Advertisement

Allorecognition and Innate Immunity in the Dictyostelid Social Amoebae

  • Adam Kuspa
Chapter

Abstract

Dictyostelid social amoebae such as Dictyostelium discoideum are facultative multicellular organisms that display a number of immune functions commonly found in animals. In the vegetative growth phase, solitary amoebae track and consume food bacteria that occur in their soil environment, and are also susceptible to intracellular bacterial pathogens including those that infect humans. Individual amoebae recognize microbe-associated molecular patterns (MAMPs) to distinguish between bacterial species and adjust their physiology to optimize feeding, but it is during multicellular development that this has been most clearly demonstrated. Starved D. discoideum amoebae aggregate to form mounds, migrating slugs, and spore-filled fruiting bodies in a stereotypical and regulated developmental process. Cell cooperation during multicellular development is maintained by an allorecognition system that ensures the benefits of this group survival mechanism accrues to genetically related amoebae. Allorecognition is accomplished through a cell surface receptor–ligand pair comprised of immunoglobulin (Ig)-repeat ectodomains, and signaling through the receptor acts as a checkpoint for the transition from unicellular to multicellular life. During development, D. discoideum produces innate immune cells capable of clearing interstitial bacteria from migrating slugs and some isolates also harbor specific bacterial species as beneficial endosymbionts. The innate immune cells, when stimulated by bacteria or bacterial lipopolysaccharide, kill bacteria by producing extracellular DNA-based antimicrobial nets or extracellular traps (ETs). As with human innate immune cells, ET production requires reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and Toll/interleukin-1 receptor (TIR) domain-based signaling that triggers ET release. The Dictyostelid social amoebae are part of the monophyletic clade of the Amoebozoa that have achieved multicellularity, so they provide useful comparisons to other species of the Unikont supergroup that highlight the evolutionary pressures that shaped extant immune systems over the past billion years.

Keywords

Phagocytosis Dictyostelium Social amoeba Extracellular traps Endosymbiosis Bacterial pathogenesis Lectins Innate immunity Cooperation Allorecognition Development 

Notes

Acknowledgments

I would like to thank all of the past and present members of my laboratory and the laboratory of Gadi Shaulsky for their insights and their contributions to our understanding of amoebae–bacteria interactions. The author extends a special thanks to Christopher Dinh for discovering the influence of lectins on bacterial carriage and for the images in Figs. 3 and 4a.  I am immensely grateful to William F. Loomis for introducing me to Dictyostleium forty years ago and for providing me his illuminating insights for thirty-eight of those years. 

References

  1. Alibaud L, Kohler T, Coudray A, Prigent-Combaret C, Bergeret E, Perrin J, Benghezal M, Reimmann C, Gauthier Y, van Delden C, Attree I, Fauvarque MO, Cosson P (2008) Pseudomonas aeruginosa virulence genes identified in a Dictyostelium host model. Cell Microbiol 10(3):729–740. https://doi.org/10.1111/j.1462-5822.2007.01080.x. CMI1080 [pii]CrossRefPubMedGoogle Scholar
  2. Anjard C, Loomis WF (2002) Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryot Cell 1(4):643–652CrossRefGoogle Scholar
  3. Anjard C, Loomis WF (2005) Peptide signaling during terminal differentiation of Dictyostelium. Proc Natl Acad Sci U S A 102(21):7607–7611CrossRefGoogle Scholar
  4. Anjard C, Loomis WF (2006) GABA induces terminal differentiation of Dictyostelium through a GABAB receptor. Development 133(11):2253–2261CrossRefGoogle Scholar
  5. Anjard C, Loomis WF (2008) Cytokinins induce sporulation in Dictyostelium. Development 135(5):819–827. https://doi.org/10.1242/dev.018051. dev.018051 [pii]CrossRefPubMedGoogle Scholar
  6. Athamna A, Ofek I, Keisari Y, Markowitz S, Dutton GG, Sharon N (1991) Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun 59(5):1673–1682PubMedPubMedCentralGoogle Scholar
  7. Bakthavatsalam D, Gomer RH (2010) The secreted proteome profile of developing Dictyostelium discoideum cells. Proteomics 10(13):2556–2559. https://doi.org/10.1002/pmic.200900516 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Balest A, Peracino B, Bozzaro S (2011) Legionella pneumophila infection is enhanced in a RacH-null mutant of Dictyostelium. Commun Integr Biol 4(2):194–197. https://doi.org/10.4161/cib.4.2.14381. 1942-0889-4-2-14 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bandyopadhyay P, Xiao H, Coleman HA, Price-Whelan A, Steinman HM (2004) Icm/dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts. Infect Immun 72(8):4541–4551. https://doi.org/10.1128/IAI.72.8.4541-4551.2004. 72/8/4541 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Muller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 99(3):1414–1419. https://doi.org/10.1073/pnas.032662799. 99/3/1414 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barclay AN (2003) Membrane proteins with immunoglobulin-like domains – a master superfamily of interaction molecules. Semin Immunol 15(4):215–223CrossRefGoogle Scholar
  12. Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski EA, Strassmann JE, Queller DC, Zupan B, Shaulsky G, Kuspa A (2009) Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium. Curr Biol 19(7):567–572. https://doi.org/10.1016/j.cub.2009.02.037. S0960-9822(09)00747-7 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. Benghezal M, Fauvarque MO, Tournebize R, Froquet R, Marchetti A, Bergeret E, Lardy B, Klein G, Sansonetti P, Charette SJ, Cosson P (2006) Specific host genes required for the killing of Klebsiella bacteria by phagocytes. Cell Microbiol 8(1):139–148. https://doi.org/10.1111/j.1462-5822.2005.00607.x CrossRefPubMedGoogle Scholar
  14. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622. https://doi.org/10.1182/blood-2009-05-221606 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boehm T (2006) Quality control in self/nonself discrimination. Cell 125(5):845–858CrossRefGoogle Scholar
  16. Boulais J, Trost M, Landry CR, Dieckmann R, Levy ED, Soldati T, Michnick SW, Thibault P, Desjardins M (2010) Molecular characterization of the evolution of phagosomes. Mol Syst Biol 6:423. https://doi.org/10.1038/msb.2010.80 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bozzaro S (2013) The model organism Dictyostelium discoideum. Methods Mol Biol 983:17–37. https://doi.org/10.1007/978-1-62703-302-2_2 CrossRefPubMedGoogle Scholar
  18. Bozzaro S, Eichinger L (2011) The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 12(7):942–954. doi:BSP/CDT/E-Pub/00254 [pii]CrossRefGoogle Scholar
  19. Bozzaro S, Peracino B, Eichinger L (2013) Dictyostelium host response to legionella infection: strategies and assays. Methods Mol Biol 954:417–438. https://doi.org/10.1007/978-1-62703-161-5_26 CrossRefPubMedGoogle Scholar
  20. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582. https://doi.org/10.1038/nrmicro1710 CrossRefPubMedGoogle Scholar
  21. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385. 303/5663/1532 [pii]CrossRefPubMedGoogle Scholar
  22. Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469(7330):393–396. https://doi.org/10.1038/nature09668 CrossRefPubMedGoogle Scholar
  23. Brock DA, Read S, Bozhchenko A, Queller DC, Strassmann JE (2013) Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nat Commun 4:2385. https://doi.org/10.1038/ncomms3385 CrossRefPubMedGoogle Scholar
  24. Brock DA, Callison WE, Strassmann JE, Queller DC (2016) Sentinel cells, symbiotic bacteria and toxin resistance in the social amoeba Dictyostelium discoideum. Proc Biol Sci/R Soc 283(1829). https://doi.org/10.1098/rspb.2015.2727 CrossRefGoogle Scholar
  25. Buracco S, Peracino B, Cinquetti R, Signoretto E, Vollero A, Imperiali F, Castagna M, Bossi E, Bozzaro S (2015) Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux. J Cell Sci 128(17):3304–3316. https://doi.org/10.1242/jcs.173153 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cabral M, Anjard C, Malhotra V, Loomis WF, Kuspa A (2010) Unconventional secretion of AcbA in Dictyostelium discoideum through a vesicular intermediate. Eukaryot Cell 9(7):1009–1017. https://doi.org/10.1128/EC.00337-09. EC.00337-09 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  27. Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, Skelton J, Kay RR, Ivens A, Martinez JL, Escalante R (2008) Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiol 8:109. https://doi.org/10.1186/1471-2180-8-109. 1471-2180-8-109 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  28. Casadevall A, Pirofski LA (2007) Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot Cell 6(12):2169–2174. https://doi.org/10.1128/EC.00308-07. EC.00308-07 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chen ZH, Schaap P (2015) Secreted cyclic-di-GMP induces stalk cell differentiation in the eukaryote Dictyostelium discoideum. J Bacteriol. https://doi.org/10.1128/jb.00321-15 CrossRefGoogle Scholar
  30. Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317:678–681CrossRefGoogle Scholar
  31. Chen G, Wang J, Xu X, Wu X, Piao R, Siu CH (2013) TgrC1 mediates cell-cell adhesion by interacting with TgrB1 via mutual IPT/TIG domains during development of Dictyostelium discoideum. Biochem J 452(2):259–269. https://doi.org/10.1042/bj20121674 CrossRefPubMedGoogle Scholar
  32. Chen G, Xu X, Wu X, Thomson A, Siu CH (2014) Assembly of the TgrB1-TgrC1 cell adhesion complex during Dictyostelium discoideum development. Biochem J 459(2):241–249. https://doi.org/10.1042/bj20131594 CrossRefPubMedGoogle Scholar
  33. Chia CP (1996) A 130-kDa plasma membrane glycoprotein involved in Dictyostelium phagocytosis. Exp Cell Res 227(2):182–189. https://doi.org/10.1006/excr.1996.0265. S0014-4827(96)90265-7 [pii]CrossRefPubMedGoogle Scholar
  34. Chia CP, Gomathinayagam S, Schmaltz RJ, Smoyer LK (2005) Glycoprotein gp130 of dictyostelium discoideum influences macropinocytosis and adhesion. Mol Biol Cell 16(6):2681–2693. https://doi.org/10.1091/mbc.E04-06-0483. E04-06-0483 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci U S A 89(11):5188–5191CrossRefGoogle Scholar
  36. Cooper DNW, Haywood-Reid PL, Springer WR, Barondes SH (1986) Bacterial glycoconjugates are natural ligands for the carbohydrate binding site of discoidin I and influence its cellular compartmentalization. Dev Biol 114:416–425CrossRefGoogle Scholar
  37. Cosson P, Lima WC (2014) Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien? Cell Microbiol 16(6):816–823. https://doi.org/10.1111/cmi.12291 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 11(3):271–276. https://doi.org/10.1016/j.mib.2008.05.005 CrossRefPubMedGoogle Scholar
  39. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99(16):10494–10499. https://doi.org/10.1073/pnas.142680199. 142680199 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  40. Danelishvili L, Wu M, Stang B, Harriff M, Cirillo SL, Cirillo JD, Bildfell R, Arbogast B, Bermudez LE (2007) Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc Natl Acad Sci U S A 104(26):11038–11043. https://doi.org/10.1073/pnas.0610746104. 0610746104 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  41. De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K, Weissman IL (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438(7067):454–459CrossRefGoogle Scholar
  42. Dickinson DJ, Nelson WJ, Weis WI (2011) A polarized epithelium organized by beta- and alpha-catenin predates cadherin and metazoan origins. Science 331(6022):1336–1339. https://doi.org/10.1126/science.1199633 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dinh C, Farinholt T, Hirose S, Zhuchenko O, Kuspa A (2018) Lectins modulate the microbiota of social amoebae. Science (in press)Google Scholar
  44. DiSalvo S, Haselkorn TS, Bashir U, Jimenez D, Brock DA, Queller DC, Strassmann JE (2015) Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria. Proc Natl Acad Sci U S A 112(36):E5029–E5037. https://doi.org/10.1073/pnas.1511878112 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Dorer MS, Isberg RR (2006) Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 8(6):1637–1646. https://doi.org/10.1016/j.micinf.2005.11.020. S1286-4579(06)00011-6 [pii]CrossRefPubMedGoogle Scholar
  46. Doyle RJ, Birdsell DC (1972) Interaction of concanavalin A with the cell wall of Bacillus subtilis. J Bacteriol 109(2):652–658PubMedPubMedCentralGoogle Scholar
  47. Du Q, Kawabe Y, Schilde C, Chen ZH, Schaap P (2015) The evolution of aggregative multicellularity and cell-cell communication in the Dictyostelia. J Mol Biol 427(23):3722–3733. https://doi.org/10.1016/j.jmb.2015.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dynes JL, Clark AM, Shaulsky G, Kuspa A, Loomis WF, Firtel RA (1994) LagC is required for cell-cell interactions that are essential for cell-type differentiation in Dictyostelium. Genes Dev 8:948–958CrossRefGoogle Scholar
  49. Eichinger L (2012) Model organisms to study host - pathogen interaction: prerequisites for the identification of novel drug targets. Curr Drug Targets 12(7):934–935. doi: BSP/CDT/E-Pub/00252 [pii]CrossRefGoogle Scholar
  50. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Madan Babu M, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435(7038):43–57. https://doi.org/10.1038/nature03481. nature03481 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ennis HL, Dao DN, Pukatzki SU, Kessin RH (2000) Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. Proc Natl Acad Sci U S A 97:3292–3297CrossRefGoogle Scholar
  52. Ennis HL, Dao DN, Wu MY, Kessin RH (2003) Mutation of the Dictyostelium fbxA gene affects cell-fate decisions and spatial patterning. Protist 154:419–429CrossRefGoogle Scholar
  53. Farbrother P, Wagner C, Na J, Tunggal B, Morio T, Urushihara H, Tanaka Y, Schleicher M, Steinert M, Eichinger L (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8(3):438–456. https://doi.org/10.1111/j.1462-5822.2005.00633.x. CMI633 [pii]CrossRefPubMedGoogle Scholar
  54. Fields BS (1996) The molecular ecology of Legionellae. Trends Microbiol 4(7):286–290. doi: 0966842X9610041X [pii]CrossRefGoogle Scholar
  55. Fortunato A, Queller DC, Strassmann JE (2003a) A linear dominance hierarchy among clones in chimeras of the social amoeba Dictyostelium discoideum. J Evol Biol 16:438–445CrossRefGoogle Scholar
  56. Fortunato A, Strassmann JE, Santorelli L, Queller DC (2003b) Co-occurrence in nature of different clones of the social amoeba, Dictyostelium discoideum. Mol Ecol 12(4):1031–1038CrossRefGoogle Scholar
  57. Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CR (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431(7009):693–696CrossRefGoogle Scholar
  58. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642. https://doi.org/10.1016/j.cell.2010.01.032 CrossRefPubMedGoogle Scholar
  59. Gabius HJ, Springer WR, Barondes SH (1985) Receptor for the cell binding site of discoidin. Cell 42:449–456CrossRefGoogle Scholar
  60. Gao LY, Harb OS, Abu Kwaik Y (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65(11):4738–4746PubMedPubMedCentralGoogle Scholar
  61. Geltosky J, Weseman J, Bakke A, Lerner R (1979) Identification of a cell surface glycoprotein involved in cell aggregation in Dictyostelium discoideum. Cell 18:391–398CrossRefGoogle Scholar
  62. Gerstenmaier L, Pilla R, Herrmann L, Herrmann H, Prado M, Villafano GJ, Kolonko M, Reimer R, Soldati T, King JS, Hagedorn M (2015) The autophagic machinery ensures nonlytic transmission of mycobacteria. Proc Natl Acad Sci U S A 112(7):E687–E692. https://doi.org/10.1073/pnas.1423318112 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci U S A 104(21):8913–8917CrossRefGoogle Scholar
  64. Goldmann O, Medina E (2012) The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 3:420. https://doi.org/10.3389/fimmu.2012.00420 CrossRefPubMedGoogle Scholar
  65. Greub G, La Scola B, Raoult D (2004) Amoebae-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 10(3):470–477. https://doi.org/10.3201/eid1003.020792 CrossRefPubMedGoogle Scholar
  66. Grimson MJ, Coates JC, Reynolds JP, Shipman M, Blanton RL, Harwood AJ (2000) Adherens junctions and beta-catenin-mediated cell signalling in a non-metazoan organism. Nature 408:727–731CrossRefGoogle Scholar
  67. Grubhoffer L, Hypsa V, Volf P (1997) Lectins (hemagglutinins) in the gut of the important disease vectors. Parasite 4(3):203–216CrossRefGoogle Scholar
  68. Gruenheit N, Parkinson K, Stewart B, Howie JA, Wolf JB, Thompson CR (2017) A polychromatic ‘greenbeard’ locus determines patterns of cooperation in a social amoeba. Nat Commun 8:14171. https://doi.org/10.1038/ncomms14171 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17(8):495–502. https://doi.org/10.1016/j.tplants.2012.04.003 CrossRefPubMedGoogle Scholar
  70. Harrison CF, Chiriano G, Finsel I, Manske C, Hoffmann C, Steiner B, Kranjc A, Patthey-Vuadens O, Kicka S, Trofimov V, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H (2015) Amoebae-based screening reveals a novel family of compounds restricting intracellular Legionella pneumophila. ACS Infect Dis 1(7):327–338. https://doi.org/10.1021/acsinfecdis.5b00002 CrossRefPubMedGoogle Scholar
  71. Hasselbring BM, Patel MK, Schell MA (2011) Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 79(5):2079–2088. https://doi.org/10.1128/IAI.01233-10. IAI.01233-10 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  72. Heidel AJ, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L, Platzer M, Noegel AA, Schaap P, Glockner G (2011) Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 21(11):1882–1891. https://doi.org/10.1101/gr.121137.111 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G (2011) Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333(6041):467–470. https://doi.org/10.1126/science.1203903. science.1203903 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hirose S, Santhanam B, Katoh-Kurosawa M, Shaulsky G, Kuspa A (2015) Allorecognition, via TgrB1 and TgrC1, mediates the transition from unicellularity to multicellularity in the social amoeba Dictyostelium discoideum. Development 142(20):3561–3570. https://doi.org/10.1242/dev.123281 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hirose S, Chen G, Kuspa A, Shaulsky G (2017) The polymorphic proteins TgrB1 and TgrC1 function as a ligand-receptor pair in Dictyostelium allorecognition. J Cell Sci 130(23):4002–4012. https://doi.org/10.1242/jcs.208975 CrossRefPubMedGoogle Scholar
  76. Hirsch JG (1959) Immunity to infectious diseases: review of some concepts of Metchnikoff. Bacteriol Rev 23:48–60PubMedPubMedCentralGoogle Scholar
  77. Ho HI, Shaulsky G (2015) Temporal regulation of kin recognition maintains recognition-cue diversity and suppresses cheating. Nat Commun 6:7144. https://doi.org/10.1038/ncomms8144 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ho HI, Hirose S, Kuspa A, Shaulsky G (2013) Kin recognition protects cooperators against cheaters. Curr Biol 23(16):1590–1595. https://doi.org/10.1016/j.cub.2013.06.049 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335(6186):167–170CrossRefGoogle Scholar
  80. Katoh M, Shaw C, Xu Q, Van Driessche N, Morio T, Kuwayama H, Obara S, Urushihara H, Tanaka Y, Shaulsky G (2004) An orderly retreat: dedifferentiation is a regulated process. Proc Natl Acad Sci U S A 101(18):7005–7010. https://doi.org/10.1073/pnas.0306983101. 0306983101 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  81. Katoh M, Chen G, Roberge E, Shaulsky G, Kuspa A (2007) Developmental commitment in Dictyostelium discoideum. Eukaryot Cell 6(11):2038–2045. https://doi.org/10.1128/EC.00223-07. EC.00223-07 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kawabe Y, Schilde C, Du Q, Schaap P (2015) A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Sci Rep 5:9644. https://doi.org/10.1038/srep09644 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kessin RH (2001) Dictyostelium – evolution, cell biology, and the development of multicellularity. Cambridge Univ. Press, Cambridge, UKCrossRefGoogle Scholar
  84. Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 11(5):209. https://doi.org/10.1186/gb-2010-11-5-209 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC (2011) High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334(6062):1548–1551. https://doi.org/10.1126/science.1213272 CrossRefPubMedGoogle Scholar
  86. Le Bouguenec C (2005) Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 295(6–7):471–478CrossRefGoogle Scholar
  87. Leiba J, Sabra A, Bodinier R, Marchetti A, Lima WC, Melotti A, Perrin J, Burdet F, Pagni M, Soldati T, Lelong E, Cosson P (2017) Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cell Microbiol. https://doi.org/10.1111/cmi.12722 CrossRefGoogle Scholar
  88. Li CL, Santhanam B, Webb AN, Zupan B, Shaulsky G (2016) Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium. Genome Res 26(9):1268–1276. https://doi.org/10.1101/gr.205682.116 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lima WC, Lelong E, Cosson P (2011) What can Dictyostelium bring to the study of pseudomonas infections? Semin Cell Dev Biol 22(1):77–81. https://doi.org/10.1016/j.semcdb.2010.11.006 CrossRefPubMedGoogle Scholar
  90. Lima WC, Balestrino D, Forestier C, Cosson P (2014) Two distinct sensing pathways allow recognition of Klebsiella pneumoniae by Dictyostelium amoebae. Cell Microbiol 16(3):311–323. https://doi.org/10.1111/cmi.12226 CrossRefPubMedGoogle Scholar
  91. Liu Z (2013) Genetic and biochemical analysis of the response of Dictyostelium discoideum to bacteria. Doctoral dissertation. Baylor College of Medicine, HoustonGoogle Scholar
  92. Liu Z, Nam EA, Yun S, Qin J, Shaulsky G, Kuspa A (2018) A component of the TirA bacterial response pathway in Dictyostelium discoideum, EpdR, that is related to bacterial exopolysaccharide depolymerases. (submitted)Google Scholar
  93. Loomis WF, Smith DW (1990) Molecular phylogeny of Dictyostelium dscoideum by protein sequence comparison. Proc Natl Acad Sci U S A 87:9093–9097CrossRefGoogle Scholar
  94. Ludtmann MH, Otto GP, Schilde C, Chen ZH, Allan CY, Brace S, Beesley PW, Kimmel AR, Fisher P, Killick R, Williams RS (2014) An ancestral non-proteolytic role for presenilin proteins in multicellular development of the social amoeba Dictyostelium discoideum. J Cell Sci 127(Pt 7):1576–1584. https://doi.org/10.1242/jcs.140939 CrossRefPubMedPubMedCentralGoogle Scholar
  95. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107(45):19520–19524. https://doi.org/10.1073/pnas.1012931107. 1012931107 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mathieu SV, Aragao KS, Imberty A, Varrot A (2010) Discoidin I from Dictyostelium discoideum and interactions with oligosaccharides: specificity, affinity, crystal structures, and comparison with discoidin II. J Mol Biol 400(3):540–554. https://doi.org/10.1016/j.jmb.2010.05.042 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Mege RM, Ishiyama N (2017) Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold Spring Harb Perspect Biol 9(5). https://doi.org/10.1101/cshperspect.a028738 CrossRefGoogle Scholar
  98. Mehdiabadi NJ, Jack CN, Farnham TT, Platt TG, Kalla SE, Shaulsky G, Queller DC, Strassmann JE (2006) Social evolution: kin preference in a social microbe. Nature 442(7105):881–882CrossRefGoogle Scholar
  99. Metchnikoff E (1905) Immunity in infective diseases. Cambridge University Press, LondonGoogle Scholar
  100. Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 79(7):2941–2949. https://doi.org/10.1128/IAI.01266-10. IAI.01266-10 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  101. Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71(1):20–28. https://doi.org/10.1128/AEM.71.1.20-28.2005. 71/1/20 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nasser W, Santhanam B, Miranda R, Parikh A, Juneja K, Rot G, Dinh C, Chen R, Zupan B, Shaulsky G, Kuspa A (2013) Bacterial discrimination by Dictyostelid amoebae reveals the complexity of ancient interspecies interactions. Curr Biol 23(10):862–872CrossRefGoogle Scholar
  103. Ofek I, Sharon N (1988) Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect Immun 56(3):539–547PubMedPubMedCentralGoogle Scholar
  104. Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE (2008) Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol 6(11):e287CrossRefGoogle Scholar
  105. Ostrowski EA, Shen Y, Tian X, Sucgang R, Jiang H, Qu J, Katoh-Kurasawa M, Brock DA, Dinh C, Lara-Garduno F, Lee SL, Kovar CL, Dinh HH, Korchina V, Jackson L, Patil S, Han Y, Chaboub L, Shaulsky G, Muzny DM, Worley KC, Gibbs RA, Richards S, Kuspa A, Strassmann JE, Queller DC (2015) Genomic signatures of cooperation and conflict in the social amoeba. Curr Biol 25(12):1661–1665. https://doi.org/10.1016/j.cub.2015.04.059 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pang X, Xiao X, Liu Y, Zhang R, Liu J, Liu Q, Wang P, Cheng G (2016) Mosquito C-type lectins maintain gut microbiome homeostasis. Nat Microbiol 1:16023. https://doi.org/10.1038/nmicrobiol.2016.23 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Parkinson K, Bolourani P, Traynor D, Aldren NL, Kay RR, Weeks G, Thompson CR (2009) Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J Cell Sci 122(Pt 3):335–344. https://doi.org/10.1242/jcs.036822 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci U S A 99(17):11260–11264. https://doi.org/10.1073/pnas.162006499 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Peracino B, Buracco S, Bozzaro S (2013) The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 126(Pt 1):301–311. https://doi.org/10.1242/jcs.116210 CrossRefPubMedGoogle Scholar
  110. Pozos TC, Ramakrishan L (2004) New models for the study of mycobacterium-host interactions. Curr Opin Immunol 16(4):499–505CrossRefGoogle Scholar
  111. Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 99:3159–3164CrossRefGoogle Scholar
  112. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103(5):1528–1533. https://doi.org/10.1073/pnas.0510322103. 0510322103 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  113. Queller DC, Ponte E, Bozzaro S, Strassmann JE (2003) Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299(5603):105–106CrossRefGoogle Scholar
  114. Raper KB (1937) Growth and development of Dictyostelium discoideum with different bacterial associates. J Agric Res 55:289–316Google Scholar
  115. Robery S, Tyson R, Dinh C, Kuspa A, Noegel AA, Bretschneider T, Andrews PL, Williams RS (2013) A novel human receptor involved in bitter tastant detection identified using Dictyostelium discoideum. J Cell Sci 126(Pt 23):5465–5476. https://doi.org/10.1242/jcs.136440 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rogozin IB, Basu MK, Csuros M, Koonin EV (2009) Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol 1:99–113. https://doi.org/10.1093/gbe/evp011 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL (2011) Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 28(2):933–947. https://doi.org/10.1093/molbev/msq282 CrossRefPubMedGoogle Scholar
  118. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12(1):109–116. https://doi.org/10.1016/j.chom.2012.05.015 CrossRefPubMedGoogle Scholar
  119. Santorelli LA, Thompson CR, Villegas E, Svetz J, Dinh C, Parikh A, Sucgang R, Kuspa A, Strassmann JE, Queller DC, Shaulsky G (2008) Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451(7182):1107–1110CrossRefGoogle Scholar
  120. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314(5799):661–663. https://doi.org/10.1126/science.1130670. 314/5799/661 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  121. Schilde C, Schaap P (2013) The Amoebozoa. Methods Mol Biol 983:1–15. https://doi.org/10.1007/978-1-62703-302-2_1 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shaulsky G, Kessin RH (2007) The cold war of the social amoebae. Curr Biol 17(16):R684–R692CrossRefGoogle Scholar
  123. Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, Skelton J, Ivens A, Bozzaro S (2008) Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 9:291. https://doi.org/10.1186/1471-2164-9-291. 1471-2164-9-291 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L (2011) Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 13(11):1793–1811. https://doi.org/10.1111/j.1462-5822.2011.01662.x CrossRefPubMedGoogle Scholar
  125. Simon S, Hilbi H (2015) Subversion of cell-autonomous immunity and cell migration by Legionella pneumophila effectors. Front Immunol 6:447. https://doi.org/10.3389/fimmu.2015.00447 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Snyder ML (2013) Bacterial discrimination: Dictyostelium’s discerning taste. Curr Biol 23(10):R443–R446. https://doi.org/10.1016/j.cub.2013.04.021 CrossRefPubMedGoogle Scholar
  127. Song J, Xu Q, Olsen R, Loomis WF, Shaulsky G, Kuspa A, Sucgang R (2005) Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comput Biol 1(7):e71. https://doi.org/10.1371/journal.pcbi.0010071 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Stallforth P, Brock DA, Cantley AM, Tian X, Queller DC, Strassmann JE, Clardy J (2013) A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proc Natl Acad Sci U S A 110(36):14528–14533. https://doi.org/10.1073/pnas.1308199110 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297(5578):89–91CrossRefGoogle Scholar
  130. Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13(17):R665–R666CrossRefGoogle Scholar
  131. Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A (2003) Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect Immun 71:4862–4872CrossRefGoogle Scholar
  132. Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265(5170):383–386CrossRefGoogle Scholar
  133. Steinert M, Heuner K (2005) Dictyostelium as host model for pathogenesis. Cell Microbiol 7:307–314CrossRefGoogle Scholar
  134. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476. https://doi.org/10.1038/nchembio.1525 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Strassmann JE (2016) Kin discrimination in Dictyostelium social amoebae. J Eukaryot Microbiol. https://doi.org/10.1111/jeu.12307 CrossRefGoogle Scholar
  136. Strassmann JE, Queller DC (2011) Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci U S A 108(Suppl 2):10855–10862. https://doi.org/10.1073/pnas.1102451108 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Strassmann JE, Shu L (2017) Ancient bacteria-amoeba relationships and pathogenic animal bacteria. PLoS Biol 15(5):e2002460. https://doi.org/10.1371/journal.pbio.2002460 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Strassmann JE, Zhu Y, Queller DC (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408:965–967CrossRefGoogle Scholar
  139. Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 12(2):R20. https://doi.org/10.1186/gb-2011-12-2-r20 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Swanson MS, Hammer BK (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613. https://doi.org/10.1146/annurev.micro.54.1.567. 54/1/567 [pii]CrossRefPubMedGoogle Scholar
  141. Taylor-Mulneix DL, Bendor L, Linz B, Rivera I, Ryman VE, Dewan KK, Wagner SM, Wilson EF, Hilburger LJ, Cuff LE, West CM, Harvill ET (2017) Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol 15(4):e2000420. https://doi.org/10.1371/journal.pbio.2000420 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Thomas JM, Ashbolt NJ (2011) Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ Sci Technol 45(3):860–869. https://doi.org/10.1021/es102876y CrossRefPubMedGoogle Scholar
  143. Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72(4):2428–2438. https://doi.org/10.1128/AEM.72.4.2428-2438.2006. 72/4/2428 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tian X, Strassmann JE, Queller DC (2013) Dictyostelium development shows a novel pattern of evolutionary conservation. Mol Biol Evol 30(4):977–984. https://doi.org/10.1093/molbev/mst007 CrossRefPubMedGoogle Scholar
  145. Tosetti N, Croxatto A, Greub G (2014) Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions. Microb Pathog 77:125–130. https://doi.org/10.1016/j.micpath.2014.07.009 CrossRefPubMedGoogle Scholar
  146. Waheed A, Ludtmann MH, Pakes N, Robery S, Kuspa A, Dinh C, Baines D, Williams RS, Carew MA (2014) Naringenin inhibits the growth of Dictyostelium and MDCK-derived cysts in a TRPP2 (polycystin-2)-dependent manner. Br J Pharmacol 171(10):2659–2670. https://doi.org/10.1111/bph.12443 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Walk A, Callahan J, Srisawangvong P, Leuschner J, Samaroo D, Cassilly D, Snyder ML (2011) Lipopolysaccharide enhances bactericidal activity in Dictyostelium discoideum cells. Dev Comp Immunol 35(8):850–856. https://doi.org/10.1016/j.dci.2011.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Wang N, Soderbom F, Anjard C, Shaulsky G, Loomis WF (1999) SDF-2 induction of terminal differentiation in Dictyostelium discoideum is mediated by the membrane-spanning sensor kinase DhkA. Mol Cell Biol 19:4750–4756CrossRefGoogle Scholar
  149. Wang J, Hou L, Awrey D, Loomis WF, Firtel RA, Siu CH (2000) The membrane glycoprotein gp150 is encoded by the lagC gene and mediates cell-cell adhesion by heterophilic binding during Dictyostelium development. Dev Biol 227(2):734–745CrossRefGoogle Scholar
  150. Zhang X, Soldati T (2013) Detecting, visualizing and quantitating the generation of reactive oxygen species in an amoeba model system. J Vis Exp: JoVE 81:e50717. https://doi.org/10.3791/50717 CrossRefGoogle Scholar
  151. Zhang X, Soldati T (2016) Of amoebae and men: extracellular DNA traps as an ancient cell-intrinsic defense mechanism. Front Immunol 7:269. https://doi.org/10.3389/fimmu.2016.00269 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang X, Krause KH, Xenarios I, Soldati T, Boeckmann B (2013) Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 8(3):e58126. https://doi.org/10.1371/journal.pone.0058126 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Zhang X, Zhuchenko O, Kuspa A, Soldati T (2016) Social amoebae trap and kill bacteria by casting DNA nets. Nat Commun 7:10938. https://doi.org/10.1038/ncomms10938 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations