9(3):384–392CrossRefPubMedGoogle Scholar
  36. Hostetter RK, Cooper EL (1974) Contemporary topics in immunobiology: earthworm coelomocyte immunity. Spring 4:91–107Google Scholar
  37. James-Clark H (1869) On the spongiae ciliatae as infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides. Ann Mag Nat His 1869(1):133–142. 188–215, 250–264Google Scholar
  38. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330(6012):1824–1827CrossRefGoogle Scholar
  39. Kelley ML et al (2001) Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Oncogene 20(6):748–758CrossRefPubMedGoogle Scholar
  40. King N (2004) The unicellular ancestry of animal development. Dev Cell 7(3):313–325CrossRefPubMedGoogle Scholar
  41. King N et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kvell K, Cooper EL, Engelmann P, Bovari J, Nemeth P (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007:1–24CrossRefGoogle Scholar
  43. Lemmi CAE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5:73–80CrossRefGoogle Scholar
  44. Levine AJ, Hu W, Feng Z (2006) The p53 pathway: what questions remain to be explored? Cell Death Differ 13(6):1027–1036CrossRefGoogle Scholar
  45. Loop T et al (2004) Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 5(1):1–24CrossRefGoogle Scholar
  46. McLaughlin SM, Farley CA, Hetrick FM (1992) Transmission studies of sarcoma in the soft-shell clam, Mya arenaria. In Vivo 6(4):367–370PubMedGoogle Scholar
  47. Moore JD, Elston RA, Drum AS, Wilkinson MT (1991) Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus. J Invertebr Pathol 58(2):231–243CrossRefPubMedGoogle Scholar
  48. Mukherjee S (2010) The emperor of all maladies: a biography of cancer. HarperCollins, New York, pp 1–592Google Scholar
  49. Myohara M (2012) What role do annelid neoblasts play?A comparison of the regeneration patterns in a neoblast-bearing and a neoblast-lacking enchytraeid oligochaete. PLoS One 7(5):1–10CrossRefGoogle Scholar
  50. Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217(11–12):801–806CrossRefPubMedGoogle Scholar
  51. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28CrossRefGoogle Scholar
  52. Nowell PC (1978) Tumors as clonal proliferation. Virchows Arch B Cell Pathol 29(1–2):145–150PubMedGoogle Scholar
  53. Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20(3):315–328CrossRefPubMedGoogle Scholar
  54. Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1(2–3):144–154CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pauley GB (1969) A critical review of neoplasias and tumor-like lesions in mollusks. Natl Cancer Inst Monogr 31:509–529PubMedGoogle Scholar
  56. Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Front Immunol 3(287):1–32Google Scholar
  57. Rutkowski R, Hofmann K, Gartner A (2010) Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2(7):1–14CrossRefGoogle Scholar
  58. Salzet M, Tasiemski A, Cooper E (2006) Innate immunity in lophotrochozoans: the annelids. Curr Pharm Des 12(24):3042–3050CrossRefGoogle Scholar
  59. Saville-Kent W (1881) A manual of the Infusoria: including a description of all known flagellate, ciliate and Tentaculiferous protozoa, British and foreign, and an account of the organization and affinities of the sponges. David Bogue, London, pp 289–720Google Scholar
  60. Sindermann CJ (1990) Principal diseases of marine fish and shellfish. Academic Press, Inc., San Diego, pp 1–519Google Scholar
  61. Škanta F, Roubalová R, Dvořák J, Procházková P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702CrossRefPubMedGoogle Scholar
  62. Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23(16):2809–2818CrossRefPubMedGoogle Scholar
  63. Sparks AK (1985) Synopsis of invertebrate pathology exclusive of insects. Elsevier, Amsterdam, pp 1–423Google Scholar
  64. Sugio M, Yoshida-Noro C, Ozawa K, Tochinai S (2012) Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Develop Growth Differ 54(4):439–450CrossRefGoogle Scholar
  65. Suh EK et al (2006) p63 protects the female germ line during meiotic arrest. Nature 444(7119):624–628CrossRefPubMedGoogle Scholar
  66. Tadokoro R, Sugio M, Kutsuna J, Tochinai S, Takahashi Y (2006) Early segregation of the germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Curr Biol 16(10):1012–1017CrossRefPubMedGoogle Scholar
  67. Taylor PD, Day T, Nagy D, Wild G, André JB, Gardner A (2006) The evolutionary consequences of plasticity in host-pathogen interactions. Theor Popul Biol 69(3):323–331CrossRefPubMedGoogle Scholar
  68. Terhivuo J, Saura A (2003) Low clonal diversity and morphometrics in the parthenogenetic earthworm Octolasion cyaneum. Pedobiologia 47:434–439Google Scholar
  69. Terhivuo J, Saura A (2006) Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol Invasions 8:1205–1218CrossRefGoogle Scholar
  70. Thomas C, Strutt D (2014) Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol 385(1):107–121CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229(1):27–33PubMedPubMedCentralGoogle Scholar
  72. Walker CW et al (2011) p53 Superfamily proteins in marine bivalve cancer and stress biology. Adv Mar Biol 59:1–36CrossRefPubMedGoogle Scholar
  73. Watson KL, Justice RW, Bryant PJ (1994) Drosophila in cancer research: the first fifty tumor suppressor genes. J Cell Sci Suppl 18:19–33CrossRefPubMedGoogle Scholar
  74. Williams CJ (2001) Cancer caused by worms. Los Angeles Times Magazine, pp 40–41Google Scholar
  75. Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18(2):90–95CrossRefPubMedGoogle Scholar
  76. Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Develop Growth Differ 52(1):43–55CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Comparative Immunology, Department of NeurobiologyDavid Geffen School of Medicine, UCLALos AngelesUSA

Personalised recommendations