Annelida: Environmental Interactions and Ecotoxicity in Relation to the Earthworm Immune System

  • Radka Roubalová
  • Barbara Płytycz
  • Petra Procházková
  • Natividad Isabel Navarro Pacheco
  • Martin Bilej


Earthworms live in microbial-rich habitats populated with various bacteria, fungi, protozoa, and other organisms. Thus, soil represents an environment with high antigenic pressure, and earthworms have developed potent defense mechanisms. Besides the abundant microbiota, earthworms are also highly influenced by various types of organic and inorganic pollutants and by the nanoparticles that reach the soil system. These contaminants affect earthworm physiology and their ability to reproduce, grow, and survive. As a result, earthworms are well suited for the monitoring soil contamination.

As earthworms are able to survive in such hostile conditions, it is interesting to follow their defense strategies. In this chapter, the interactions of immune system and soil microbiota are described. Moreover, the chapter summarizes findings on the environmental effects on both cellular and humoral earthworm immunity.


Microbiome Coelomocytes Eleocytes Amoebocytes Riboflavin Antimicrobial peptide Pattern recognition receptor Ecotoxicity Reactive oxygen species Antioxidant enzymes 



This project received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 671881 and from Jagiellonian University (K/ZDS/005405).


  1. Aira M et al (2015) Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures. FEMS Microbiol Ecol 91(11):fiv117PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the toll gene product. Cell 42(3):791–798PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012:137289PubMedPubMedCentralGoogle Scholar
  4. Belfroid AC et al (1995) Modelling the accumulation of hydrophobic organic chemicals in earthworms : application of the equilibrium partitioning theory. Environ Sci Pollut Res Int 2(1):5–15PubMedCrossRefPubMedCentralGoogle Scholar
  5. Belmeskine H et al (2012) Toxic effects of PCDD/Fs mixtures on Eisenia andrei earthworms. Ecotoxicol Environ Saf 80:54–59PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beschin A et al (1998) Identification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 273(38):24948–24954PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bilej M et al (1995) Identification of a cytolytic protein in the celomic fluid of Eisenia-Foetida earthworms. Immunol Lett 45(1–2):123–128Google Scholar
  8. Bilej M et al (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 276(49):45840–45847PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32(9):804–812PubMedCrossRefPubMedCentralGoogle Scholar
  10. Booth LH, O’Halloran K (2001) A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem 20(11):2494–2502PubMedCrossRefPubMedCentralGoogle Scholar
  11. Booth L et al (2003) The effect of lead-contaminated soil from Canadian prairie skeet ranges on the neutral red retention assay and fecundity in the earthworm Eisenia fetida. Environ Toxicol Chem 22(10):2446–2453PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bourdineaud JP et al (2017) Electromagnetic fields at a mobile phone frequency (900 MHz) trigger the onset of general stress response along with DNA modifications in Eisenia fetida earthworms. Arh Hig Rada Toksikol 68(2):142–152PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36(3–4):177–198CrossRefGoogle Scholar
  15. Brulle F et al (2011) Gene expression analysis of 4 biomarker candidates in Eisenia fetida exposed to an environmental metallic trace elements gradient: a microcosm study. Sci Total Environ 409(24):5470–5482PubMedCrossRefPubMedCentralGoogle Scholar
  16. Castillo JM, Romero E, Nogales R (2013) Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes. Bioresour Technol 146:345–354PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen X et al (2017) Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida). Environ Pollut 227:526–533PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cho JH et al (1998) Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim Biophys Acta 1408(1):67–76PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cholewa J et al (2006) Autofluorescence in eleocytes of some earthworm species. Folia Histochem Cytobiol 44(1):65–71PubMedPubMedCentralGoogle Scholar
  20. Cooper EL (1969) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171(1):69–74PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cooper D, Eleftherianos I (2017) Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol 8:539PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Kinetics and characteristics. Transplantation 41(4):514–520PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cooper EL, Rubilotta LM (1969) Allograft rejection in Eisenia foetida. Transplantation 8(3):220–223PubMedCrossRefPubMedCentralGoogle Scholar
  24. Correia B et al (2017) Oxidative stress and genotoxicity of an organic and an inorganic nanomaterial to Eisenia andrei: SDS/DDAB nano-vesicles and titanium silicon oxide. Ecotoxicol Environ Saf 140:198–205PubMedCrossRefPubMedCentralGoogle Scholar
  25. Coscia MR, Giacomelli S, Oreste U (2011) Toll-like receptors: an overview from invertebrates to vertebrates. Isj-Inv Surv J 8(2):210–226Google Scholar
  26. Davidson CR et al (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612PubMedCrossRefGoogle Scholar
  27. del Rio LA et al (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335PubMedPubMedCentralCrossRefGoogle Scholar
  28. Depkat-Jakob PS et al (2012) Emission of methane by Eudrilus eugeniae and other earthworms from Brazil. Appl Environ Microbiol 78(8):3014–3019PubMedPubMedCentralCrossRefGoogle Scholar
  29. Depkat-Jakob PS et al (2013) Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa. FEMS Microbiol Ecol 83(2):375–391PubMedCrossRefPubMedCentralGoogle Scholar
  30. Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189PubMedCrossRefPubMedCentralGoogle Scholar
  31. Duan X et al (2017) Physiological and molecular responses of the earthworm Eisenia fetida to polychlorinated biphenyl contamination in soil. Environ Sci Pollut Res Int 24:18096–18105PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dvorak J et al (2016) Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev Comp Immunol 57:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  33. Edwards CA (2004) Earthworm ecology. CRC Press, Boca RatonCrossRefGoogle Scholar
  34. Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Immunol 10(1):45–49PubMedCrossRefPubMedCentralGoogle Scholar
  35. Eyambe GS et al (1991) A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab Anim 25(1):61–67PubMedCrossRefPubMedCentralGoogle Scholar
  36. Faulhaber LM, Karp RD (1992) A diphasic immune response against bacteria in the American cockroach. Immunology 75(2):378–381PubMedPubMedCentralGoogle Scholar
  37. Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64(1):25–32PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fiolka MJ et al (2010) Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity. J Invertebr Pathol 105(1):63–73PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fiolka MJ et al (2012) Anti-Candida albicans action of the glyco-protein complex purified from metabolites of gut bacterium Raoultella ornithinolytica isolated from earthworms Dendrobaena veneta. J Appl Microbiol 113(5):1106–1119PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fournier M et al (2000) Phagocytosis as a biomarker of immunotoxicity in wildlife species exposed to environmental xenobiotics. Am Zool 40(3):412–420Google Scholar
  41. Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20(3):265–277PubMedCrossRefPubMedCentralGoogle Scholar
  42. Guttmann RP (2010) Redox regulation of cysteine-dependent enzymes. J Anim Sci 88(4):1297–1306PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959PubMedCrossRefPubMedCentralGoogle Scholar
  44. Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353(Pt 2):411–416PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hanning I, Diaz-Sanchez S (2015) The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3:51PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hayashi Y et al (2016) Nanosilver pathophysiology in earthworms: transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology 10(3):303–311PubMedPubMedCentralGoogle Scholar
  47. Henriksson S et al (2017) Uptake and bioaccumulation of PCDD/Fs in earthworms after in situ and in vitro exposure to soil from a contaminated sawmill site. Sci Total Environ 580:564–571PubMedCrossRefPubMedCentralGoogle Scholar
  48. Homa J et al (2005) Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environ Pollut 135(2):275–280PubMedCrossRefPubMedCentralGoogle Scholar
  49. Homa J et al (2010) Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotoxicol Environ Saf 73(8):1937–1943PubMedCrossRefPubMedCentralGoogle Scholar
  50. Homa J et al (2015) Dermal exposure of Eisenia andrei earthworms: effects of heavy metals on metallothionein and phytochelatin synthase gene expressions in coelomocytes. Environ Toxicol Chem 34(6):1397–1404PubMedCrossRefPubMedCentralGoogle Scholar
  51. Homa J, Ortmann W, Kolaczkowska E (2016a) Conservative mechanisms of extracellular trap formation by Annelida Eisenia andrei: serine protease activity requirement. PLoS One 11(7):e0159031PubMedPubMedCentralCrossRefGoogle Scholar
  52. Homa J, Sturzenbaum SR, Kolaczkowska E (2016b) Metallothionein 2 and heat shock protein 72 protect Allolobophora chlorotica from cadmium but not nickel or copper exposure: body malformation and coelomocyte functioning. Arch Environ Contam Toxicol 71(2):267–277PubMedPubMedCentralCrossRefGoogle Scholar
  53. Homa J et al (2016c) Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B 186(4):417–430PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307PubMedCrossRefPubMedCentralGoogle Scholar
  55. ISO (1993) Soil quality - effects of pollutants on earthworms (Eisenia fetida). In: Part 1: determination of acute toxicity using arteficial soil substrate. International Organisation for Standardization, GenevaGoogle Scholar
  56. ISO (1998) Soil quality - effects of pollutants on earthworms (Eisenia fetida). In: Part 2: determination of effects on reproduction. International Organisation for Standardization, GenevaGoogle Scholar
  57. Jager T et al (2005) Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms. Environ Sci Technol 39(1):293–298PubMedCrossRefPubMedCentralGoogle Scholar
  58. Jelinek R, Kolusheva S (2005) Membrane interactions of host-defense peptides studied in model systems. Curr Protein Pept Sci 6(1):103–114PubMedCrossRefPubMedCentralGoogle Scholar
  59. Joskova R et al (2009) Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev Comp Immunol 33(8):932–938PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kagan VE et al (2002) A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 169(1):487–499PubMedCrossRefPubMedCentralGoogle Scholar
  61. King RA, Tibble AL, Symondson WO (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol Ecol 17(21):4684–4698PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kodiha M, Stochaj U (2012) Nuclear transport: a switch for the oxidative stress-signaling circuit? J Signal Transduct 2012:208650PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kohlerova P et al (2004) Effect of experimental microbial challenge on the expression of defense molecules in Eisenia foetida earthworm. Dev Comp Immunol 28(7–8):701–711PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press, New York, p 411Google Scholar
  65. Lemaitre B et al (1996) The dorsoventral regulatory gene cassette spatzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983PubMedCrossRefPubMedCentralGoogle Scholar
  66. Leulier F, Lemaitre B (2008) Toll-like receptors - taking an evolutionary approach. Nat Rev Genet 9(3):165–178PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li W et al (2011) A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen). Peptides 32(6):1146–1150PubMedCrossRefPubMedCentralGoogle Scholar
  68. Li J et al (2015) Biological effects of decabromodiphenyl ether (BDE209) and Pb on earthworm (Eisenia fetida) in a soil system. Environ Pollut 207:220–225PubMedCrossRefPubMedCentralGoogle Scholar
  69. Little TJ, Kraaijeveld AR (2004) Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol Evol 19(2):58–60PubMedCrossRefPubMedCentralGoogle Scholar
  70. Liu YQ et al (2004) Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim Biophys Sin Shanghai 36(4):297–302PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lockey TD, Ourth DD (1996) Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur J Biochem 236(1):263–271PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ma TT et al (2016) Oxidative stress, cytotoxicity and genotoxicity in earthworm Eisenia fetida at different Di-n-butyl phthalate exposure levels. PLoS One 11(3):e0151128PubMedPubMedCentralCrossRefGoogle Scholar
  73. Makama S et al (2016) Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environ Pollut 218:870–878PubMedCrossRefPubMedCentralGoogle Scholar
  74. Markad VL et al (2015) Biomarker responses in the earthworm, Dichogaster curgensis exposed to fly ash polluted soils. Ecotoxicol Environ Saf 118:62–70PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mazur AI et al (2011) Riboflavin storage in earthworm chloragocytes and chloragocyte-derived eleocytes and its putative role as chemoattractant for immunocompetent cells. Pedobiologia 54:S37–S42CrossRefGoogle Scholar
  76. McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 3(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  77. Michel T et al (2001) Drosophila toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414(6865):756–759PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mincarelli L et al (2016) DNA damage in different Eisenia andrei coelomocytes sub-populations after in vitro exposure to hydrogen peroxide. Spring 5:302CrossRefGoogle Scholar
  79. Moore MN (1985) Cellular-responses to pollutants. Mar Pollut Bull 16(4):134–139CrossRefGoogle Scholar
  80. Moore MN (1990) Lysosomal cytochemistry in marine environmental monitoring. Histochem J 22(4):187–191PubMedCrossRefPubMedCentralGoogle Scholar
  81. Moret Y, Siva-Jothy MT (2003) Adaptive innate immunity? Responsive-mode prophylaxis in the mealworm beetle, Tenebrio molitor. Proc Biol Sci 270(1532):2475–2480PubMedPubMedCentralCrossRefGoogle Scholar
  82. Morgan JE, Morgan AJ (1989) The effect of lead incorporation on the elemental composition of earthworm (Annelida, Oligochaeta) Chloragosome granules. Histochemistry 92(3):237–241PubMedCrossRefPubMedCentralGoogle Scholar
  83. Morgan AJ, Kille P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41(4):1085–1096PubMedCrossRefPubMedCentralGoogle Scholar
  84. Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145(2):402–424PubMedCrossRefPubMedCentralGoogle Scholar
  85. OECD (1984) Guideline for the testing of chemicals. In: No. 207, earthworm, acute toxicity tests. Organisation for Economic Cooperation and Development, ParisCrossRefGoogle Scholar
  86. OECD (2004) Guideline for the testing of chemicals. In: No. 222, earthworm reproduction test (Eisenia fetida/Eisenia andrei). Organisation for Economic Cooperation and Development, ParisGoogle Scholar
  87. Olchawa E et al (2006) Heavy metals affect the coelomocyte-bacteria balance in earthworms: environmental interactions between abiotic and biotic stressors. Environ Pollut 142(2):373–381PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ott M et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922PubMedCrossRefPubMedCentralGoogle Scholar
  89. Pass DA et al (2015) The effect of anthropogenic arsenic contamination on the earthworm microbiome. Environ Microbiol 17(6):1884–1896PubMedCrossRefPubMedCentralGoogle Scholar
  90. Patel M et al (2007) Development of a flow cytometric, non-radioactive cytotoxicity assay in Eisenia fetida: an in vitro system designed to analyze immunosuppression of natural killer-like coelomocytes in response to 7,12 dimethylbenz[a]anthracene (DMBA). Eur J Soil Biol 43:S97–S103CrossRefGoogle Scholar
  91. Perez-Losada M et al (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52(2):293–302PubMedCrossRefPubMedCentralGoogle Scholar
  92. Plytycz B, Morgan AJ (2011) Riboflavin storage in earthworm chloragocytes/eleocytes in an eco-immunology perspective. Isj-Inv Surv J 8(2):199–209Google Scholar
  93. Plytycz B et al (2009) Riboflavin content of coelomocytes in earthworm (Dendrodrilus rubidus) field populations as a molecular biomarker of soil metal pollution. Environ Pollut 157(11):3042–3050PubMedCrossRefPubMedCentralGoogle Scholar
  94. Plytycz B et al (2010) Riboflavin mobilization from eleocyte stores in the earthworm Dendrodrilus rubidus inhabiting aerially-contaminated Ni smelter soil. Chemosphere 81(2):199–205PubMedCrossRefPubMedCentralGoogle Scholar
  95. Plytycz B et al (2011) Characteristics of immune-competent amoebocytes non-invasively retrieved from populations of the sentinel earthworm Lumbricus rubellus (Annelida; Oligochaeta; Lumbricidae) inhabiting metal polluted field soils. Ecotoxicol Environ Saf 74(4):719–726PubMedCrossRefPubMedCentralGoogle Scholar
  96. Plytycz B et al (2016) Unexpected results and open questions from experiments on regeneration in lumbricid worms. Isj-Inv Surv J 13:315–325Google Scholar
  97. Rahman MS et al (2017) Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: a multiline investigation to understand environmental risk. Sci Total Environ 581-582:782–793PubMedCrossRefPubMedCentralGoogle Scholar
  98. Roch P et al (1981) Protein-analysis of earthworm celomic fluid .2. Isolation and biochemical-characterization of the Eisenia-Fetida-Andrei Factor (Efaf). Comp Biochem Physiol B Biochem Mol Biol 69(4):829–836CrossRefGoogle Scholar
  99. Roch P, Canicatti C, Valembois P (1989) Interactions between earthworm hemolysins and sheep red blood cell membranes. Biochim Biophys Acta 983(2):193–198PubMedCrossRefPubMedCentralGoogle Scholar
  100. Roch P, Lassegues M, Valembois P (1991) Antibacterial activity of Eisenia fetida andrei coelomic fluid: III. Relationship within the polymorphic hemolysins. Dev Comp Immunol 15(1–2):27–32PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rodriguez-Canche LG et al (2010) Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida. Bioresour Technol 101(10):3548–3553PubMedCrossRefPubMedCentralGoogle Scholar
  102. Rodriguez-Seijo A et al (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouche. Environ Pollut 220(Pt A):495–503Google Scholar
  103. Rorat A et al (2014) Coelomocyte-derived fluorescence and DNA markers of composting earthworm species. J Exp Zool A Ecol Genet Physiol 321(1):28–40PubMedCrossRefPubMedCentralGoogle Scholar
  104. Rorat A et al (2016) Interactions between sewage sludge-amended soil and earthworms–comparison between Eisenia fetida and Eisenia andrei composting species. Environ Sci Pollut Res Int 23(4):3026–3035PubMedCrossRefPubMedCentralGoogle Scholar
  105. Rorat A et al (2017) Protective role of metallothionein during regeneration in Eisenia andrei exposed to cadmium. Comp Biochem Physiol Part C Toxicol Pharmacol 203:39–50CrossRefGoogle Scholar
  106. Roubalova R et al (2014) The effect of dibenzo-p-dioxin- and dibenzofuran-contaminated soil on the earthworm Eisenia andrei. Environ Pollut 193:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  107. Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11(12):837–851PubMedCrossRefPubMedCentralGoogle Scholar
  108. Satake H, Sekiguchi T (2012) Toll-like receptors of deuterostome invertebrates. Front Immunol 3:34PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sekizawa Y et al (1996) A novel protein, lysenin, that causes contraction of the isolated rat aorta: its purification from the coelomic fluid of the earthworm, Eisenia foetida. Biomedi Res Tokyo 17(3):197–203CrossRefGoogle Scholar
  110. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sforzini S et al (2017) Mode of action of Cr(VI) in immunocytes of earthworms: implications for animal health. Ecotoxicol Environ Saf 138:298–308PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sharma VJ, Satyanarayan S (2011) Effect of selected heavy metals on the histopathology of different tissues of earthworm Eudrillus eugeniae. Environ Monit Assess 180(1–4):257–267PubMedCrossRefPubMedCentralGoogle Scholar
  113. Shi Z et al (2013) Pseudo-basal levels of and distribution of anti-oxidant enzyme biomarkers in Eisenia fetida and effect of exposure to phenanthrene. Ecotoxicol Environ Saf 95:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sima P (1994) Annelid coelomocytes and haemocytes: roles in cellular immune reactions. In: Vetvicka V et al (eds) Immunology of annelids. CRC Press, Boca Raton/Ann Arbor, pp 11–165Google Scholar
  115. Skanta F et al (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702PubMedCrossRefPubMedCentralGoogle Scholar
  116. Skanta F et al (2016) LBP/BPI homologue in Eisenia andrei earthworms. Dev Comp Immunol 54(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sturzenbaum SR et al (2004) Cadmium detoxification in earthworms: from genes to cells. Environ Sci Technol 38(23):6283–6289PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sturzenbaum SR et al (2009) Earthworm genomes, genes and proteins: the (re)discovery of Darwin's worms. Proc Biol Sci 276(1658):789–797PubMedCrossRefPubMedCentralGoogle Scholar
  119. Suleiman H et al (2017) Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresour Technol 241:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  120. Suzuki MM et al (1995) Polychlorinated-biphenyls (Pcbs) depress allogeneic natural cytotoxicity by earthworm Celomocytes. Environ Toxicol Chem 14(10):1697–1700CrossRefGoogle Scholar
  121. Swiderska B et al (2017) Lysenin family proteins in earthworm coelomocytes - comparative approach. Dev Comp Immunol 67:404–412PubMedCrossRefPubMedCentralGoogle Scholar
  122. Tasiemski A et al (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31(8):749–762PubMedCrossRefPubMedCentralGoogle Scholar
  123. Thomann RV (1995) Modeling organic chemical fate in aquatic systems: significance of bioaccumulation and relevant time-space scales. Environ Health Perspect 103(Suppl 5):53–57PubMedPubMedCentralCrossRefGoogle Scholar
  124. Valembois P, Roch P, Lassegues M (1986) Antibacterial molecules in annelids. In: Brehelin M (ed) Immunity in invertebrates. Springer-Verlag, Berlin/Heidelberg/New York, pp 74–93CrossRefGoogle Scholar
  125. Van Der Ploeg MJ et al (2013) C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 7(4):432–440CrossRefGoogle Scholar
  126. Wang X et al (2003) An antimicrobial peptide of the earthworm Pheretima tschiliensis: cDNA cloning, expression and immunolocalization. Biotechnol Lett 25(16):1317–1323PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wang J et al (2015) Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. Environ Pollut 204:264–270PubMedCrossRefPubMedCentralGoogle Scholar
  128. Wang J et al (2016) Oxidative damage of naphthenic acids on the Eisenia fetida earthworm. Environ Toxicol 31(11):1337–1343PubMedCrossRefPubMedCentralGoogle Scholar
  129. Weeks JM, Svendsen C (1996) Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) Coelomocytes: a simple biomarker of exposure to soil copper. Environ Toxicol Chem 15(10):1801–1805CrossRefGoogle Scholar
  130. Yamaji-Hasegawa A et al (2003) Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 278(25):22762–22770PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zeeshan HM et al (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17(3):327PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhang W et al (2015) Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida). J Hazard Mater 300:737–744PubMedCrossRefPubMedCentralGoogle Scholar
  133. Zhang PH et al (2017) Bioaccumulation and effects of sediment-associated gold- and graphene oxide nanoparticles on Tubifex tubifex. J Environ Sci 51:138–145CrossRefGoogle Scholar
  134. Zirbes L, Thonart P, Haubruge E (2012) Microscale interactions between earthworms and microorganisms: a review. Biotechnol Agron Soc Environ 16(1):125–131Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Radka Roubalová
    • 1
  • Barbara Płytycz
    • 2
  • Petra Procházková
    • 1
  • Natividad Isabel Navarro Pacheco
    • 1
  • Martin Bilej
    • 1
  1. 1.Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Department of Evolutionary ImmunologyInstitute of Zoology and Biomedical Research, Jagiellonian UniversityKrakowPoland

Personalised recommendations