Advertisement

Reptilia: Humoral Immunity in Reptiles

  • Laura M. Zimmerman
Chapter

Abstract

Reptiles are a diverse group which include four orders: Crocodilia, Testudines, Tuatara, and Squamata. Though they differ greatly in a number of characteristics, they tend to use their humoral immune response in a similar manner. Compared to mammals, reptiles tend to have a slower and less robust humoral immune response. Reptiles may instead rely on a non-specific component of the humoral immune response: natural antibodies. Phagocytic B cells have also been identified in reptiles, and further studies are needed to explore this additional innate-like function of the humoral response in a variety of reptiles. Because reptiles are ectothermic, temperature can impact their immune responses both during development and as adults. Their immune system is also strongly affected by season. In addition, because reptiles typically have long life spans and can have indeterminate growth, they are an intriguing taxon in which to study aging. Life-history characteristics of reptiles provide many possibilities for understanding the context in which the immune strategy of reptiles evolved and how they may respond to climate change and disease introduction.

Keywords

Ectothermic vertebrates Reptile Antibodies B cells B-1 cells Natural antibodies Humoral immunity Aging Indeterminate growth 

References

  1. Adelman JS, Córdoba-Córdoba S, Spoelstra K et al (2010) Radiotelemetry reveals variation in fever and sickness behaviours with latitude in a free-living passerine. Funct Ecol 24:813–823. https://doi.org/10.1111/j.1365-2435.2010.01702.x CrossRefGoogle Scholar
  2. Bao H-J, Li M-Y, Wang J et al (2009) Architecture of the blood-spleen barrier in the soft-shelled turtle, Pelodiseus sinensis. Anat Rec 292:1079–1087. https://doi.org/10.1002/ar.20917 CrossRefGoogle Scholar
  3. Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362. https://doi.org/10.1007/s00281-004-0182-2 CrossRefPubMedGoogle Scholar
  4. Bohm M, Cook D, Ma H et al (2016) Hot and bothered: using trait-based approaches to assess climate change vulnerability in reptiles. Biol Conserv 204:32–41CrossRefGoogle Scholar
  5. Borysenko M, Cooper EL (1972) Lymphoid tissue in the snapping turtle, Chelydra serpentina. J Morphol 138:487–497CrossRefGoogle Scholar
  6. Brown DR (2002) Mycoplasmosis and immunity of fish and reptiles. Front Biosci 7:1338–1346CrossRefGoogle Scholar
  7. Butler MW, Stahlschmidt ZR, Ardia DR et al (2013) Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates. Am Nat 181:761–774. https://doi.org/10.1086/670191 CrossRefPubMedGoogle Scholar
  8. Calsbeek B, Hasselquist D, Clobert J (2010) Multivariate phenotypes and the potential for alternative phenotypic optima in wall lizard (Podarcis muralis) ventral colour morphs. J Evol Biol 23:1138–1147. https://doi.org/10.1111/j.1420-9101.2010.01978.x CrossRefPubMedGoogle Scholar
  9. Castanet J (1994) Age estimation and longevity in reptiles. Gerontology 40:174–192. https://doi.org/10.1159/000213586 CrossRefPubMedGoogle Scholar
  10. Clark RW, Marchand MN, Clifford BJ et al (2011) Decline of an isolated timber rattlesnake (Crotalus horridus) population: interactions between climate change, disease, and loss of genetic diversity. Biol Conserv 144:886–891. https://doi.org/10.1016/j.biocon.2010.12.001 CrossRefGoogle Scholar
  11. Clarke DN, Zani PA (2012) Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. J Exp Biol 215:1117–1127. https://doi.org/10.1242/jeb065359 CrossRefPubMedGoogle Scholar
  12. Congdon JD, Gibbons JW (1985) Egg components and reproductive characteristics of Turtles: relationships to body size. Herpetologica 41:194–205Google Scholar
  13. Dang W, Zhang W, Du W-G (2015) Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. Sci Rep 5:10594. https://doi.org/10.1038/srep10594 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dbrowski Z, Sano-Martins IS, Tabarowski Z et al (2007) Haematopoiesis in snakes (Ophidia) in early postnatal development. Cell Tissue Res 328:291–299. https://doi.org/10.1007/s00441-006-0303-4 CrossRefGoogle Scholar
  15. de Carvalho MPN, Queiroz-Hazarbassanov NGT, de Oliveira Massoco C et al (2017) Functional characterization of neotropical snakes peripheral blood leukocytes subsets: linking flow cytometry cell features, microscopy images and serum corticosterone levels. Dev Comp Immunol 74:144–153. https://doi.org/10.1016/j.dci.2017.04.007 CrossRefPubMedGoogle Scholar
  16. Densmore LD (2001) Crocodylia (including crocodiles and alligators). In: eLS. John Wiley & Sons Ltd, Chichester. https://doi.org/10.1038/npg.els.0001544
  17. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672. https://doi.org/10.1073/pnas.0709472105 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Downs CJ, Adelman JS, Demas GE (2014) Mechanisms and methods in ecoimmunology: integrating within-organism and between-organism processes. Integr Comp Biol 54:340–352. https://doi.org/10.1093/icb/icu082 CrossRefPubMedGoogle Scholar
  19. Ernst CH, Lovich JE (2009) Trachemys scripta. In: Turtles of the United States and Canada, 2nd edn. John Hopkins University Press, Baltimore, pp 444–470Google Scholar
  20. Frasca D, Blomberg BB (2011) Aging affects human B cell responses. J Clin Immunol. https://doi.org/10.1007/s10875-010-9501-7 CrossRefGoogle Scholar
  21. Frasca D, Landin AM, Riley RL, Blomberg BB (2008) Mechanisms for decreased function of B cells in aged mice and humans. J Immunol 180:2741–2746CrossRefGoogle Scholar
  22. Gambon-Deza F, Sánchez-Espinel C (2008) IgD in the reptile leopard gecko. Mol Immunol 45:3470–3476CrossRefGoogle Scholar
  23. Groffen J, Parmentier HK, Van De Ven WAC, Van Weerd M (2013) Effects of different rearing strategies and ages on levels of natural antibodies in saliva of the Philippine crocodile. Asian Herpetol Res 4:22–27. https://doi.org/10.3724/SP.J.1245.2013.00022 CrossRefGoogle Scholar
  24. Hareramadas B, Rai U (2001) Thymic structural changes in relation to seasonal cycle and testosterone administration in wall lizard Hemidactylus flaviviridis (Ruppell). Indian J Exp Biol 39:629–635PubMedGoogle Scholar
  25. Hareramadas B, Rai U (2006) Cellular mechanism of estrogen-induced thymic involution in wall lizard: Caspase-dependent action. J Exp Zool Part A Comp Exp Biol 305:396–409. https://doi.org/10.1002/jez.a.260 CrossRefGoogle Scholar
  26. Hassl A (2005a) Snake egg immunoglobulins: biochemical characteristics and adjusted isolation procedure. J Immunol Methods 297:253–257. https://doi.org/10.1016/j.jim.2004.12.004 CrossRefPubMedGoogle Scholar
  27. Hassl A (2005b) Functional egg immunoglobulins in the snake Elaphe guttata. Amphibia-Reptilia 26:109–112. https://doi.org/10.1163/1568538053693233 CrossRefGoogle Scholar
  28. Hrubec TC, Robertson JL, Smith SA, Tinker MK (1996) The effect of temperature and water quality on antibody response to Aeromonas salmonicida in sunshine bass (Morone chrysops x Morone saxatilis). Vet Immunol Immunopathol 50:157–166CrossRefGoogle Scholar
  29. Hsu E (1998) Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol Rev 162:25–36CrossRefGoogle Scholar
  30. Hussein MF, Badir N, El-Ridi R, Akef M (1978) Differential effect of seasonal variation on lymphoid tissue of the lizard, Chalcides ocellatus. Dev Comp Immunol 2:297–310CrossRefGoogle Scholar
  31. Hussein MF, Badir N, El-Ridi R, Akef M (1979a) Lymphoid tissues of the snake, Spalerosophis diadema, in the different seasons. Dev Comp Immunol 3:77–88CrossRefGoogle Scholar
  32. Hussein MF, Badir N, el-Ridi R, el Deeb SO (1979b) Effect of seasonal variation on immune system of the lizard, Scincus scincus. J Exp Zool 209:91–96CrossRefGoogle Scholar
  33. Iwata A, Iwase T, Ogura Y et al (2002) Cloning and expression of the turtle (Trachemys scripta) immunoglobulin joining (J)-chain cDNA. Immunogenetics 54:513–519. https://doi.org/10.1007/s00251-002-0492-2 CrossRefPubMedGoogle Scholar
  34. Jackson JA, Tinsley RC (2002) Effects of environmental temperature on the susceptibility of Xenopus laevis and X. wittei (Anura) to Protopolystoma xenopodis (Monogenea). Parasitol Res 88:632–638. https://doi.org/10.1007/s00436-002-0629-0 CrossRefPubMedGoogle Scholar
  35. Jones K, Ariel E, Burgess G, Read M (2016) A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet J 212:48–57. https://doi.org/10.1016/j.tvjl.2015.10.041 CrossRefPubMedGoogle Scholar
  36. Jones OR, Scheuerlein A, Salguero-Gómez R et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173. https://doi.org/10.1038/nature12789 CrossRefPubMedGoogle Scholar
  37. Kassab A, Shousha S, Fargani A (2009) Morphology of blood cells, liver and spleen of the desert tortoise (Testudo graeca). Open Anat J 1:1–10. https://doi.org/10.2174/1877609400901010001 CrossRefGoogle Scholar
  38. Kovacs I, Horvath M, Lanyi A et al (2015) Reactive oxygen species-mediated bacterial killing by B lymphocytes. J Leukoc Biol 97:1133–1137. https://doi.org/10.1189/jlb.4AB1113-607RR CrossRefPubMedGoogle Scholar
  39. Kroese FGM, van Rooijen N (1983) Antigen trapping in the spleen of the turtle, Chrysemys scripta elegans. Immunology 49:61–68PubMedPubMedCentralGoogle Scholar
  40. Lal R, Nirmal BK, Saxena AK (2009) Interactive seasonal changes in the testis and thymus of the lizard Calotes versicolor Daudin. J Endocrinol Reprod 13:13–16Google Scholar
  41. Lane PJL, McConnell FM, Withers D et al (2009) Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol 2:472–477. https://doi.org/10.1038/mi.2009.111 CrossRefPubMedGoogle Scholar
  42. Le VS, Dang CC, Le QS (2017) Improved mitochondrial amino acid substitution models for metazoan evolutionary studies. BMC Evol Biol 17:136. https://doi.org/10.1186/s12862-017-0987-y CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li J, Barreda DR, Zhang Y-A et al (2006) B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol 7:1116–1124. https://doi.org/10.1038/ni1389 CrossRefPubMedGoogle Scholar
  44. Li L, Wang T, Sun Y et al (2012) Extensive diversification of IgD, IgY, and truncated IgY({Delta}Fc)-encoding genes in the red-eared turtle (Trachemys scripta elegans). J Immunol. https://doi.org/10.4049/jimmunol.1200188 CrossRefGoogle Scholar
  45. Luoma RL, Butler MW, Stahlschmidt ZR (2016) Plasticity of immunity in response to eating. J Exp Biol 219:1965–1968. https://doi.org/10.1242/jeb.138123 CrossRefPubMedGoogle Scholar
  46. Madsen T, Ujvari B, Nandakumar KS et al (2007) Do “infectious” prey select for high levels of natural antibodies in tropical pythons? Evol Ecol 21:271–279CrossRefGoogle Scholar
  47. Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F (2013) IgH loci of American alligator and saltwater crocodile shed light on IgA evolution. Immunogenetics 65:531–541. https://doi.org/10.1007/s00251-013-0692-y CrossRefPubMedGoogle Scholar
  48. Maniero GD, Carey C (1997) Changes in selected aspects of immune function in the leopard frog, Rana pipiens, associated with exposure to cold. J Comp Physiol B 167:256–263CrossRefGoogle Scholar
  49. Marrochello SM (2016) An investigation into B cells in peripheral blood and gut associated lymphoid tissues in the red eared slider turtle, Trachemys scripta. Illinois State University. Theses and Dissertations. Paper 522.Google Scholar
  50. McGlauchlen KS, Vogel LA (2003) Ineffective humoral immunity in the elderly. Microbes Infect 5:1279–1284CrossRefGoogle Scholar
  51. Merchant ME, Mills K, Leger N et al (2006) Comparisons of innate immune activity of all known living crocodylian species. Comp Biochem Physiol - B Biochem Mol Biol 143:133–137. https://doi.org/10.1016/j.cbpb.2005.10.005 CrossRefPubMedGoogle Scholar
  52. Merchant ME, Roche CM, Thibodeaux D, Elsey RM (2005) Identification of alternative pathway serum complement activity in the blood of the American alligator (Alligator mississippiensis). Comp Biochem Physiol Part B 141:281–288. https://doi.org/10.1016/j.cbpc.2005.03.009 CrossRefGoogle Scholar
  53. Merchant ME, Trahan C, Moran C, White ME (2016) Two different complement C3 genes in crocodilians. Copeia 104:756–762. https://doi.org/10.1643/CP-15-349 CrossRefGoogle Scholar
  54. Mestre AP, Amavet PS, Siroski PA (2017) Baseline values of immunologic parameters in the lizard Salvator merianae. Open Vet J 7:143–149. https://doi.org/10.4314/ovj.v7i2.11 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mikkelsen H, Lindenstrom T, Nielsen ME (2006) Effects of temperature on production and specificity of antibodies in rainbow trout (Oncorhynchus mykiss). J World Aquac Soc 37:518–522CrossRefGoogle Scholar
  56. Mitchell NJ, Allendorf FW, Keall SN et al (2010) Demographic effects of temperature-dependent sex determination: will tuatara survive global warming? Glob Chang Biol 16:60–72. https://doi.org/10.1111/j.1365-2486.2009.01964.x CrossRefGoogle Scholar
  57. Mitchell NJ, Janzen FJ (2010) Temperature-dependent sex determination and contemporary climate change. Sex Dev 4:129–140. https://doi.org/10.1159/000282494 CrossRefPubMedGoogle Scholar
  58. Mondal S, UR U, Rai U (2001) In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp Biochem Physiol A Mol Integr Physiol 129:391–398. https://doi.org/10.1016/S1095-6433(00)00356-1 CrossRefPubMedGoogle Scholar
  59. Neely HR, Flajnik MF (2016) Emergence and evolution of secondary lymphoid organs. Annu Rev Cell Dev Biol 32:693–711. https://doi.org/10.1002/jmri.24962.4D CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21:624–630CrossRefGoogle Scholar
  61. Olivieri DN, Garet E, Estevez O et al (2016) Genomic structure and expression of immunoglobulins in Squamata. Mol Immunol 72:81–91. https://doi.org/10.1016/j.molimm.2016.03.003 CrossRefPubMedGoogle Scholar
  62. Øverland HS, Pettersen EF, Rønneseth A, Wergeland HI (2010) Phagocytosis by B-cells and neutrophils in Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 28:193–204. https://doi.org/10.1016/j.fsi.2009.10.021 CrossRefPubMedGoogle Scholar
  63. Owen JP, Waite JL, Holden KZ, Clayton DH (2014) Does antibody binding to diverse antigens predict future infection? Parasite Immunol 36:573–584. https://doi.org/10.1111/pim.12141 CrossRefPubMedGoogle Scholar
  64. Paitz RT, Harms HK, Bowden RM, Janzen FJ (2007) Experience pays: offspring survival increases with female age. Biol Lett 3:44–46. https://doi.org/10.1098/rsbl.2006.0573 CrossRefPubMedGoogle Scholar
  65. Parra D, Rieger AM, Li J et al (2012) Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol 91:525–536CrossRefGoogle Scholar
  66. Pincheira-Donoso D, Bauer AM, Meiri S, Uetz P (2013) Global taxonomic diversity of living reptiles. PLoS One 8:e59741. https://doi.org/10.1371/journal.pone.0059741 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pitchappan R, Muthukkaruppan V (1977) Thymus-dependent lymphoid regions in the spleen of the lizard, Calotes versicolor. J Exp Zool 199:177–187CrossRefGoogle Scholar
  68. Rao MA (1955) The involution of the thymus of the lizard, Calotes versicolor (Daud.). Proc Natl Acadamey Sci India 21:10–17Google Scholar
  69. Raven PH, Johnson GB, Mason KA et al (2008) Biology, Ninth. McGraw-Hill, New YorkGoogle Scholar
  70. Refsnider JM, Palacios MG, Reding DM, Bronikowski AM (2015) Effects of a novel climate on stress response and immune function in painted turtles (Chrysemys picta). J Exp Zool Part A Ecol Genet Physiol 323:160–168. https://doi.org/10.1002/jez.1902 CrossRefGoogle Scholar
  71. Rest JS, Ast JC, Austin CC et al (2003) Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol 29:289–297. https://doi.org/10.1016/S1055-7903(03)00108-8 CrossRefPubMedGoogle Scholar
  72. Rohr JR, Dobson AP, Johnson PTJ et al (2011) Frontiers in climate change-disease research. Trends Ecol Evol 26:270–277. https://doi.org/10.1016/j.tree.2011.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rooney AA, Bermudez DS, Guillette LJ (2003) Altered histology of the thymus and spleen in contaminant-exposed juvenile American alligators. J Morphol 256:349–359. https://doi.org/10.1002/jmor.10090 CrossRefPubMedGoogle Scholar
  74. Rossi S, de Queiroz Hazarbassanov NGT, Sánchez-Sarmiento AM et al (2016) Immune response of green sea turtles with and without Fibropapillomatosis: evaluating oxidative burst and phagocytosis via flow cytometry. Chelonian Conserv Biol 15:273–278. https://doi.org/10.2744/CCB-1202.1 CrossRefGoogle Scholar
  75. Saad AH, Zapata A (1992) Reptilian thymus gland: an ultrastuctural overview. Thymus 20:135–152PubMedGoogle Scholar
  76. Sandmeier FC, Horn KR, Tracy CR (2016) Temperature-independent, seasonal fluctuations in immune-function in a reptile, the Mohave desert tortoise (Gopherus agassizii). Can J Zool 94:583–590CrossRefGoogle Scholar
  77. Sandmeier FC, Tracy CR, Dupre S, Hunter K (2012) A trade-off between natural and acquired antibody production in a reptile: implications for long-term resistance to disease. Biol Open 0:1–5. https://doi.org/10.1242/bio.20122527 CrossRefGoogle Scholar
  78. Sano-Martins IS, Dabrowski Z, Tabarowski Z et al (2002) Haematopoiesis and a new mechanism for the release of mature blood cells from the bone marrow into the circulation in snakes (Ophidia). Cell Tissue Res 310:67–75. https://doi.org/10.1007/s00441-002-0557-4 CrossRefPubMedGoogle Scholar
  79. Schneider K, Potter KG, Ware CF (2004) Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 202:49–66. https://doi.org/10.1111/j.0105-2896.2004.00206.x CrossRefPubMedGoogle Scholar
  80. Smith J, Kuraku S, Holt C et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421., 421e1. https://doi.org/10.1038/ng.2568 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Spotila JR, Reina RD, Steyermark AC et al (2000) Pacific leatherback turtles face extinction. Nature 405:529–530CrossRefGoogle Scholar
  82. Star B, Nederbragt AJ, Jentoft S et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210. https://doi.org/10.1038/nature10342 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Stromsland K, Zimmerman LM (2017) Relationships between parasitic infection and natural antibodies, age, and sex in a long-lived vertebrate. J Exp Zool Part A 327(6):407–412CrossRefGoogle Scholar
  84. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93. https://doi.org/10.1111/j.0105-2896.2005.00275.x CrossRefPubMedGoogle Scholar
  85. Turchin A, Hsu E (1996) The generation of antibody diversity in the turtle. J Immunol 156:3797–3805PubMedGoogle Scholar
  86. Ujvari B, Madsen T (2005) Age, parasites, and condition affect humoral immune response in tropical pythons. Behav Ecol 17:20–24. https://doi.org/10.1093/beheco/ari091 CrossRefGoogle Scholar
  87. Ujvari B, Madsen T (2011) Do natural antibodies compensate for humoral immunosenescence in tropical pythons? Funct Ecol 25:813–817. https://doi.org/10.1111/j.1365-2435.2011.01860.x CrossRefGoogle Scholar
  88. Warr GW, Magor KE, Higgins DA (1995) IgY: clues to the origins of moder antibodies. Immunol Today 16:392–398CrossRefGoogle Scholar
  89. Wetherall JD, Turner KJ (1972) Immune response of the lizard, Tiliqua rugosa. Aust J Exp Biol Med Sci 50:79–95CrossRefGoogle Scholar
  90. Whiteman NK, Matson KD, Bollmer JL, Parker PG (2006) Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proc R Soc B 273:797–804. https://doi.org/10.1098/rspb.2005.3396 CrossRefPubMedGoogle Scholar
  91. Winter M, Fiedler W, Hochachka W et al (2016) Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R Soc open Sci 3:160158. https://doi.org/10.5061/dryad.54k37 CrossRefGoogle Scholar
  92. Wu Q, Wang Y, Wang J et al (1999) The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J Exp Med 190:629–638CrossRefGoogle Scholar
  93. Xu J, Zhao J, Li Y et al (2016) Evaluation of differentially expressed immune-related genes in intestine of Pelodiscus sinensis after intragastric challenge with lipopolysaccharide based on transcriptome analysis. Fish Shellfish Immunol 56:417–426. https://doi.org/10.1016/j.fsi.2016.07.032 CrossRefPubMedGoogle Scholar
  94. Zapata A, Leceta J, Villena A (1981) Reptilian bone marrow: an ultrastuctural study in the Spanish lizard, Lacerta hispanica. J Morphol 168:137–149CrossRefGoogle Scholar
  95. Zhang X, Calvert RA, Sutton BJ, Doré KA (2017) IgY: a key isotype in antibody evolution. Biol Rev. https://doi.org/10.1111/brv.12325 CrossRefGoogle Scholar
  96. Zhu Q, Zhang M, Shi M et al (2016) Human B cells have an active phagocytic capability and undergo immune activation upon phagocytosis of Mycobacterium tuberculosis. Immunobiology 221:558–567. https://doi.org/10.1017/CBO9781107415324.004 CrossRefPubMedGoogle Scholar
  97. Zimmerman LM, Bowden RM, Vogel LA (2013a) Red-eared slider turtles lack response to immunization with keyhole limpet hemocyanin but have high levels of natural antibodies. ISRN Zool 2013:7CrossRefGoogle Scholar
  98. Zimmerman LM, Bowden RM, Vogel LA (2014) A vertebrate cytokine primer for eco-immunologists. Funct Ecol:1061–1073. https://doi.org/10.1111/1365-2435.12273 CrossRefGoogle Scholar
  99. Zimmerman LM, Carter AW, Bowden RM, Vogel LA (2017) Immunocompetence in a long-lived ectothermic vertebrate is temperature dependent but shows no decline in older adults. Funct Ecol. https://doi.org/10.1111/ijlh.12426 CrossRefGoogle Scholar
  100. Zimmerman LM, Clairardin SG, Paitz RT et al (2013b) Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle. J Exp Biol 216:633–640. https://doi.org/10.1242/jeb.078832 CrossRefPubMedGoogle Scholar
  101. Zimmerman LM, Paitz RT, Vogel LA, Bowden RM (2010a) Variation in the seasonal patterns of innate and adaptive immunity in the red-eared slider (Trachemys scripta). J Exp Biol 213:1477–1483. https://doi.org/10.1242/jeb.037770 CrossRefPubMedGoogle Scholar
  102. Zimmerman LM, Vogel LA, Bowden RM (2010b) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671. https://doi.org/10.1242/jeb.038315 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zimmerman LM, Vogel LA, Edwards KA, Bowden RM (2010c) Phagocytic B cells in a reptile. Biol Lett 6:270–273. https://doi.org/10.1098/rsbl.2009.0692 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Millikin University, Biology DepartmentDecaturUSA

Personalised recommendations