Advertisement

Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia

  • Marco Gerdol
  • Marta Gomez-Chiarri
  • Maria G. Castillo
  • Antonio Figueras
  • Graziano Fiorito
  • Rebeca Moreira
  • Beatriz Novoa
  • Alberto Pallavicini
  • Giovanna Ponte
  • Katina Roumbedakis
  • Paola Venier
  • Gerardo R. Vasta
Chapter

Abstract

The study of molluscan immune systems, in particular those of bivalve molluscs (e.g., clams, oysters, scallops, mussels), has experienced great growth in recent decades, mainly due to the needs of a rapidly growing aquaculture industry to manage the impacts of disease and the wider application of -omic tools to this diverse group of invertebrate organisms. Several unique aspects of molluscan immune systems highlighted in this chapter include the importance of feeding behavior and mucosal immunity, the discovery of unique levels of diversity in immune genes, and experimental indication of transgenerational immune priming. The development of comparative functional studies using natural and selectively bred disease-resistant strains, together with the potential but yet to be fully developed application of gene-editing technologies, should provide exciting insights into the functional relevance of immune gene family expansion and molecular diversification in bivalves. Other areas of bivalve immunity that deserve further study include elucidation of the process of hematopoiesis, the full characterization of hemocyte subpopulations, and the genetic and molecular mechanisms underlying immune priming. While the most important aspects of the immune system of the largest group of molluscs, gastropods (e.g., snails and slugs), are discussed in detail in Chap. 12, we also briefly outline the most distinctive features of the immune system of another fascinating group of marine molluscs, cephalopods, which include invertebrate animals with extraordinary morphological and behavioral complexity.

Keywords

Mollusca Bivalves Oyster Mussel Scallop Clam Cephalopods Aquaculture Lectins Opsonization Pathogen recognition Immune signaling Antimicrobial peptides Apoptosis Complement system Immune priming Phagocytosis Prophenoloxidase Neuroendocrine immunomodulation 

Notes

Acknowledgements

AF, BN, and RM acknowledge support from the projects AGL2015-65705-R (Ministerio de Economía y Competitividad, Spain) and IN607B 2016/12 (Consellería de Economía, Emprego e Industria (GAIN), Xunta de Galicia). AF, BN, RM, MG, PV, and AP acknowledge support from the project VIVALDI (678589) (EU H2020). MG and AP acknowledge support from the FRA2015 funding program from the University of Trieste.

GRV acknowledges support from grants IOS-1656720, IOS-1050518, IOB-0618409, MCB-0077928, and IOS-0822257 from the National Science Foundation, and grant R01GM070589 from the National Institutes of Health, USA. MGC acknowledges support from USDA AFRI grants 2015-67016-22942 and 2016-67016-24905.

KR is supported through a scholarship of the Italian Ministry of Foreign Affairs (MAECI), “Entity and diversity of parasite load and his effects on the reproductive status and growth in cephalopod mollusks.” GP is supported by a RITMARE Flagship project (MIUR and Stazione Zoologica Anton Dohrn – SZN).

The authors are grateful to S Salger, EM Roberts and T Modak, University of Rhode Island, for their contributions to the text and figures, to Samuele Greco for his contribution in the preparation of Fig. 19, to Ricardo Castillo for his contribution in the preparation of Fig. 20, and to Elena Baldascino for assistance in the identification of putative immune-related genes in the octopus transcriptome. Access to the octopus transcriptome data was kindly provided by Dr. R Sanges and Prof. G Fiorito (SZN).

References

  1. Ablasser A, Goldeck M, Cavlar T et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380–384. https://doi.org/10.1038/nature12306 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Adema CM (2015) Fibrinogen-related proteins (FREPs) in mollusks. Results Probl Cell Differ 57:111–129. https://doi.org/10.1007/978-3-319-20819-0_5 CrossRefGoogle Scholar
  3. Adema CM, Hertel LA, Miller RD, Loker ES (1997) A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci 94:8691–8696CrossRefGoogle Scholar
  4. Adema CM, Hanington PC, Lun C-M et al (2010) Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Mol Immunol 47:849–860CrossRefGoogle Scholar
  5. Aladaileh S, Rodney P, Nair SV, Raftos DA (2007) Characterization of phenoloxidase activity in Sydney rock oysters (Saccostrea glomerata). Comp Biochem Physiol B Biochem Mol Biol 148:470–480. https://doi.org/10.1016/j.cbpb.2007.07.089 CrossRefGoogle Scholar
  6. Alavi MR, Fernández-Robledo JA, Vasta GR (2009) Development of an in vitro assay to examine intracellular survival of Perkinsus marinus trophozoites upon phagocytosis by oyster (Crassostrea virginica and Crassostrea ariakensis) hemocytes. J Parasitol 95:900–907. https://doi.org/10.1645/GE-1864.1 CrossRefGoogle Scholar
  7. Albertin CB, Simakov O, Mitros T et al (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224. https://doi.org/10.1038/nature14668 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Allam B, Ford SE (2006) Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species: I. Haemocyte changes following in vitro challenge. Fish Shellfish Immunol 20:374–383. https://doi.org/10.1016/j.fsi.2005.05.012 CrossRefGoogle Scholar
  9. Allam B, Pales Espinosa E (2016) Bivalve immunity and response to infections: are we looking at the right place? Fish Shellfish Immunol 53:4–12. https://doi.org/10.1016/j.fsi.2016.03.037 CrossRefGoogle Scholar
  10. Allam B, Raftos D (2015) Immune responses to infectious diseases in bivalves. J Invertebr Pathol 131:121–136. https://doi.org/10.1016/j.jip.2015.05.005 CrossRefGoogle Scholar
  11. Allam B, Pales Espinosa E, Tanguy A et al (2014) Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease. Fish Shellfish Immunol 41:2–11. https://doi.org/10.1016/j.fsi.2014.05.022 CrossRefGoogle Scholar
  12. Allcock AL, Barratt I, Eléaume M et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res II Top Stud Oceanogr 58:242–249. https://doi.org/10.1016/j.dsr2.2010.05.016 CrossRefGoogle Scholar
  13. Alpuche J, Pereyra A, Mendoza-Hernández G et al (2010) Purification and partial characterization of an agglutinin from Octopus maya serum. Comp Biochem Physiol B Biochem Mol Biol 156:1–5. https://doi.org/10.1016/j.cbpb.2010.01.006 CrossRefGoogle Scholar
  14. Altura MA, Stabb E, Goldman W et al (2011) Attenuation of host NO production by MAMPs potentiates development of the host in the squid-Vibrio symbiosis. Cell Microbiol 13:527–537. https://doi.org/10.1111/j.1462-5822.2010.01552.x CrossRefPubMedCentralPubMedGoogle Scholar
  15. Amor MD, Norman MD, Cameron HE, Strugnell JM (2014) Allopatric speciation within a cryptic species complex of Australasian octopuses. PLoS One 9:e98982. https://doi.org/10.1371/journal.pone.0098982 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Anisimova AA, Ponomareva AL, Grinchenko AV et al (2017) The composition and seasonal dynamics of the hemocyte cell population in the clams Corbicula japonica Prime (1864) of the Kievka River (the basin of the Sea of Japan). Russ J Mar Biol 43:156–163. https://doi.org/10.1134/S106307401702002X CrossRefGoogle Scholar
  17. Arivalagan J, Marie B, Sleight VA et al (2016) Shell matrix proteins of the clam, Mya truncata: roles beyond shell formation through proteomic study. Mar Genomics 27:69–74. https://doi.org/10.1016/j.margen.2016.03.005 CrossRefGoogle Scholar
  18. Arivalagan J, Yarra T, Marie B et al (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77. https://doi.org/10.1093/molbev/msw219 CrossRefGoogle Scholar
  19. Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host–pathogen interaction. Immunobiology 211:263–281. https://doi.org/10.1016/j.imbio.2006.01.002 CrossRefGoogle Scholar
  20. Arzul I, Carnegie RB (2015) New perspective on the haplosporidian parasites of molluscs. J Invertebr Pathol 131:32–42. https://doi.org/10.1016/j.jip.2015.07.014 CrossRefGoogle Scholar
  21. Arzul I, Corbeil S, Morga B, Renault T (2017) Viruses infecting marine molluscs. J Invertebr Pathol 147:118–135. https://doi.org/10.1016/j.jip.2017.01.009 CrossRefGoogle Scholar
  22. Aschtgen M-S, Wetzel K, Goldman W et al (2016) Vibrio fischeri–derived outer membrane vesicles trigger host development. Cell Microbiol 18:488–499. https://doi.org/10.1111/cmi.12525 CrossRefGoogle Scholar
  23. Asojo OA, Schott EJ, Vasta GR, Silva AM (2006) Structures of PmSOD1 and PmSOD2, two superoxide dismutases from the protozoan parasite Perkinsus marinus. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1072–1075. https://doi.org/10.1107/S1744309106040425 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Asokan R, Arumugam M, Mullainadhan P (1997) Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus. Dev Comp Immunol 21:1–12. https://doi.org/10.1016/S0145-305X(97)00004-9 CrossRefGoogle Scholar
  25. Bachali S, Jager M, Hassanin A et al (2002) Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol Evol 54:652–664. https://doi.org/10.1007/s00239-001-0061-6 CrossRefGoogle Scholar
  26. Bai Z, Zhao L, Chen X et al (2016) A galectin from Hyriopsis cumingii involved in the innate immune response against to pathogenic microorganism and its expression profiling during pearl sac formation. Fish Shellfish Immunol 56:127–135. https://doi.org/10.1016/j.fsi.2016.07.006 CrossRefGoogle Scholar
  27. Balseiro P, Falcó A, Romero A et al (2011) Mytilus galloprovincialis myticin C: a chemotactic molecule with antiviral activity and immunoregulatory properties. PLoS One 6:e23140. https://doi.org/10.1371/journal.pone.0023140 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Balseiro P, Moreira R, Chamorro R et al (2013) Immune responses during the larval stages of Mytilus galloprovincialis: metamorphosis alters immunocompetence, body shape and behavior. Fish Shellfish Immunol 35:438–447. https://doi.org/10.1016/j.fsi.2013.04.044 CrossRefGoogle Scholar
  29. Bao Y, Shen H, Zhou H et al (2013) A tandem-repeat galectin from blood clam Tegillarca granosa and its induced mRNA expression response against bacterial challenge. Genes Genomics 35:733–740. https://doi.org/10.1007/s13258-013-0123-3 CrossRefGoogle Scholar
  30. Barbieri E, Barry K, Child A, Wainwright N (1997) Antimicrobial activity in the microbial community of the accessory nidamental gland and egg cases of Loligo pealei (Cephalopoda: Loliginidae). Biol Bull 193:275–276. https://doi.org/10.1086/BBLv193n2p275 CrossRefGoogle Scholar
  31. Barbieri E, Paster BJ, Hughes D et al (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167CrossRefGoogle Scholar
  32. Belinda LW-C, Wei WX, Hanh BTH et al (2008) SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol Immunol 45:1732–1742. https://doi.org/10.1016/j.molimm.2007.09.030 CrossRefGoogle Scholar
  33. Ben Cheikh Y, Travers M-A, Morga B et al (2016) First evidence for a Vibrio strain pathogenic to Mytilus edulis altering hemocyte immune capacities. Dev Comp Immunol 57:107–119. https://doi.org/10.1016/j.dci.2015.12.014 CrossRefGoogle Scholar
  34. Ben-Horin T, Bidegain G, Huey L et al (2015) Parasite transmission through suspension feeding. J Invertebr Pathol 131:155–176. https://doi.org/10.1016/j.jip.2015.07.006 CrossRefGoogle Scholar
  35. Ben Horin T, Allen SK, Small JM, Proestou DA (in press) Genetic variation in anti-parasite behavior in oysters. Marine Ecology Progress Series. https://doi.org/10.3354/meps12511. http://www.int-res.com/prepress/m12511.html CrossRefGoogle Scholar
  36. Berry S (1912) The Cephalooda of the Hawaiian Islands. Bull U Bur Fish 32:255–362Google Scholar
  37. Beschin A, Bilej M, Torreele E, De Baetselier P (2001) On the existence of cytokines in invertebrates. Cell Mol Life Sci CMLS 58:801–814CrossRefGoogle Scholar
  38. Bettencourt R, Dando P, Collins P et al (2009) Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Comp Biochem Physiol A Mol Integr Physiol 152:278–289. https://doi.org/10.1016/j.cbpa.2008.10.022 CrossRefGoogle Scholar
  39. Bettencourt R, Barros I, Martins E et al (2017) An insightful model to study innate immunity and stress response in deep-sea vent animals: profiling the mussel Bathymodiolus azoricus. https://doi.org/10.5772/68034 Google Scholar
  40. Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634. https://doi.org/10.1038/nsb817 CrossRefGoogle Scholar
  41. Bianchet MA, Odom EW, Vasta GR, Amzel LM (2010) Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). J Mol Biol 401:239–252. https://doi.org/10.1016/j.jmb.2010.06.018 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Bieler R, Mikkelsen PM, Collins TM et al (2014) Investigating the bivalve tree of life—an exemplar-based approach combining molecular and novel morphological characters. Invertebr Syst 28:32–115CrossRefGoogle Scholar
  43. Bishnoi R, Khatri I, Subramanian S, Ramya TNC (2015) Prevalence of the F-type lectin domain. Glycobiology 25:888–901. https://doi.org/10.1093/glycob/cwv029 CrossRefGoogle Scholar
  44. Blandin SA, Marois E, Levashina EA (2008) Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3:364–374. https://doi.org/10.1016/j.chom.2008.05.007 CrossRefGoogle Scholar
  45. Boardman CL, Maloy AP, Boettcher KJ (2008) Localization of the bacterial agent of juvenile oyster disease (Roseovarius crassostreae) within affected eastern oysters (Crassostrea virginica). J Invertebr Pathol 97:150–158. https://doi.org/10.1016/j.jip.2007.08.007 CrossRefGoogle Scholar
  46. Boehm T (2012) Evolution of vertebrate immunity. Curr Biol CB 22:R722–R732. https://doi.org/10.1016/j.cub.2012.07.003 CrossRefGoogle Scholar
  47. Boettcher KJ, Ruby EG, McFall-Ngai MJ (1996) Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J Comp Physiol A 179:65–73. https://doi.org/10.1007/BF00193435 CrossRefGoogle Scholar
  48. Bohlson SS et al (2014) Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol 5:402CrossRefPubMedGoogle Scholar
  49. Boletzky SV (1968) Untersuchungen über die Organogenese des Kreislaufsystems von Octopus vulgaris Lam. Rev Suisse Zool 75:765–812Google Scholar
  50. Bolognari A (1949) Morfologia, struttura e funzione del “corpo bianco” dei Cefalopodi. I Morfologia. Arch Zool Ital 34:79–97Google Scholar
  51. Bolognari A (1951) Morfologia, struttura e funzione del “corpo bianco” dei Cefalopodi. II Struttura e Funzione. Arch Zool Ital 36:253–287Google Scholar
  52. Bolognesi C, Fenech M (2012) Mussel micronucleus cytome assay. Nat Protoc 7:1125–1137. https://doi.org/10.1038/nprot.2012.043 CrossRefGoogle Scholar
  53. Bou Aoun R, Hetru C, Troxler L et al (2010) Analysis of thioester-containing proteins during the innate immune response of Drosophila melanogaster. J Innate Immun 3:52–64. https://doi.org/10.1159/000321554 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427. https://doi.org/10.1177/0022034510381264 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Buckley KM, Rast JP (2012) Dynamic evolution of Toll-like receptor multigene families in echinoderms. Front Immunol 3:136. https://doi.org/10.3389/fimmu.2012.00136 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Budelmann BU, Schipp R, Boletzky SV (1997) Cephalopoda. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates. Mollusca II. Wiley-Liss, Inc, New York, pp 119–414Google Scholar
  57. Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14:19–26. https://doi.org/10.1038/ni.2491 CrossRefGoogle Scholar
  58. Burge CA, Kim CJS, Lyles JM, Harvell CD (2013) Special issue oceans and humans health: the ecology of marine opportunists. Microb Ecol 65:869–879. https://doi.org/10.1007/s00248-013-0190-7 CrossRefGoogle Scholar
  59. Burgos-Aceves MA, Faggio C (2017) An approach to the study of the immunity functions of bivalve haemocytes: physiology and molecular aspects. Fish Shellfish Immunol 67:513–517. https://doi.org/10.1016/j.fsi.2017.06.042 CrossRefGoogle Scholar
  60. Butt D, Raftos D (2008) Phenoloxidase-associated cellular defence in the Sydney rock oyster, Saccostrea glomerata, provides resistance against QX disease infections. Dev Comp Immunol 32:299–306. https://doi.org/10.1016/j.dci.2007.06.006 CrossRefGoogle Scholar
  61. Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160CrossRefGoogle Scholar
  62. Calvo-Iglesias J, Pérez-Estévez D, González-Fernández Á (2017) MSP22.8 is a protease inhibitor-like protein involved in shell mineralization in the edible mussel Mytilus galloprovincialis. FEBS Open Bio 7:1539–1556. https://doi.org/10.1002/2211-5463.12286 CrossRefPubMedCentralPubMedGoogle Scholar
  63. Campos A, Tedesco S, Vasconcelos V, Cristobal S (2012) Proteomic research in bivalves. J Proteome 75:4346–4359. https://doi.org/10.1016/j.jprot.2012.04.027 CrossRefGoogle Scholar
  64. Canesi L, Betti M, Ciacci C et al (2002) Signaling pathways involved in the physiological response of mussel hemocytes to bacterial challenge: the role of stress-activated p38 MAP kinases. Dev Comp Immunol 26:325–334CrossRefGoogle Scholar
  65. Carella F, Feist SW, Bignell JP, De Vico G (2015) Comparative pathology in bivalves: aetiological agents and disease processes. J Invertebr Pathol 131:107–120. https://doi.org/10.1016/j.jip.2015.07.012 CrossRefGoogle Scholar
  66. Carrasco N, Green T, Itoh N (2015) Marteilia spp. parasites in bivalves: a revision of recent studies. J Invertebr Pathol 131:43–57. https://doi.org/10.1016/j.jip.2015.07.016 CrossRefGoogle Scholar
  67. Carrington E, Waite JH, Sarà G, Sebens KP (2015) Mussels as a model system for integrative ecomechanics. Annu Rev Mar Sci 7:443–469. https://doi.org/10.1146/annurev-marine-010213-135049 CrossRefGoogle Scholar
  68. Castellanos-Martínez S, Arteta D, Catarino S, Gestal C (2014a) De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana. PLoS One 9:e107873. https://doi.org/10.1371/journal.pone.0107873 CrossRefPubMedCentralPubMedGoogle Scholar
  69. Castellanos-Martínez S, Prado-Alvarez M, Lobo-da-Cunha A et al (2014b) Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes. Dev Comp Immunol 44:50–58. https://doi.org/10.1016/j.dci.2013.11.013 CrossRefGoogle Scholar
  70. Castillo MG, Goodson MS, McFall-Ngai M (2009) Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 33:69–76. https://doi.org/10.1016/j.dci.2008.07.013 CrossRefPubMedCentralPubMedGoogle Scholar
  71. Castillo MG, Salazar KA, Joffe NR (2015) The immune response of cephalopods from head to foot. Fish Shellfish Immunol 46:145–160. https://doi.org/10.1016/j.fsi.2015.05.029 CrossRefGoogle Scholar
  72. Charlet M, Chernysh S, Philippe H et al (1996) Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271:21808–21813CrossRefGoogle Scholar
  73. Chen H, Wang L, Zhou Z et al (2015) The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics 16:942. https://doi.org/10.1186/s12864-015-2150-8 CrossRefPubMedCentralPubMedGoogle Scholar
  74. Chen H, Zhou Z, Wang L et al (2016) An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster. Open Biol 6:160059. https://doi.org/10.1098/rsob.160059 CrossRefPubMedCentralPubMedGoogle Scholar
  75. Chen X, Liu X, Bai Z et al (2017a) HcTyr and HcTyp-1 of Hyriopsis cumingii, novel tyrosinase and tyrosinase-related protein genes involved in nacre color formation. Comp Biochem Physiol B Biochem Mol Biol 204:1–8. https://doi.org/10.1016/j.cbpb.2016.11.005 CrossRefGoogle Scholar
  76. Chen Y, Li C, Zhu J et al (2017b) Purification and characterization of an antibacterial and anti-inflammatory polypeptide from Arca subcrenata. Int J Biol Macromol 96:177–184. https://doi.org/10.1016/j.ijbiomac.2016.11.082 CrossRefGoogle Scholar
  77. Cheng TC (1984) A classification of molluscan hemocytes based on functional evidences. In: Invertebrate Blood. Springer, Boston, pp 111–146CrossRefGoogle Scholar
  78. Cheng SH, Anderson FE, Bergman A et al (2014) Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725:165–188. https://doi.org/10.1007/s10750-013-1778-0 CrossRefGoogle Scholar
  79. Cherkasov AS, Grewal S, Sokolova IM (2007) Combined effects of temperature and cadmium exposure on haemocyte apoptosis and cadmium accumulation in the eastern oyster Crassostrea virginica (Gmelin). J Therm Biol 32:162–170. https://doi.org/10.1016/j.jtherbio.2007.01.005 CrossRefGoogle Scholar
  80. Chernikov O, Kuzmich A, Chikalovets I et al (2017a) Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan. Int J Biol Macromol 104:508–514. https://doi.org/10.1016/j.ijbiomac.2017.06.074 CrossRefGoogle Scholar
  81. Chernikov OV, Wong W-T, Li L-H et al (2017b) A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice. Sci Rep 7:6315. https://doi.org/10.1038/s41598-017-06647-5 CrossRefPubMedCentralPubMedGoogle Scholar
  82. Chikalovets IV, Kovalchuk SN, Litovchenko AP et al (2016) A new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: structure, tissue specificity, antimicrobial and antifungal activity. Fish Shellfish Immunol 50:27–33. https://doi.org/10.1016/j.fsi.2016.01.020 CrossRefGoogle Scholar
  83. Chovar-Vera O, Valenzuela-Muñoz V, Gallardo-Escárate C (2015) Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens). Fish Shellfish Immunol 42:241–248. https://doi.org/10.1016/j.fsi.2014.11.007 CrossRefGoogle Scholar
  84. Christensen BM, Li J, Chen C-C, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199. https://doi.org/10.1016/j.pt.2005.02.007 CrossRefGoogle Scholar
  85. Chun CK, Scheetz TE, de Fatima Bonaldo M et al (2006) An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri. BMC Genomics 7:154. https://doi.org/10.1186/1471-2164-7-154 CrossRefPubMedCentralPubMedGoogle Scholar
  86. Chun CK, Troll JV, Koroleva I et al (2008) Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid–Vibrio association. Proc Natl Acad Sci 105:11323–11328. https://doi.org/10.1073/pnas.0802369105 CrossRefGoogle Scholar
  87. Ciacci C, Manti A, Canonico B et al (2017) Responses of Mytilus galloprovincialis hemocytes to environmental strains of Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio vulnificus. Fish Shellfish Immunol 65:80–87. https://doi.org/10.1016/j.fsi.2017.04.002 CrossRefGoogle Scholar
  88. Claes MF (1996) Functional morphology of the white bodies of the cephalopod mollusc Sepia officinalis. Acta Zool 77:173–190. https://doi.org/10.1111/j.1463-6395.1996.tb01262.x CrossRefGoogle Scholar
  89. Collins AJ, Nyholm SV (2011) Draft genome of Phaeobacter gallaeciensis ANG1, a dominant member of the accessory nidamental gland of Euprymna scolopes. J Bacteriol 193:3397–3398. https://doi.org/10.1128/JB.05139-11 CrossRefPubMedCentralPubMedGoogle Scholar
  90. Collins AJ, LaBarre BA, Wong Won BS et al (2012a) Diversity and partitioning of bacterial populations within the accessory nidamental gland of the squid Euprymna scolopes. Appl Environ Microbiol 78:4200–4208. https://doi.org/10.1128/AEM.07437-11 CrossRefPubMedCentralPubMedGoogle Scholar
  91. Collins AJ, Schleicher TR, Rader BA, Nyholm SV (2012b) Understanding the role of host hemocytes in a squid/Vibrio symbiosis using transcriptomics and proteomics. Front Immunol 3:91. https://doi.org/10.3389/fimmu.2012.00091 CrossRefPubMedCentralPubMedGoogle Scholar
  92. Collins AJ, Fullmer MS, Gogarten JP, Nyholm SV (2015) Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00123
  93. Corporeau C, Tamayo D, Pernet F et al (2014) Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. J Proteome 109:176–187. https://doi.org/10.1016/j.jprot.2014.06.030 CrossRefGoogle Scholar
  94. Costa MM, Dios S, Alonso-Gutierrez J et al (2009a) Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). Dev Comp Immunol 33:162–170. https://doi.org/10.1016/j.dci.2008.08.005 CrossRefGoogle Scholar
  95. Costa MM, Prado-Alvarez M, Gestal C et al (2009b) Functional and molecular immune response of Mediterranean mussel (Mytilus galloprovincialis) haemocytes against pathogen-associated molecular patterns and bacteria. Fish Shellfish Immunol 26:515–523CrossRefGoogle Scholar
  96. Cowden RR (1972) Some cytological and cytochemical observations on the leucopoietic organs, the “white bodies,” of Octopus vulgaris. J Invertebr Pathol 19:113–119. https://doi.org/10.1016/0022-2011(72)90196-6 CrossRefGoogle Scholar
  97. Cowden RR, Curtis SK (1973) Observations on living cells dissociated from the leukopoietic organ of Octopus briareus. Exp Mol Pathol 19:178–185. https://doi.org/10.1016/0014-4800(73)90077-4 CrossRefGoogle Scholar
  98. Cowden RR, Curtis SK (1974) The octopus white body: an ultrastructural survey. In: Hanna MG, Cooper EL (eds) Contemporary topics in immunobiology. Springer, Boston, pp 77–90CrossRefGoogle Scholar
  99. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640. https://doi.org/10.1016/j.it.2014.10.004 CrossRefGoogle Scholar
  100. Crichton R, Lafferty KJ (1975) The discriminatory capacity of phagocytic cells in the chiton (Liolophura gaimardi). In: Immunologic phylogeny. Springer, Boston, pp 89–98CrossRefGoogle Scholar
  101. Crichton R, Killby VA, Lafferty KJ (1973) The distribution and morphology of phagocytic cells in the chiton Liolophura gaimardi. Aust J Exp Biol Med Sci 51:357–372CrossRefGoogle Scholar
  102. Criscitiello MF, de Figueiredo P (2013) Fifty shades of immune defense. PLoS Pathog 9:e1003110. https://doi.org/10.1371/journal.ppat.1003110 CrossRefPubMedCentralPubMedGoogle Scholar
  103. Cummings RD, Schnaar R (2017) Chapter 31, R-type lectins. In: Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  104. da Silva MU, Dondero F, Otto T et al (2017) A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel Limnoperna fortunei. PeerJ Preprints 5:e2995v1Google Scholar
  105. Davidson SK, Koropatnick TA, Kossmehl R et al (2004) NO means “yes” in the squid–Vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol 6:1139–1151. https://doi.org/10.1111/j.1462-5822.2004.00429.x CrossRefGoogle Scholar
  106. De Decker S, Normand J, Saulnier D et al (2011) Responses of diploid and triploid Pacific oysters Crassostrea gigas to Vibrio infection in relation to their reproductive status. J Invertebr Pathol 106:179–191. https://doi.org/10.1016/j.jip.2010.09.003 CrossRefGoogle Scholar
  107. De Zoysa M, Jung S, Lee J (2009) First molluscan TNF-alpha homologue of the TNF superfamily in disk abalone: molecular characterization and expression analysis. Fish Shellfish Immunol 26:625–631. https://doi.org/10.1016/j.fsi.2008.10.004 CrossRefGoogle Scholar
  108. Dégremont L, Garcia C, Allen SK Jr (2015) Genetic improvement for disease resistance in oysters: a review. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2015.05.010 CrossRefGoogle Scholar
  109. Detree C, Chabenat A, Lallier FH et al (2016a) Multiple I-type lysozymes in the hydrothermal vent mussel Bathymodiolus azoricus and their role in symbiotic plasticity. PLoS One 11:e0148988. https://doi.org/10.1371/journal.pone.0148988 CrossRefPubMedCentralPubMedGoogle Scholar
  110. Detree C, Núñez-Acuña G, Roberts S, Gallardo-Escárate C (2016b) Uncovering the complex transcriptome response of Mytilus chilensis against saxitoxin: implications of harmful algal blooms on mussel populations. PLoS One 11:e0165231. https://doi.org/10.1371/journal.pone.0165231 CrossRefPubMedCentralPubMedGoogle Scholar
  111. Détrée C, Lallier FH, Tanguy A, Mary J (2017) Identification and gene expression of multiple peptidoglycan recognition proteins (PGRPs) in the deep-sea mussel Bathymodiolus azoricus, involvement in symbiosis? Comp Biochem Physiol B Biochem Mol Biol 207:1–8. https://doi.org/10.1016/j.cbpb.2017.02.002 CrossRefGoogle Scholar
  112. Dheilly NM, Duval D, Mouahid G et al (2015) A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata. Dev Comp Immunol 48:234–243. https://doi.org/10.1016/j.dci.2014.10.009 CrossRefGoogle Scholar
  113. Di Cosmo A, Polese G (2016) Neuroendocrine–immune systems response to environmental stressors in the cephalopod Octopus vulgaris. Front Physiol 7:434. https://doi.org/10.3389/fphys.2016.00434 CrossRefPubMedCentralPubMedGoogle Scholar
  114. Ding J, Wang R, Yang F et al (2014) Identification and characterization of a novel phage-type like lysozyme from Manila clam, Ruditapes philippinarum. Dev Comp Immunol 47:81–89. https://doi.org/10.1016/j.dci.2014.06.013 CrossRefGoogle Scholar
  115. Domeneghetti S, Franzoi M, Damiano N et al (2015) Structural and antimicrobial features of peptides related to myticin C, a special defense molecule from the Mediterranean mussel Mytilus galloprovincialis. J Agric Food Chem 63:9251–9259. https://doi.org/10.1021/acs.jafc.5b03491 CrossRefGoogle Scholar
  116. Donaghy L, Lambert C, Choi K-S, Soudant P (2009) Hemocytes of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum): current knowledge and future prospects. Aquaculture 297:10–24. https://doi.org/10.1016/j.aquaculture.2009.09.003 CrossRefGoogle Scholar
  117. Donaghy L, Hong H-K, Jauzein C, Choi K-S (2015) The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs. Fish Shellfish Immunol 42:91–97. https://doi.org/10.1016/j.fsi.2014.10.030 CrossRefGoogle Scholar
  118. Donnelly S, Dalton JP, Robinson MW (2011) How pathogen-derived cysteine proteases modulate host immune responses. Adv Exp Med Biol 712:192–207. https://doi.org/10.1007/978-1-4419-8414-2_12 CrossRefGoogle Scholar
  119. Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263:9557–9560Google Scholar
  120. Du Y, Zhang L, Huang B et al (2013) Molecular cloning, characterization, and expression of two myeloid differentiation factor 88 (Myd88) in Pacific oyster, Crassostrea gigas. J World Aquacult Soc 44:759–774. https://doi.org/10.1111/jwas.12077 CrossRefGoogle Scholar
  121. Du X, Fan G, Jiao Y et al (2017) The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. GigaScience 6:1–12. https://doi.org/10.1093/gigascience/gix059 CrossRefPubMedCentralPubMedGoogle Scholar
  122. Dunkelberger JR, Song W-C (2009) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. https://doi.org/10.1038/cr.2009.139 CrossRefGoogle Scholar
  123. Duperthuy M, Schmitt P, Garzón E et al (2011) Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus. Proc Natl Acad Sci U S A 108:2993–2998. https://doi.org/10.1073/pnas.1015326108 CrossRefPubMedCentralPubMedGoogle Scholar
  124. Dyachuk VA (2016) Hematopoiesis in Bivalvia larvae: cellular origin, differentiation of hemocytes, and neoplasia. Dev Comp Immunol 65:253–257. https://doi.org/10.1016/j.dci.2016.07.019 CrossRefGoogle Scholar
  125. Ertl NG, O’Connor WA, Papanicolaou A et al (2016) Transcriptome analysis of the Sydney rock oyster, Saccostrea glomerata: insights into molluscan immunity. PLoS One 11:e0156649. https://doi.org/10.1371/journal.pone.0156649 CrossRefPubMedCentralPubMedGoogle Scholar
  126. Escoubas J-M, Briant L, Montagnani C et al (1999) Oyster IKK-like protein shares structural and functional properties with its mammalian homologues. FEBS Lett 453:293–298. https://doi.org/10.1016/S0014-5793(99)00737-1 CrossRefGoogle Scholar
  127. Estévez-Calvar N, Romero A, Figueras A, Novoa B (2011) Involvement of pore-forming molecules in immune defense and development of the Mediterranean mussel (Mytilus galloprovincialis). Dev Comp Immunol 35:1017–1031. https://doi.org/10.1016/j.dci.2011.03.023 CrossRefGoogle Scholar
  128. Evariste L, Auffret M, Audonnet S et al (2016) Functional features of hemocyte subpopulations of the invasive mollusk species Dreissena polymorpha. Fish Shellfish Immunol 56:144–154. https://doi.org/10.1016/j.fsi.2016.06.054 CrossRefGoogle Scholar
  129. FAO (2016) The state of world fisheries and aquaculture 2016, contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  130. Farrington JW, Tripp BW, Tanabe S et al (2016) Edward D. Goldberg’s proposal of “the Mussel Watch”: reflections after 40 years. Mar Pollut Bull 110:501–510. https://doi.org/10.1016/j.marpolbul.2016.05.074 CrossRefGoogle Scholar
  131. Feng B, Dong L, Niu D et al (2010) Identification of immune genes of the Agamaki clam (Sinonovacula constricta) by sequencing and bioinformatic analysis of ESTs. Mar Biotechnol 12:282–291. https://doi.org/10.1007/s10126-009-9216-z CrossRefPubMedGoogle Scholar
  132. Feng C, Ghosh A, Amin MN et al (2013) The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface. J Biol Chem 288:24394–24409. https://doi.org/10.1074/jbc.M113.476531 CrossRefPubMedCentralPubMedGoogle Scholar
  133. Feng C, Ghosh A, Amin MN et al (2015) Galectin CvGal2 from the eastern oyster (Crassostrea virginica) displays unique specificity for ABH blood group oligosaccharides and differentially recognizes sympatric Perkinsus species. Biochemistry (Mosc) 54:4711–4730. https://doi.org/10.1021/acs.biochem.5b00362 CrossRefGoogle Scholar
  134. Féral J-P (1988) Wound healing after arm amputation in Sepia officinalis (Cephalopoda: Sepioidea). J Invertebr Pathol 52:380–388. https://doi.org/10.1016/0022-2011(88)90049-3 CrossRefGoogle Scholar
  135. Fernández Robledo JA, Caler E, Matsuzaki M et al (2011) The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 41:1217–1229. https://doi.org/10.1016/j.ijpara.2011.07.008 CrossRefPubMedGoogle Scholar
  136. Fernández Robledo JA, Vasta GR, Record NR (2014) Protozoan parasites of bivalve molluscs: literature follows culture. PLoS One 9:e100872. https://doi.org/10.1371/journal.pone.0100872 CrossRefPubMedCentralPubMedGoogle Scholar
  137. Fernández-Boo S, Villalba A, Cao A (2016) Protein expression profiling in haemocytes and plasma of the Manila clam Ruditapes philippinarum in response to infection with Perkinsus olseni. J Fish Dis 39:1369–1385. https://doi.org/10.1111/jfd.12470 CrossRefPubMedGoogle Scholar
  138. Fernández-Robledo JA, Schott EJ, Vasta GR (2008) Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments. Biochem Biophys Res Commun 375:215–219. https://doi.org/10.1016/j.bbrc.2008.07.162 CrossRefPubMedGoogle Scholar
  139. Ford LA (1992) Host defense mechanisms of cephalopods. Annu Rev Fish Dis 2:25–41. https://doi.org/10.1016/0959-8030(92)90054-2 CrossRefGoogle Scholar
  140. Ford SE, Borrero FJ (2001) Epizootiology and pathology of juvenile oyster disease in the eastern oyster, Crassostrea virginica. J Invertebr Pathol 78:141–154. https://doi.org/10.1006/jipa.2001.5052 CrossRefPubMedGoogle Scholar
  141. Foster JS, Apicella MA, McFall-Ngai MJ (2000) Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev Biol 226:242–254. https://doi.org/10.1006/dbio.2000.9868 CrossRefPubMedGoogle Scholar
  142. Fredericksen BL, Keller BC, Fornek J et al (2008) Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609–616. https://doi.org/10.1128/JVI.01305-07 CrossRefGoogle Scholar
  143. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257. https://doi.org/10.1038/ni1412 CrossRefGoogle Scholar
  144. Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev 198:185–202CrossRefGoogle Scholar
  145. Gao S, Ren Y, Zhang H et al (2016) Identification and expression analysis of IκB and NF-κB genes from Cyclina sinensis. Fish Shellfish Immunol 56:427–435. https://doi.org/10.1016/j.fsi.2016.07.035 CrossRefGoogle Scholar
  146. García-Maldonado E, Cano-Sánchez P, Hernández-Santoyo A (2017) Molecular and functional characterization of a glycosylated galactose-binding lectin from Mytilus californianus. Fish Shellfish Immunol 66:564–574. https://doi.org/10.1016/j.fsi.2017.05.057 CrossRefPubMedGoogle Scholar
  147. Gerdol M (2017) Immune-related genes in gastropods and bivalves: a comparative overview. Invertebr Surviv J 14:95–111Google Scholar
  148. Gerdol M, Venier P (2015) An updated molecular basis for mussel immunity. Fish Shellfish Immunol 46:17–38. https://doi.org/10.1016/j.fsi.2015.02.013 CrossRefPubMedGoogle Scholar
  149. Gerdol M, Manfrin C, De Moro G et al (2011) The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: a widespread and diverse family of immune-related molecules. Dev Comp Immunol 35:635–643. https://doi.org/10.1016/j.dci.2011.01.018 CrossRefPubMedGoogle Scholar
  150. Gerdol M, De Moro G, Manfrin C et al (2012) Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev Comp Immunol 36:390–399. https://doi.org/10.1016/j.dci.2011.08.003 CrossRefPubMedGoogle Scholar
  151. Gerdol M, Puillandre N, Moro GD et al (2015a) Identification and characterization of a novel family of cysteine-rich peptides (MgCRP-I) from Mytilus galloprovincialis. Genome Biol Evol 7:2203–2219. https://doi.org/10.1093/gbe/evv133 CrossRefPubMedCentralPubMedGoogle Scholar
  152. Gerdol M, Venier P, Pallavicini A (2015b) The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia. Dev Comp Immunol 49:59–71. https://doi.org/10.1016/j.dci.2014.11.007 CrossRefPubMedGoogle Scholar
  153. Gerdol M, Venier P, Edomi P, Pallavicini A (2017) Diversity and evolution of TIR-domain-containing proteins in bivalves and Metazoa: new insights from comparative genomics. Dev Comp Immunol 70:145–164. https://doi.org/10.1016/j.dci.2017.01.014 CrossRefPubMedGoogle Scholar
  154. Gerlach D, Schlott B, Schmidt K-H (2004) Cloning and expression of a sialic acid–binding lectin from the snail Cepaea hortensis. FEMS Immunol Med Microbiol 40:215–221. https://doi.org/10.1016/S0928-8244(03)00367-5 CrossRefPubMedGoogle Scholar
  155. Gestal C, Pallavicini A, Venier P et al (2010) MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis. Dev Comp Immunol 34:926–934. https://doi.org/10.1016/j.dci.2010.02.012 CrossRefPubMedGoogle Scholar
  156. Giangaspero A, Sandri L, Tossi A (2001) Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 268:5589–5600CrossRefPubMedGoogle Scholar
  157. GLOBEFISH (2017) Production for bivalves lower in 2016. In: GLOBEFISH—Anal. Inf. World Fish Trade. http://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/887775/. Accessed 4 Dec 2017
  158. Goedken M, De Guise S (2004) Flow cytometry as a tool to quantify oyster defence mechanisms. Fish Shellfish Immunol 16:539–552. https://doi.org/10.1016/j.fsi.2003.09.009 CrossRefPubMedGoogle Scholar
  159. Goedken M, Morsey B, Sunila I, De Guise S (2005) Immunomodulation of crassostrea gigas and crassostrea virginica cellular defense mechanisms by perkinsus marinus. J Shellfish Res 24:487–496. https://doi.org/10.2983/0730-8000(2005)24[487:IOCGAC]2.0.CO;2CrossRefGoogle Scholar
  160. Gómez-Chiarri M, Guo X, Tanguy A et al (2015) The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 131:137–154. https://doi.org/10.1016/j.jip.2015.05.007CrossRefPubMedGoogle Scholar
  161. Gomez-Leon J, Villamil L, Salger, SA, Sallum RH, Remacha-Triviño A, Leavitt DF, Gomez-Chiarri M (2008) Survival of eastern oysters Crassostrea virginica from three lines following experimental challenge with bacterial pathogens. Dis Aquat Organ 79:95–105. https://doi.org/10.3354/dao01902CrossRefGoogle Scholar
  162. Gonzalez M, Gueguen Y, Desserre G et al (2007a) Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev Comp Immunol 31:332–339. https://doi.org/10.1016/j.dci.2006.07.006 CrossRefPubMedGoogle Scholar
  163. Gonzalez M, Gueguen Y, Destoumieux-Garzón D et al (2007b) Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proc Natl Acad Sci U S A 104:17759–17764. https://doi.org/10.1073/pnas.0702281104 CrossRefPubMedCentralPubMedGoogle Scholar
  164. González R, Brokordt K, Cárcamo CB et al (2017) Molecular characterization and protein localization of the antimicrobial peptide big defensin from the scallop Argopecten purpuratus after Vibrio splendidus challenge. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2017.07.010 CrossRefGoogle Scholar
  165. Goodson MS, Kojadinovic M, Troll JV et al (2005) Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes–Vibrio fischeri light organ symbiosis. Appl Environ Microbiol 71:6934–6946. https://doi.org/10.1128/AEM.71.11.6934-6946.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  166. Goodson MS, Crookes-Goodson WJ, Kimbell JR, McFall-Ngai MJ (2006) Characterization and role of p53 family members in the symbiont-induced morphogenesis of the Euprymna scolopes light organ. Biol Bull 211:7–17. https://doi.org/10.2307/4134573 CrossRefPubMedGoogle Scholar
  167. Gorbushin AM, Borisova EA (2015) Lectin-like molecules in transcriptome of Littorina littorea hemocytes. Dev Comp Immunol 48:210–220. https://doi.org/10.1016/j.dci.2014.10.007 CrossRefPubMedGoogle Scholar
  168. Gorbushin AM, Iakovleva NV (2011) A new gene family of single fibrinogen domain lectins in Mytilus. Fish Shellfish Immunol 30:434–438. https://doi.org/10.1016/j.fsi.2010.10.002 CrossRefPubMedGoogle Scholar
  169. Gorbushin AM, Panchin YV, Iakovleva NV (2010) In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev Comp Immunol 34:465–473. https://doi.org/10.1016/j.dci.2009.12.007 CrossRefPubMedGoogle Scholar
  170. Gordon S (2016) Phagocytosis: the legacy of Metchnikoff. Cell 166:1065–1068. https://doi.org/10.1016/j.cell.2016.08.017 CrossRefPubMedGoogle Scholar
  171. Gordy MA, Pila EA, Hanington PC (2015) The role of fibrinogen-related proteins in the gastropod immune response. Fish Shellfish Immunol 46:39–49. https://doi.org/10.1016/j.fsi.2015.03.005 CrossRefPubMedGoogle Scholar
  172. Graf J, Ruby EG (1998) Host-derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci U S A 95:1818–1822CrossRefPubMedGoogle Scholar
  173. Green TJ, Barnes AC (2009) Inhibitor of REL/NF-KB is regulated in Sydney rock oysters in response to specific double-stranded RNA and Vibrio alginolyticus, but the major immune anti-oxidants EcSOD and Prx6 are non-inducible. Fish Shellfish Immunol 27:260–265. https://doi.org/10.1016/j.fsi.2009.05.005 CrossRefPubMedGoogle Scholar
  174. Green TJ, Montagnani C, Benkendorff K et al (2014) Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 36:151–157. https://doi.org/10.1016/j.fsi.2013.10.026 CrossRefPubMedGoogle Scholar
  175. Green TJ, Raftos D, Speck P, Montagnani C (2015) Antiviral immunity in marine molluscs. J Gen Virol 96:2471–2482. https://doi.org/10.1099/jgv.0.000244 CrossRefPubMedGoogle Scholar
  176. Green TJ, Helbig K, Speck P, Raftos DA (2016) Primed for success: oyster parents treated with poly(I:C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection. Mol Immunol 78:113–120. https://doi.org/10.1016/j.molimm.2016.09.002 CrossRefGoogle Scholar
  177. Gromek SM, Suria AM, Fullmer MS et al (2016) Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01342
  178. Gueguen Y, Herpin A, Aumelas A et al (2006) Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 281:313–323. https://doi.org/10.1074/jbc.M510850200 CrossRefGoogle Scholar
  179. Gueguen Y, Bernard R, Julie F et al (2009) Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. Mol Immunol 46:516–522. https://doi.org/10.1016/j.molimm.2008.07.021 CrossRefGoogle Scholar
  180. Gutiérrez-Rivera JN, Arcos-Ortega GF, Luna-González A et al (2015) Differential expression of serine protease inhibitors 1 and 2 in Crassostrea corteziensis and C. virginica infected with Perkinsus marinus. Dis Aquat Org 112:185–197. https://doi.org/10.3354/dao02808 CrossRefGoogle Scholar
  181. Hanington PC, Zhang S-M (2011) The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 3:17–27. https://doi.org/10.1159/000321882 CrossRefGoogle Scholar
  182. Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570. https://doi.org/10.1677/joe.1.06964 CrossRefGoogle Scholar
  183. Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285:1505–1510CrossRefGoogle Scholar
  184. Hasan I, Gerdol M, Fujii Y et al (2016) cDNA and gene structure of MytiLec-1, a bacteriostatic R-type lectin from the Mediterranean mussel (Mytilus galloprovincialis). Mar Drugs 14:92. https://doi.org/10.3390/md14050092 CrossRefPubMedCentralPubMedGoogle Scholar
  185. Hasanuzzaman AFM, Robledo D, Gómez-Tato A et al (2016) De novo transcriptome assembly of Perkinsus olseni trophozoite stimulated in vitro with Manila clam (Ruditapes philippinarum) plasma. J Invertebr Pathol 135:22–33. https://doi.org/10.1016/j.jip.2016.01.009 CrossRefGoogle Scholar
  186. He X, Zhang Y, Yu F, Yu Z (2011) A novel sialic acid binding lectin with anti-bacterial activity from the Hong Kong oyster (Crassostrea hongkongensis). Fish Shellfish Immunol 31:1247–1250. https://doi.org/10.1016/j.fsi.2011.08.021 CrossRefGoogle Scholar
  187. He C, Yu H, Liu W et al (2012a) A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis. Comp Biochem Physiol B Biochem Mol Biol 162:34–43. https://doi.org/10.1016/j.cbpb.2012.02.002 CrossRefGoogle Scholar
  188. He Y, Yu H, Bao Z et al (2012b) Mutation in promoter region of a serine protease inhibitor confers Perkinsus marinus resistance in the eastern oyster (Crassostrea virginica). Fish Shellfish Immunol 33:411–417. https://doi.org/10.1016/j.fsi.2012.05.028 CrossRefGoogle Scholar
  189. He Y, Jouaux A, Ford SE et al (2015) Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol 46:131–144. https://doi.org/10.1016/j.fsi.2015.05.023 CrossRefGoogle Scholar
  190. Heath-Heckman EAC, McFall-Ngai MJ (2011) The occurrence of chitin in the hemocytes of invertebrates. Zoology 114:191–198. https://doi.org/10.1016/j.zool.2011.02.002 CrossRefGoogle Scholar
  191. Heath-Heckman EAC, Gillette AA, Augustin R et al (2014) Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid–Vibrio symbiosis. Environ Microbiol 16:3669–3682. https://doi.org/10.1111/1462-2920.12496 CrossRefPubMedCentralPubMedGoogle Scholar
  192. Hégaret H, da Silva PM, Wikfors GH et al (2011) In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Cell Biol Toxicol 27:249–266. https://doi.org/10.1007/s10565-011-9186-6 CrossRefGoogle Scholar
  193. Hellio C, Bado-Nilles A, Gagnaire B et al (2007) Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro. Fish Shellfish Immunol 22:433–440. https://doi.org/10.1016/j.fsi.2006.06.014 CrossRefGoogle Scholar
  194. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485. https://doi.org/10.1016/j.dci.2003.09.007 CrossRefGoogle Scholar
  195. Hu X, Hu X, Hu B et al (2014) Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata. Fish Shellfish Immunol 40:446–454. https://doi.org/10.1016/j.fsi.2014.07.005 CrossRefGoogle Scholar
  196. Huang X-D, Liu W-G, Guan Y-Y et al (2012) Molecular cloning and characterization of class I NF-κB transcription factor from pearl oyster (Pinctada fucata). Fish Shellfish Immunol 33:659–666. https://doi.org/10.1016/j.fsi.2012.06.029 CrossRefGoogle Scholar
  197. Huang M, Song X, Zhao J et al (2013a) A C-type lectin (AiCTL-3) from bay scallop Argopecten irradians with mannose/galactose binding ability to bind various bacteria. Gene 531:31–38. https://doi.org/10.1016/j.gene.2013.08.042 CrossRefGoogle Scholar
  198. Huang X-D, Liu W-G, Wang Q et al (2013b) Molecular characterization of interferon regulatory factor 2 (IRF-2) homolog in pearl oyster Pinctada fucata. Fish Shellfish Immunol 34:1279–1286. https://doi.org/10.1016/j.fsi.2013.02.003 CrossRefGoogle Scholar
  199. Huang B, Zhang L, Li L et al (2015a) Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 43:485–490. https://doi.org/10.1016/j.fsi.2015.01.021 CrossRefGoogle Scholar
  200. Huang M, Zhang H, Jiang S et al (2015b) An EPD/WSD motifs containing C-type lectin from Argopectens irradians recognizes and binds microbes with broad spectrum. Fish Shellfish Immunol 43:287–293. https://doi.org/10.1016/j.fsi.2014.12.035 CrossRefGoogle Scholar
  201. Huang Y, Wang W, Ren Q (2016) Identification and function of a novel C1q domain–containing (C1qDC) protein in triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol 58:612–621. https://doi.org/10.1016/j.fsi.2016.10.010 CrossRefGoogle Scholar
  202. Huang B, Meng J, Yang M et al (2017a) Characterization of the IRF2 proteins isolated from the deep-sea mussel Bathymodiolus platifrons and the shallow-water mussel Modiolus modiolus. Dev Comp Immunol 71:82–87. https://doi.org/10.1016/j.dci.2017.01.015 CrossRefGoogle Scholar
  203. Huang B, Zhang L, Du Y et al (2017b) Characterization of the mollusc RIG-I/MAVS pathway reveals an archaic antiviral signalling framework in invertebrates. Sci Rep 7:8217. https://doi.org/10.1038/s41598-017-08566-x CrossRefPubMedCentralPubMedGoogle Scholar
  204. Huang R, Li L, Zhang G (2017c) Structure-based function prediction of the expanding mollusk tyrosinase family. Chin J Oceanol Limnol:1–11. https://doi.org/10.1007/s00343-017-6066-9 CrossRefGoogle Scholar
  205. Huang Q, Yu M, Chen H et al (2018) LRFN (leucine-rich repeat and fibronectin type-III domain–containing protein) recognizes bacteria and promotes hemocytic phagocytosis in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 72:622–628. https://doi.org/10.1016/j.fsi.2017.11.049 CrossRefGoogle Scholar
  206. Hubert F, Noel T, Roch P (1996) A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur J Biochem FEBS 240:302–306CrossRefGoogle Scholar
  207. Huffard CL (2013) Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr Neurosci IN 13:11–18. https://doi.org/10.1007/s10158-013-0147-z CrossRefGoogle Scholar
  208. Hughes FM, Foster B, Grewal S, Sokolova IM (2010) Apoptosis as a host defense mechanism in Crassostrea virginica and its modulation by Perkinsus marinus. Fish Shellfish Immunol 29:247–257. https://doi.org/10.1016/j.fsi.2010.03.003 CrossRefGoogle Scholar
  209. Imperadore P, Shah SB, Makarenkova HP, Fiorito G (2017) Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve. Sci Rep 7:46564. https://doi.org/10.1038/srep46564 CrossRefPubMedCentralPubMedGoogle Scholar
  210. Isgrove A (1909) Eledone. Williams and Norgate, LondonCrossRefGoogle Scholar
  211. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792. https://doi.org/10.1038/nature08476 CrossRefPubMedCentralPubMedGoogle Scholar
  212. Itoh N, Takahashi KG (2009) A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas. Mol Immunol 46:1768–1774. https://doi.org/10.1016/j.molimm.2009.01.022 CrossRefGoogle Scholar
  213. Ivanina AV, Falfushynska HI, Beniash E et al (2017) Biomineralization-related specialization of hemocytes and mantle tissues of the Pacific oyster Crassostrea gigas. J Exp Biol 220:3209–3221. https://doi.org/10.1242/jeb.160861 CrossRefGoogle Scholar
  214. Iwanaga S, Kawabata S, Muta T (1998) New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem (Tokyo) 123:1–15CrossRefGoogle Scholar
  215. Jakób M, Lubkowski J, O’Keefe BR, Wlodawer A (2015) Structure of a lectin from the sea mussel Crenomytilus grayanus (CGL). Acta Crystallogr Sect F Struct Biol Commun 71:1429–1436. https://doi.org/10.1107/S2053230X15019858 CrossRefGoogle Scholar
  216. Jemaà M, Morin N, Cavelier P et al (2014) Adult somatic progenitor cells and hematopoiesis in oysters. J Exp Biol 217:3067–3077. https://doi.org/10.1242/jeb.106575 CrossRefGoogle Scholar
  217. Jeong KH, Lie KJ, Heyneman D (1983) The ultrastructure of the amebocyte-producing organ in Biomphalaria glabrata. Dev Comp Immunol 7:217–228CrossRefGoogle Scholar
  218. Jereb P, Roper C (2005) Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes, Rome. FAO, RomeGoogle Scholar
  219. Jereb P, Roper C (2010) Cephalopods of the world. An annotated and illustrated catalogue of species known to date. vol 2. Myopsid and Oegopsid Squids. FAO Species Catalogue for Fishery Purposes. FAO, RomeGoogle Scholar
  220. Jereb P, Roper C, Norman M, Finn J (2016) Cephalopods of the world. An annotated and illustrated catalogue of species known to date. vol 3. Octopods and Vampire Squids. FAO Species Catalogue for Fishery PurposesGoogle Scholar
  221. Jiang J, Xing J, Sheng X, Zhan W (2011) Characterization of phenoloxidase from the bay scallop Argopecten irradians. J Shellfish Res 30:273–277. https://doi.org/10.2983/035.030.0212 CrossRefGoogle Scholar
  222. Jiang Q, Zhou Z, Wang L et al (2014) Mutual modulation between norepinephrine and nitric oxide in haemocytes during the mollusc immune response. Sci Rep 4:6963. https://doi.org/10.1038/srep06963 CrossRefPubMedCentralPubMedGoogle Scholar
  223. Jiang S, Li H, Zhang D et al (2015) A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS. Fish Shellfish Immunol 45:583–591. https://doi.org/10.1016/j.fsi.2015.05.021 CrossRefGoogle Scholar
  224. Jing X, Espinosa EP, Perrigault M, Allam B (2011) Identification, molecular characterization and expression analysis of a mucosal C-type lectin in the eastern oyster, Crassostrea virginica. Fish Shellfish Immunol 30:851–858. https://doi.org/10.1016/j.fsi.2011.01.007 CrossRefGoogle Scholar
  225. Jones BW, Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155. https://doi.org/10.1007/s00227-003-1285-3 CrossRefGoogle Scholar
  226. Jordan PJ, Deaton LE (2005) Characterization of phenoloxidase from Crassostrea virginica hemocytes and the effect of Perkinsus marinus on phenoloxidase activity in the hemolymph of Crassostrea virginica and Geukensia demissa. J Shellfish Res 24:477–482CrossRefGoogle Scholar
  227. Kessner L, Spinard E, Gomez-Chiarri M et al (2016) Draft genome sequence of Aliiroseovarius crassostreae CV919-312, the causative agent of Roseovarius oyster disease (formerly juvenile oyster disease). Genome Announc 4:e00148–e00116. https://doi.org/10.1128/genomeA.00148-16 CrossRefPubMedCentralPubMedGoogle Scholar
  228. Kiss T (2010) Apoptosis and its functional significance in molluscs. Apoptosis Int J Program Cell Death 15:313–321. https://doi.org/10.1007/s10495-009-0446-3 CrossRefGoogle Scholar
  229. Koch EJ, Miyashiro T, McFall-Ngai MJ, Ruby EG (2014) Features governing symbiont persistence in the squid–Vibrio association. Mol Ecol 23:1624–1634. https://doi.org/10.1111/mec.12474 CrossRefGoogle Scholar
  230. Kocot KM, Cannon JT, Todt C et al (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456. https://doi.org/10.1038/nature10382 CrossRefPubMedCentralPubMedGoogle Scholar
  231. Kögel D, Prehn JHM (2013) Caspase-independent cell death mechanisms. In: Madame Curie bioscience database. Landes Bioscience, Austin. https://www.ncbi.nlm.nih.gov/books/NBK6197/ Google Scholar
  232. Kong P, Zhang H, Wang L et al (2010) AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity. Dev Comp Immunol 34:837–846. https://doi.org/10.1016/j.dci.2010.03.006 CrossRefGoogle Scholar
  233. Koropatnick TA, Engle JT, Apicella MA et al (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188. https://doi.org/10.1126/science.1102218 CrossRefGoogle Scholar
  234. Koropatnick TA, Kimbell JR, McFall-Ngai MJ (2007) Responses of host hemocytes during the initiation of the squid–Vibrio symbiosis. Biol Bull 212:29–39. https://doi.org/10.2307/25066578 CrossRefGoogle Scholar
  235. Koropatnick T, Goodson MS, Heath-Heckman EAC, McFall-Ngai M (2014) Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid–Vibrio association. Biol Bull 226:56–68CrossRefPubMedGoogle Scholar
  236. Krasity BC, Troll JV, Weiss JP, McFall-Ngai MJ (2011) LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem Soc Trans 39:1039–1044. https://doi.org/10.1042/BST0391039 CrossRefPubMedCentralPubMedGoogle Scholar
  237. Kremer N, Philipp EER, Carpentier M-C et al (2013) Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14:183–194. https://doi.org/10.1016/j.chom.2013.07.006 CrossRefPubMedCentralPubMedGoogle Scholar
  238. Kremer N, Schwartzman J, Augustin R et al (2014) The dual nature of haemocyanin in the establishment and persistence of the squid–Vibrio symbiosis. Proc Biol Sci 281:20140504. https://doi.org/10.1098/rspb.2014.0504 CrossRefPubMedCentralPubMedGoogle Scholar
  239. Kuchel RP, Aladaileh S, Birch D et al (2010) Phagocytosis of the protozoan parasite, Marteilia sydneyi, by Sydney rock oyster (Saccostrea glomerata) hemocytes. J Invertebr Pathol 104:97–104. https://doi.org/10.1016/j.jip.2010.02.001 CrossRefGoogle Scholar
  240. Kurz S, Jin C, Hykollari A et al (2013) Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 288:24410–24428. https://doi.org/10.1074/jbc.M113.478933 CrossRefPubMedCentralPubMedGoogle Scholar
  241. La Peyre JF, Xue Q-G, Itoh N et al (2010) Serine protease inhibitor cvSI-1 potential role in the eastern oyster host defense against the protozoan parasite Perkinsus marinus. Dev Comp Immunol 34:84–92. https://doi.org/10.1016/j.dci.2009.08.007 CrossRefGoogle Scholar
  242. Lacoue-Labarthe T, Bustamante P, Hörlin E et al (2009) Phenoloxidase activation in the embryo of the common cuttlefish Sepia officinalis and responses to the Ag and Cu exposure. Fish Shellfish Immunol 27:516–521. https://doi.org/10.1016/j.fsi.2009.07.002 CrossRefGoogle Scholar
  243. Lafferty KD, Hofmann EE (2016) Marine disease impacts, diagnosis, forecasting, management and policy. Philos Trans R Soc Lond Ser B Biol Sci 371. https://doi.org/10.1098/rstb.2015.0200 CrossRefGoogle Scholar
  244. Lafont M, Petton B, Vergnes A et al (2017) Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 7:13143. https://doi.org/10.1038/s41598-017-13564-0 CrossRefPubMedCentralPubMedGoogle Scholar
  245. Lambert C, Soudant P, Dégremont L et al (2007) Hemocyte characteristics in families of oysters, Crassostrea gigas, selected for differential survival during summer and reared in three sites. Aquaculture 270:276–288. https://doi.org/10.1016/j.aquaculture.2007.03.016 CrossRefGoogle Scholar
  246. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. https://doi.org/10.1038/nri3452 CrossRefGoogle Scholar
  247. Le Bris C, Paillard C, Stiger-Pouvreau V, Guérard F (2013) Laccase-like activity in the hemolymph of Venerupis philippinarum: characterization and kinetic properties. Fish Shellfish Immunol 35:1804–1812. https://doi.org/10.1016/j.fsi.2013.09.009 CrossRefGoogle Scholar
  248. Le Pabic C, Goux D, Guillamin M et al (2014a) Hemocyte morphology and phagocytic activity in the common cuttlefish (Sepia officinalis). Fish Shellfish Immunol 40:362–373. https://doi.org/10.1016/j.fsi.2014.07.020 CrossRefGoogle Scholar
  249. Le Pabic C, Safi G, Serpentini A et al (2014b) Prophenoloxidase system, lysozyme and protease inhibitor distribution in the common cuttlefish Sepia officinalis. Comp Biochem Physiol B Biochem Mol Biol 172–173:96–104. https://doi.org/10.1016/j.cbpb.2014.04.009 CrossRefGoogle Scholar
  250. Le Roux F, Wegner KM, Polz MF (2016) Oysters and vibrios as a model for disease dynamics in wild animals. Trends Microbiol. https://doi.org/10.1016/j.tim.2016.03.006 CrossRefGoogle Scholar
  251. Lee KH, Ruby EG (1994) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 60:1565–1571PubMedCentralPubMedGoogle Scholar
  252. Lee YS, Nakahara K, Pham JW et al (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81CrossRefGoogle Scholar
  253. Lee PN, McFall-Ngai MJ, Callaerts P, de Couet HG (2009) The Hawaiian bobtail squid (Euprymna scolopes): a model to study the molecular basis of eukaryote–prokaryote mutualism and the development and evolution of morphological novelties in cephalopods. Cold Spring Harb Protoc 2009:pdb.emo135. https://doi.org/10.1101/pdb.emo135 CrossRefGoogle Scholar
  254. Lee Y, Wickamarachchi WDN, Whang I et al (2013) Immune response-related gene expression profile of a novel molluscan IκB protein member from Manila clam (Ruditapes philippinarum). Mol Biol Rep 40:1519–1527. https://doi.org/10.1007/s11033-012-2196-5 CrossRefPubMedGoogle Scholar
  255. Leite RB, Milan M, Coppe A et al (2013) mRNA-Seq and microarray development for the grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host–parasite interaction. BMC Genomics 14:741. https://doi.org/10.1186/1471-2164-14-741 CrossRefPubMedCentralPubMedGoogle Scholar
  256. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 CrossRefPubMedGoogle Scholar
  257. Leoni G, De Poli A, Mardirossian M et al (2017) Myticalins: a novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.). Mar Drugs 15:261. https://doi.org/10.3390/md15080261 CrossRefPubMedCentralGoogle Scholar
  258. Li H, Parisi M-G, Toubiana M et al (2008) Lysozyme gene expression and hemocyte behaviour in the Mediterranean mussel, Mytilus galloprovincialis, after injection of various bacteria or temperature stresses. Fish Shellfish Immunol 25:143–152. https://doi.org/10.1016/j.fsi.2008.04.001 CrossRefPubMedGoogle Scholar
  259. Li L, Qiu L, Song L et al (2009) First molluscan TNFR homologue in Zhikong scallop: molecular characterization and expression analysis. Fish Shellfish Immunol 27:625–632. https://doi.org/10.1016/j.fsi.2009.07.009 CrossRefPubMedGoogle Scholar
  260. Li H, Venier P, Prado-Alvárez M et al (2010) Expression of Mytilus immune genes in response to experimental challenges varied according to the site of collection. Fish Shellfish Immunol 28:640–648. https://doi.org/10.1016/j.fsi.2009.12.022 CrossRefPubMedGoogle Scholar
  261. Li C, Yu S, Zhao J et al (2011a) Cloning and characterization of a sialic acid binding lectins (SABL) from Manila clam Venerupis philippinarum. Fish Shellfish Immunol 30:1202–1206. https://doi.org/10.1016/j.fsi.2011.02.022 CrossRefPubMedGoogle Scholar
  262. Li F, Huang S, Wang L et al (2011b) A macrophage migration inhibitory factor like gene from scallop Chlamys farreri: involvement in immune response and wound healing. Dev Comp Immunol 35:62–71. https://doi.org/10.1016/j.dci.2010.08.009 CrossRefPubMedGoogle Scholar
  263. Li M, Zhu L, Zhou C et al (2012) Molecular characterization and expression of a novel big defensin (Sb-BDef1) from ark shell, Scapharca broughtonii. Fish Shellfish Immunol 33:1167–1173. https://doi.org/10.1016/j.fsi.2012.09.008 CrossRefPubMedGoogle Scholar
  264. Li J, Chen J, Zhang Y, Yu Z (2013a) Expression of allograft inflammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii. Fish Shellfish Immunol 34:365–371. https://doi.org/10.1016/j.fsi.2012.11.012 CrossRefPubMedGoogle Scholar
  265. Li L, Zhao J, Wang L et al (2013b) Genomic organization, polymorphisms and molecular evolution of the goose-type lysozyme gene from Zhikong scallop Chlamys farreri. Gene 513:40–52. https://doi.org/10.1016/j.gene.2012.10.080 CrossRefGoogle Scholar
  266. Li J, Zhang Y, Zhang Y et al (2014) Genomic characterization and expression analysis of five novel IL-17 genes in the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 40:455–465. https://doi.org/10.1016/j.fsi.2014.07.026 CrossRefGoogle Scholar
  267. Li H, Zhang H, Jiang S et al (2015a) A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. Fish Shellfish Immunol 44:566–575. https://doi.org/10.1016/j.fsi.2015.03.011 CrossRefGoogle Scholar
  268. Li R, Zhang R, Zhang L et al (2015b) Characterizations and expression analyses of NF-κB and Rel genes in the Yesso scallop (Patinopecten yessoensis) suggest specific response patterns against Gram-negative infection in bivalves. Fish Shellfish Immunol 44:611–621. https://doi.org/10.1016/j.fsi.2015.03.036 CrossRefGoogle Scholar
  269. Li J, Zhang Y, Liu Y et al (2016a) A thymosin beta-4 is involved in production of hemocytes and immune defense of Hong Kong oyster, Crassostrea hongkongensis. Dev Comp Immunol 57:1–9. https://doi.org/10.1016/j.dci.2015.12.007 CrossRefGoogle Scholar
  270. Li Z, Wang C, Jiang F et al (2016b) Characterization and expression of a novel caspase gene: evidence of the expansion of caspases in Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 201:37–45. https://doi.org/10.1016/j.cbpb.2016.07.001 CrossRefGoogle Scholar
  271. Liao Z, Wang X, Liu H et al (2013) Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish Shellfish Immunol 34:610–616. https://doi.org/10.1016/j.fsi.2012.11.030 CrossRefPubMedGoogle Scholar
  272. Lin Z, Fernández-Robledo J-A, Cellier MFM, Vasta GR (2011) The natural resistance–associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake. Biochemistry (Mosc) 50:6340–6355. https://doi.org/10.1021/bi200343h CrossRefGoogle Scholar
  273. Lin YH, Zhang W, Li JW et al (2017) Amphioxus ortholog of ECSIT, an evolutionarily conserved adaptor in the Toll and BMP signaling pathways. Mol Biol (Mosk) 51:42–49. https://doi.org/10.7868/S0026898417010128 CrossRefGoogle Scholar
  274. Liu X, Xu J, Wei X et al (2014) An inhibitor κB homolog from the bivalve mollusc Solen grandis that responds to immune challenge. J Shellfish Res 33:747–754. https://doi.org/10.2983/035.033.0309 CrossRefGoogle Scholar
  275. Liu C, Jiang S, Wang M et al (2016a) A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release. Dev Comp Immunol 61:136–144. https://doi.org/10.1016/j.dci.2016.03.026 CrossRefPubMedGoogle Scholar
  276. Liu Z, Zhou Z, Wang L et al (2016b) The cholinergic immune regulation mediated by a novel muscarinic acetylcholine receptor through TNF pathway in oyster Crassostrea gigas. Dev Comp Immunol 65:139–148. https://doi.org/10.1016/j.dci.2016.07.003 CrossRefPubMedGoogle Scholar
  277. Liu Z, Zhou Z, Wang L et al (2016c) CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. Fish Shellfish Immunol 58:50–58. https://doi.org/10.1016/j.fsi.2016.09.022 CrossRefPubMedGoogle Scholar
  278. Liu Z, Wang L, Zhou Z et al (2017a) Transcriptomic analysis of oyster Crassostrea gigas larvae illustrates the response patterns regulated by catecholaminergic system upon acute heat and bacterial stress. Dev Comp Immunol 73:52–60. https://doi.org/10.1016/j.dci.2017.03.005 CrossRefPubMedGoogle Scholar
  279. Liu Z, Zhou Z, Jiang Q et al (2017b) The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in Pacific oyster Crassostrea gigas. Open Biol 7:160289. https://doi.org/10.1098/rsob.160289 CrossRefPubMedCentralPubMedGoogle Scholar
  280. Locatello L, Fiorito G, Finos L, Rasotto MB (2013) Behavioural and immunological responses to an immune challenge in Octopus vulgaris. Physiol Behav 122:93–99. https://doi.org/10.1016/j.physbeh.2013.08.029 CrossRefPubMedGoogle Scholar
  281. Lu Y, Zheng H, Zhang H et al (2016) Cloning and differential expression of a novel Toll-like receptor gene in noble scallop Chlamys nobilis with different total carotenoid content. Fish Shellfish Immunol 56:229–238. https://doi.org/10.1016/j.fsi.2016.07.007 CrossRefPubMedGoogle Scholar
  282. Luna-Acosta A, Rosenfeld E, Amari M et al (2010) First evidence of laccase activity in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 28:719–726. https://doi.org/10.1016/j.fsi.2010.01.008 CrossRefPubMedGoogle Scholar
  283. Luna-Acosta A, Saulnier D, Pommier M et al (2011a) First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. Fish Shellfish Immunol 31:795–800. https://doi.org/10.1016/j.fsi.2011.07.016 CrossRefPubMedGoogle Scholar
  284. Luna-Acosta A, Thomas-Guyon H, Amari M et al (2011b) Differential tissue distribution and specificity of phenoloxidases from the Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 159:220–226. https://doi.org/10.1016/j.cbpb.2011.04.009 CrossRefPubMedGoogle Scholar
  285. Luna-Acosta A, Breitwieser M, Renault T, Thomas-Guyon H (2017) Recent findings on phenoloxidases in bivalves. Mar Pollut Bull 122:5–16. https://doi.org/10.1016/j.marpolbul.2017.06.031 CrossRefPubMedGoogle Scholar
  286. Mafra LL, Bricelj VM, Fennel K (2010) Domoic acid uptake and elimination kinetics in oysters and mussels in relation to body size and anatomical distribution of toxin. Aquat Toxicol Amst Neth 100:17–29. https://doi.org/10.1016/j.aquatox.2010.07.002 CrossRefGoogle Scholar
  287. Maillard PV, Ciaudo C, Marchais A et al (2013) Antiviral RNA interference in mammalian cells. Science 342:235–238. https://doi.org/10.1126/science.1241930 CrossRefPubMedGoogle Scholar
  288. Maldonado-Aguayo W, Núñez-Acuña G, Valenzuela-Muñoz V et al (2013) Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum. Fish Shellfish Immunol 34:1448–1454. https://doi.org/10.1016/j.fsi.2013.03.356 CrossRefPubMedGoogle Scholar
  289. Malham SK, Coulson CL, Runham NW (1998) Effects of repeated sampling on the haemocytes and haemolymph of Eledone cirrhosa (Lam.). Comp Biochem Physiol A Mol Integr Physiol 121:431–440. https://doi.org/10.1016/S1095-6433(98)10154-X CrossRefGoogle Scholar
  290. Malham SK, Lacoste A, Gélébart F et al (2002) A first insight into stress-induced neuroendocrine and immune changes in the octopus Eledone cirrhosa. Aquat Living Resour 15:187–192. https://doi.org/10.1016/S0990-7440(02)01173-7 CrossRefGoogle Scholar
  291. Mandel MJ (2010) Models and approaches to dissect host–symbiont specificity. Trends Microbiol 18:504–511. https://doi.org/10.1016/j.tim.2010.07.005 CrossRefPubMedGoogle Scholar
  292. Mandel MJ, Dunn AK (2016) Impact and influence of the natural Vibrio–squid symbiosis in understanding bacterial–animal interactions. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01982
  293. Mandel MJ, Schaefer AL, Brennan CA et al (2012) Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl Environ Microbiol 78:4620–4626. https://doi.org/10.1128/AEM.00377-12 CrossRefPubMedCentralPubMedGoogle Scholar
  294. Mao Y, Zhou C, Zhu L et al (2013) Identification and expression analysis on bactericidal permeability-increasing protein (BPI)/lipopolysaccharide-binding protein (LBP) of ark shell, Scapharca broughtonii. Fish Shellfish Immunol 35:642–652. https://doi.org/10.1016/j.fsi.2013.05.025 CrossRefPubMedGoogle Scholar
  295. Marini G, De Sio F, Ponte G, Fiorito G (2017) Behavioral analysis of learning and memory in cephalopods. In: Learning and memory: a comprehensive reference, 2nd edn. Academic Press/Elsevier, Amsterdam, pp 441–462CrossRefGoogle Scholar
  296. Markl J (2013) Evolution of molluscan hemocyanin structures. Biochim Biophys Acta 1834:1840–1852. https://doi.org/10.1016/j.bbapap.2013.02.020 CrossRefPubMedGoogle Scholar
  297. Martinez-Lopez A, Encinar JA, Medina-Gali RM et al (2013) pH-dependent solution structure and activity of a reduced form of the host-defense peptide myticin C (Myt C) from the mussel Mytilus galloprovincialis. Mar Drugs 11:2328–2346. https://doi.org/10.3390/md11072328 CrossRefPubMedCentralPubMedGoogle Scholar
  298. Martín-Gómez L, Villalba A, Carballal MJ, Abollo E (2014) Molecular characterisation of TNF, AIF, dermatopontin and VAMP genes of the flat oyster Ostrea edulis and analysis of their modulation by diseases. Gene 533:208–217. https://doi.org/10.1016/j.gene.2013.09.085 CrossRefGoogle Scholar
  299. Martins E, Figueras A, Novoa B et al (2014) Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria. Fish Shellfish Immunol 40:485–499. https://doi.org/10.1016/j.fsi.2014.07.018 CrossRefGoogle Scholar
  300. Masood M, Raftos DA, Nair SV (2016) Two oyster species that show differential susceptibility to virus infection also show differential proteomic responses to generic dsRNA. J Proteome Res 15:1735–1746. https://doi.org/10.1021/acs.jproteome.5b00615 CrossRefGoogle Scholar
  301. Mateo DR, Greenwood SJ, Araya MT et al (2010) Differential gene expression of γ-actin, Toll-like receptor 2 (TLR-2) and interleukin-1 receptor-associated kinase 4 (IRAK-4) in Mya arenaria haemocytes induced by in vivo infections with two Vibrio splendidus strains. Dev Comp Immunol 34:710–714. https://doi.org/10.1016/j.dci.2010.02.006 CrossRefGoogle Scholar
  302. Matsumoto T, Nakamura AM, Takahashi KG (2006) Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis. Comp Biochem Physiol B Biochem Mol Biol 145:325–330. https://doi.org/10.1016/j.cbpb.2006.08.003 CrossRefGoogle Scholar
  303. McAnulty SJ, Nyholm SV (2017) The role of hemocytes in the Hawaiian bobtail squid, Euprymna scolopes: a model organism for studying beneficial host–microbe interactions. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.02013
  304. McDowell IC, Nikapitiya C, Aguiar D et al (2014) Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance. PLoS One 9:e105097. https://doi.org/10.1371/journal.pone.0105097 CrossRefPubMedCentralPubMedGoogle Scholar
  305. McDowell IC, Modak TH, Lane CE, Gomez-Chiarri M (2016) Multi-species protein similarity clustering reveals novel expanded immune gene families in the eastern oyster Crassostrea virginica. Fish Shellfish Immunol 53:13–23. https://doi.org/10.1016/j.fsi.2016.03.157 CrossRefGoogle Scholar
  306. McFall-Ngai M (2008) Host–microbe symbiosis: the squid–Vibrio association—a naturally occurring, experimental model of animal/bacterial partnerships. Adv Exp Med Biol 635:102–112. https://doi.org/10.1007/978-0-387-09550-9_9 CrossRefGoogle Scholar
  307. McFall-Ngai M, Montgomery MK (1990) The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol Bull 179:332–339. https://doi.org/10.2307/1542325 CrossRefGoogle Scholar
  308. McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal–bacterial mutualism. Science 254:1491–1494CrossRefGoogle Scholar
  309. McFall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopes–Vibrio fischeri symbiosis. Semin Immunol 22:48–53. https://doi.org/10.1016/j.smim.2009.11.003 CrossRefGoogle Scholar
  310. Meylan E, Burns K, Hofmann K et al (2004) RIP1 is an essential mediator of Toll-like receptor 3–induced NF-kappa B activation. Nat Immunol 5:503–507. https://doi.org/10.1038/ni1061 CrossRefGoogle Scholar
  311. Milutinović B, Kurtz J (2016) Immune memory in invertebrates. Semin Immunol 28:328–342. https://doi.org/10.1016/j.smim.2016.05.004 CrossRefGoogle Scholar
  312. Mitta G, Hubert F, Noël T, Roch P (1999) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem FEBS 265:71–78CrossRefGoogle Scholar
  313. Mitta G, Hubert F, Dyrynda EA et al (2000a) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24:381–393. https://doi.org/10.1016/S0145-305X(99)00084-1 CrossRefGoogle Scholar
  314. Mitta G, Vandenbulcke F, Hubert F et al (2000b) Involvement of mytilins in mussel antimicrobial defense. J Biol Chem 275:12954–12962. https://doi.org/10.1074/jbc.275.17.12954 CrossRefGoogle Scholar
  315. Mitta G, Vandenbulcke F, Noël T et al (2000c) Differential distribution and defence involvement of antimicrobial peptides in mussel. J Cell Sci 113(Pt 15):2759–2769Google Scholar
  316. Mitta G, Vandenbulcke F, Roch P (2000d) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 486:185–190CrossRefGoogle Scholar
  317. Montagnani C, Le Roux F, Berthe F, Escoubas JM (2001) Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms. FEBS Lett 500:64–70CrossRefGoogle Scholar
  318. Montagnani C, Kappler C, Reichhart JM, Escoubas JM (2004) Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas. FEBS Lett 561:75–82. https://doi.org/10.1016/S0014-5793(04)00124-3 CrossRefGoogle Scholar
  319. Montagnani C, Avarre JC, de Lorgeril J et al (2007) First evidence of the activation of Cg-timp, an immune response component of Pacific oysters, through a damage-associated molecular pattern pathway. Dev Comp Immunol 31:1–11. https://doi.org/10.1016/j.dci.2006.04.002 CrossRefGoogle Scholar
  320. Montagnani C, Labreuche Y, Escoubas JM (2008) Cg-IκB, a new member of the IκB protein family characterized in the Pacific oyster Crassostrea gigas. Dev Comp Immunol 32:182–190. https://doi.org/10.1016/j.dci.2007.06.001 CrossRefGoogle Scholar
  321. Montaño AM, Tsujino F, Takahata N, Satta Y (2011) Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system. BMC Evol Biol 11:79. https://doi.org/10.1186/1471-2148-11-79 CrossRefPubMedCentralPubMedGoogle Scholar
  322. Montes JF, Durfort M, Lladó A, García-Valero J (2002) Characterization and immunolocalization of a main proteinaceous component of the cell wall of the protozoan parasite Perkinsus atlanticus. Parasitology 124:477–484CrossRefGoogle Scholar
  323. Moreau P, Moreau K, Segarra A et al (2015) Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy 11:516–526. https://doi.org/10.1080/15548627.2015.1017188 CrossRefPubMedCentralPubMedGoogle Scholar
  324. Moreira R, Balseiro P, Planas JV et al (2012a) Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS One 7:e35009. https://doi.org/10.1371/journal.pone.0035009 CrossRefPubMedCentralPubMedGoogle Scholar
  325. Moreira R, Balseiro P, Romero A et al (2012b) Gene expression analysis of clams Ruditapes philippinarum and Ruditapes decussatus following bacterial infection yields molecular insights into pathogen resistance and immunity. Dev Comp Immunol 36:140–149. https://doi.org/10.1016/j.dci.2011.06.012 CrossRefGoogle Scholar
  326. Moreira R, Milan M, Balseiro P et al (2014) Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray. BMC Genomics 15:267. https://doi.org/10.1186/1471-2164-15-267 CrossRefPubMedCentralPubMedGoogle Scholar
  327. Moreira R, Pereiro P, Canchaya C et al (2015) RNA-seq in Mytilus galloprovincialis: comparative transcriptomics and expression profiles among different tissues. BMC Genomics 16:728. https://doi.org/10.1186/s12864-015-1817-5CrossRefPubMedCentralPubMedGoogle Scholar
  328. Moreira R, Pereiro P, Balseiro P, Milan M, Pauletto M, Bargelloni L, Novoa B, Figueras A (2018) Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. Dev Comp Immunol 84:292–306. https://doi:10.1016/j.dci.2018.01.016CrossRefGoogle Scholar
  329. Morga B, Faury N, Guesdon S et al (2017) Haemocytes from Crassostrea gigas and OsHV-1: a promising in vitro system to study host/virus interactions. J Invertebr Pathol 150:45–53. https://doi.org/10.1016/j.jip.2017.09.007 CrossRefGoogle Scholar
  330. Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304:297–300. https://doi.org/10.1126/science.1090506 CrossRefGoogle Scholar
  331. Moustakas A, Heldin C-H (2003) Ecsit-ement on the crossroads of Toll and BMP signal transduction. Genes Dev 17:2855–2859. https://doi.org/10.1101/gad.1161403 CrossRefGoogle Scholar
  332. Moy GW, Vacquier VD (2008) Bindin genes of the Pacific oyster Crassostrea gigas. Gene 423:215–220. https://doi.org/10.1016/j.gene.2008.07.005 CrossRefGoogle Scholar
  333. Moy GW, Springer SA, Adams SL et al (2008) Extraordinary intraspecific diversity in oyster sperm bindin. Proc Natl Acad Sci 105:1993–1998. https://doi.org/10.1073/pnas.0711862105 CrossRefGoogle Scholar
  334. Mu C, Yu Y, Zhao J et al (2010) An inhibitor kappaB homologue from bay scallop Argopecten irradians. Fish Shellfish Immunol 28:687–694. https://doi.org/10.1016/j.fsi.2010.01.005 CrossRefGoogle Scholar
  335. Mu C, Chen L, Zhao J, Wang C (2014) Molecular cloning and expression of a C-type lectin gene from Venerupis philippinarum. Mol Biol Rep 41:139–144. https://doi.org/10.1007/s11033-013-2846-2 CrossRefGoogle Scholar
  336. Mun S, Kim Y-J, Markkandan K et al (2017) The whole-genome and transcriptome of the Manila clam (Ruditapes philippinarum). Genome Biol Evol 9:1487–1498. https://doi.org/10.1093/gbe/evx096 CrossRefPubMedCentralPubMedGoogle Scholar
  337. Murgarella M, Puiu D, Novoa B et al (2016) A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS One 11:e0151561. https://doi.org/10.1371/journal.pone.0151561 CrossRefPubMedCentralPubMedGoogle Scholar
  338. Mushegian A, Karin EL, Pupko T (2018) Sequence analysis of malacoherpesvirus proteins: pan-herpesvirus capsid module and replication enzymes with an ancient connection to “Megavirales.”. Virology 513:114–128. https://doi.org/10.1016/j.virol.2017.10.009 CrossRefGoogle Scholar
  339. Naef A (1928) Die Cephalopoden. Stazione Zoologica di Napoli. Friedländer & Sohn, NapoliGoogle Scholar
  340. Necco A, Martin R (1963) Behavior and estimation of the mitotic activity of the white body cells in Octopus vulgaris, cultured in vitro. Exp Cell Res 30:588–590. https://doi.org/10.1016/0014-4827(63)90335-5 CrossRefGoogle Scholar
  341. Nembrini C, Kisielow J, Shamshiev AT et al (2009) The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem 284:19183–19188. https://doi.org/10.1074/jbc.M109.006353 CrossRefPubMedCentralPubMedGoogle Scholar
  342. Ni D, Song L, Wu L et al (2007) Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819). Dev Comp Immunol 31:548–558. https://doi.org/10.1016/j.dci.2006.09.001 CrossRefGoogle Scholar
  343. Nicola NA (1994) Cytokine pleiotropy and redundancy: a view from the receptor. Stem Cells Dayt Ohio 12(Suppl 1):3–12; discussion 12–14Google Scholar
  344. Nikapitiya C, Dorrington T, Gómez-Chiarri M (2013) The role of histones in the immune responses of aquatic invertebrates. ISJ 10:94–101Google Scholar
  345. Nikapitiya C, McDowell IC, Villamil L et al (2014) Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies. Fish Shellfish Immunol 41:27–36. https://doi.org/10.1016/j.fsi.2014.06.015 CrossRefGoogle Scholar
  346. Nilsen IW, Overbø K, Sandsdalen E et al (1999) Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett 464:153–158CrossRefGoogle Scholar
  347. Ning X, Wang R, Li X et al (2015) Genome-wide identification and characterization of five MyD88 duplication genes in Yesso scallop (Patinopecten yessoensis) and expression changes in response to bacterial challenge. Fish Shellfish Immunol 46:181–191. https://doi.org/10.1016/j.fsi.2015.06.028 CrossRefGoogle Scholar
  348. Niu D, Jin K, Wang L et al (2013a) Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. Fish Shellfish Immunol 35:581–588. https://doi.org/10.1016/j.fsi.2013.06.001 CrossRefGoogle Scholar
  349. Niu D, Jin K, Wang L et al (2013b) Identification of cathepsin B in the razor clam Sinonovacula constricta and its role in innate immune responses. Dev Comp Immunol 41:94–99. https://doi.org/10.1016/j.dci.2013.04.014 CrossRefGoogle Scholar
  350. Niu D, Xie S, Bai Z et al (2014) Identification, expression, and responses to bacterial challenge of the cathepsin C gene from the razor clam Sinonovacula constricta. Dev Comp Immunol 46:241–245. https://doi.org/10.1016/j.dci.2014.04.012 CrossRefGoogle Scholar
  351. Norsworthy AN, Visick KL (2015) Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol Microbiol 96:233–248. https://doi.org/10.1111/mmi.12932 CrossRefPubMedCentralPubMedGoogle Scholar
  352. Novoa B, Tafalla C, Guerra Á, Figueras Huerta A (2002) Cellular immunological parameters of the octopus, Octopus vulgaris. J Shellfish Res 21:243–248Google Scholar
  353. Novoa B, Romero A, Álvarez ÁL et al (2016) Antiviral activity of myticin C peptide from mussel: an ancient defense against herpesviruses. J Virol 90:7692–7702. https://doi.org/10.1128/JVI.00591-16 CrossRefPubMedCentralPubMedGoogle Scholar
  354. Nyholm SV, McFall-Ngai MJ (1998) Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol Bull 195:89–97. https://doi.org/10.2307/1542815 CrossRefGoogle Scholar
  355. Nyholm SV, McFall-Ngai M (2004) The winnowing: establishing the squid–Vibrio symbiosis. Nat Rev Microbiol 2:632–642. https://doi.org/10.1038/nrmicro957 CrossRefPubMedGoogle Scholar
  356. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci 97:10231–10235. https://doi.org/10.1073/pnas.97.18.10231 CrossRefGoogle Scholar
  357. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ Microbiol 11:483–493. https://doi.org/10.1111/j.1462-2920.2008.01788.x CrossRefPubMedCentralPubMedGoogle Scholar
  358. O’Neill LAJ, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364. https://doi.org/10.1038/nri2079 CrossRefGoogle Scholar
  359. Odom EW, Vasta GR (2006) Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis). J Biol Chem 281:1698–1713. https://doi.org/10.1074/jbc.M507652200 CrossRefGoogle Scholar
  360. OIE (2017) Aquatic animal health code (2017). OIE—World Organisation for Animal Health, ParisGoogle Scholar
  361. Oliver JL, Lewis TD, Faisal M, Kaattari SL (1999) Analysis of the effects of Perkinsus marinus proteases on plasma proteins of the Eastern oyster (Crassostrea virginica) and the Pacific oyster (Crassostrea gigas). J Invertebr Pathol 74:173–183. https://doi.org/10.1006/jipa.1999.4879 CrossRefGoogle Scholar
  362. Ordás MC, Ordás A, Beloso C, Figueras A (2000) Immune parameters in carpet shell clams naturally infected with Perkinsus atlanticus. Fish Shellfish Immunol 10:597–609CrossRefGoogle Scholar
  363. Owen R (1832) Memoir on the pearly nautilus Nautilus pompilius, Linn. With illustrations of its external form and internal structure. Richard Taylor, LondonCrossRefGoogle Scholar
  364. Oyanedel D, Gonzalez R, Flores-Herrera P et al (2016) Molecular characterization of an inhibitor of NF-κB in the scallop Argopecten purpuratus: first insights into its role on antimicrobial peptide regulation in a mollusk. Fish Shellfish Immunol 52:85–93. https://doi.org/10.1016/j.fsi.2016.03.021 CrossRefGoogle Scholar
  365. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307. https://doi.org/10.1111/j.1469-185X.1972.tb00975.x CrossRefGoogle Scholar
  366. Padhi A, Verghese B (2008) Molecular diversity and evolution of myticin-C antimicrobial peptide variants in the Mediterranean mussel, Mytilus galloprovincialis. Peptides 29:1094–1101. https://doi.org/10.1016/j.peptides.2008.03.007 CrossRefGoogle Scholar
  367. Paillard C (2004) A short-review of brown ring disease, a vibriosis affecting clams, Ruditapes philippinarum and Ruditapes decussatus. Aquat Living Resour 17:467–475. https://doi.org/10.1051/alr:2004053 CrossRefGoogle Scholar
  368. Paillard C, Jean F, Ford SE et al (2014) A theoretical individual-based model of Brown Ring Disease in Manila clams, Venerupis philippinarum. J Sea Res 91:15–34. https://doi.org/10.1016/j.seares.2014.03.005 CrossRefGoogle Scholar
  369. Pales Espinosa E, Corre E, Allam B (2014) Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus. Int J Parasitol 44:305–317. https://doi.org/10.1016/j.ijpara.2014.01.006 CrossRefGoogle Scholar
  370. Pallavicini A, del Mar Costa M, Gestal C et al (2008) High sequence variability of myticin transcripts in hemocytes of immune-stimulated mussels suggests ancient host–pathogen interactions. Dev Comp Immunol 32:213–226. https://doi.org/10.1016/j.dci.2007.05.008 CrossRefGoogle Scholar
  371. Panneerselvam P, Ding JL (2015) Beyond TLR signaling—the role of SARM in antiviral immune defense, apoptosis & development. Int Rev Immunol 34:432–444CrossRefGoogle Scholar
  372. Parisi M-G, Toubiana M, Mangano V et al (2012) MIF from mussel: coding sequence, phylogeny, polymorphism, 3D model and regulation of expression. Dev Comp Immunol 36:688–696. https://doi.org/10.1016/j.dci.2011.10.014 CrossRefGoogle Scholar
  373. Parker JS, Mizuguchi K, Gay NJ (2001) A family of proteins related to Spätzle, the Toll receptor ligand, are encoded in the Drosophila genome. Proteins 45:71–80CrossRefPubMedGoogle Scholar
  374. Paro S, Imler J-L, Meignin C (2015) Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Curr Opin Immunol 32:106–113. https://doi.org/10.1016/j.coi.2015.01.009 CrossRefGoogle Scholar
  375. Pechenik J (2010) Biology of the invertebrates. McGraw-Hill Higher Education, ColumbusGoogle Scholar
  376. Pees B, Yang W, Zárate-Potes A et al (2016) High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. J Innate Immun 8:129–142. https://doi.org/10.1159/000441475 CrossRefPubMedGoogle Scholar
  377. Peng K, Wang J, Sheng J et al (2012) Molecular characterization and immune analysis of a defensin from freshwater pearl mussel, Hyriopsis schlegelii. Aquaculture 334–337:45–50. https://doi.org/10.1016/j.aquaculture.2011.12.039 CrossRefGoogle Scholar
  378. Peng M, Niu D, Wang F et al (2016) Complement C3 gene: expression characterization and innate immune response in razor clam Sinonovacula constricta. Fish Shellfish Immunol 55:223–232. https://doi.org/10.1016/j.fsi.2016.05.024 CrossRefPubMedCentralPubMedGoogle Scholar
  379. Perrigault M, Tanguy A, Allam B (2009) Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 10:377. https://doi.org/10.1186/1471-2164-10-377 CrossRefPubMedCentralPubMedGoogle Scholar
  380. Pezzati E, Canesi L, Damonte G et al (2015) Susceptibility of Vibrio aestuarianus 01/032 to the antibacterial activity of Mytilus haemolymph: identification of a serum opsonin involved in mannose-sensitive interactions. Environ Microbiol 17:4271–4279. https://doi.org/10.1111/1462-2920.12750 CrossRefPubMedGoogle Scholar
  381. Philipp EER, Kraemer L, Melzner F et al (2012) Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS One 7:e33091. https://doi.org/10.1371/journal.pone.0033091 CrossRefPubMedCentralPubMedGoogle Scholar
  382. Pila EA, Sullivan JT, Wu XZ et al (2016) Haematopoiesis in molluscs: a review of haemocyte development and function in gastropods, cephalopods and bivalves. Dev Comp Immunol 58:119–128. https://doi.org/10.1016/j.dci.2015.11.010 CrossRefPubMedGoogle Scholar
  383. Pila EA, Li H, Hambrook JR et al (2017) Schistosomiasis from a snail’s perspective: advances in snail immunity. Trends Parasitol 33:845–857. https://doi.org/10.1016/j.pt.2017.07.006 CrossRefPubMedGoogle Scholar
  384. Pinaud S, Portela J, Duval D et al (2016) A shift from cellular to humoral responses contributes to innate immune memory in the vector snail Biomphalaria glabrata. PLoS Pathog 12:e1005361. https://doi.org/10.1371/journal.ppat.1005361 CrossRefPubMedCentralPubMedGoogle Scholar
  385. Pinto MR, Melillo D, Giacomelli S et al (2007) Ancient origin of the complement system: emerging invertebrate models. Adv Exp Med Biol 598:372–388. https://doi.org/10.1007/978-0-387-71767-8_26 CrossRefPubMedGoogle Scholar
  386. Plazzi F, Passamonti M (2010) Towards a molecular phylogeny of mollusks: bivalves’ early evolution as revealed by mitochondrial genes. Mol Phylogenet Evol 57:641–657. https://doi.org/10.1016/j.ympev.2010.08.032 CrossRefPubMedGoogle Scholar
  387. Polglase JL, Bullock AM, Roberts RJ (1983) Wound healing and the haemocyte response in the skin of the lesser octopus Eledone cirrhosa (Mollusca: Cephalopoda). J Zool 201:185–204. https://doi.org/10.1111/j.1469-7998.1983.tb04269.x CrossRefGoogle Scholar
  388. Ponder W, Lindberg DR (2008) Phylogeny and evolution of the Mollusca. University of California Press, OaklandCrossRefGoogle Scholar
  389. Poon IKH, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180. https://doi.org/10.1038/nri3607 CrossRefPubMedCentralPubMedGoogle Scholar
  390. Prado-Alvarez M, Rotllant J, Gestal C et al (2009) Characterization of a C3 and a factor B–like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 26:305–315. https://doi.org/10.1016/j.fsi.2008.11.015 CrossRefPubMedGoogle Scholar
  391. Proestou DA, Vinyard BT, Corbett RJ et al (2016) Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. Aquaculture 464:17–27. https://doi.org/10.1016/j.aquaculture.2016.06.012 CrossRefGoogle Scholar
  392. Qin C-L, Huang W, Zhou S-Q et al (2014) Characterization of a novel antimicrobial peptide with chiting-biding domain from Mytilus coruscus. Fish Shellfish Immunol 41:362–370. https://doi.org/10.1016/j.fsi.2014.09.019 CrossRefGoogle Scholar
  393. Qiu L, Song L, Xu W et al (2007) Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol 22:451–466. https://doi.org/10.1016/j.fsi.2006.05.003 CrossRefPubMedGoogle Scholar
  394. Qu F, Xiang Z, Wang F et al (2015a) A novel molluscan Fos gene with immune defense function identified in the Hong Kong oyster, Crassostrea hongkongensis. Dev Comp Immunol 51:194–201. https://doi.org/10.1016/j.dci.2015.03.012 CrossRefPubMedGoogle Scholar
  395. Qu T, Zhang L, Wang W et al (2015b) Characterization of an inhibitor of apoptosis protein in Crassostrea gigas clarifies its role in apoptosis and immune defense. Dev Comp Immunol 51:74–78. https://doi.org/10.1016/j.dci.2015.02.011 CrossRefPubMedGoogle Scholar
  396. Qu F, Xiang Z, Zhang Y et al (2016) A novel p38 MAPK indentified from Crassostrea hongkongensis and its involvement in host response to immune challenges. Mol Immunol 79:113–124. https://doi.org/10.1016/j.molimm.2016.10.001 CrossRefPubMedGoogle Scholar
  397. Qu F, Xiang Z, Xiao S et al (2017a) c-Jun N-terminal kinase (JNK) is involved in immune defense against bacterial infection in Crassostrea hongkongensis. Dev Comp Immunol 67:77–85. https://doi.org/10.1016/j.dci.2016.11.011 CrossRefPubMedGoogle Scholar
  398. Qu F, Xiang Z, Zhang Y et al (2017b) Molecular identification and functional characterization of a tumor necrosis factor (TNF) gene in Crassostrea hongkongensis. Immunobiology 222:751–758. https://doi.org/10.1016/j.imbio.2017.02.002 CrossRefPubMedGoogle Scholar
  399. Qu F, Xiang Z, Zhou Y et al (2017c) Tumor necrosis factor receptor-associated factor 3 from Anodonta woodiana is an important factor in bivalve immune response to pathogen infection. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2017.10.004 CrossRefGoogle Scholar
  400. Queiroga FR, Marques-Santos LF, Hégaret H et al (2017) Effects of cyanobacteria Synechocystis spp. in the host–parasite model Crassostrea gasar-Perkinsus marinus. Aquat Toxicol Amst Neth 187:100–107. https://doi.org/10.1016/j.aquatox.2017.03.019 CrossRefGoogle Scholar
  401. Rader BA, Kremer N, Apicella MA et al (2012) Modulation of symbiont lipid A signaling by host alkaline phosphatases in the squid–Vibrio symbiosis. mBio 3. https://doi.org/10.1128/mBio.00093-12
  402. Raftos DA, Kuchel R, Aladaileh S, Butt D (2014) Infectious microbial diseases and host defense responses in Sydney rock oysters. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00135
  403. Reece KS, Scott GP, Dang C, Dungan CF (2017) A novel monoclonal Perkinsus chesapeaki in vitro isolate from an Australian cockle, Anadara trapezia. J Invertebr Pathol 148:86–93. https://doi.org/10.1016/j.jip.2017.05.007 CrossRefGoogle Scholar
  404. Ren Q, Qi Y-L, Hui K-M et al (2012) Four invertebrate-type lysozyme genes from triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol 33:909–915. https://doi.org/10.1016/j.fsi.2012.07.019 CrossRefGoogle Scholar
  405. Ren Q, Zhong X, Yin S-W et al (2013) The first Toll receptor from the triangle-shell pearl mussel Hyriopsis cumingii. Fish Shellfish Immunol 34:1287–1293. https://doi.org/10.1016/j.fsi.2013.02.014 CrossRefGoogle Scholar
  406. Ren Q, Lan J-F, Zhong X et al (2014) A novel Toll like receptor with two TIR domains (HcToll-2) is involved in regulation of antimicrobial peptide gene expression of Hyriopsis cumingii. Dev Comp Immunol 45:198–208. https://doi.org/10.1016/j.dci.2014.02.020 CrossRefGoogle Scholar
  407. Ren Y, Pan H, Pan B, Bu W (2016) Identification and functional characterization of three TLR signaling pathway genes in Cyclina sinensis. Fish Shellfish Immunol 50:150–159. https://doi.org/10.1016/j.fsi.2016.01.025 CrossRefGoogle Scholar
  408. Ren Q, Wang C, Jin M et al (2017a) Co-option of bacteriophage lysozyme genes by bivalve genomes. Open Biol 7. https://doi.org/10.1098/rsob.160285 CrossRefPubMedGoogle Scholar
  409. Ren Y, Xue J, Yang H et al (2017b) Transcriptome analysis of Ruditapes philippinarum hepatopancreas provides insights into immune signaling pathways under Vibrio anguillarum infection. Fish Shellfish Immunol 64:14–23. https://doi.org/10.1016/j.fsi.2017.03.005 CrossRefGoogle Scholar
  410. Renault T, Faury N, Barbosa-Solomieu V, Moreau K (2011) Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev Comp Immunol 35:725–735. https://doi.org/10.1016/j.dci.2011.02.004 CrossRefGoogle Scholar
  411. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33. https://doi.org/10.1016/j.bbapap.2011.08.016 CrossRefGoogle Scholar
  412. Roberts S, Gueguen Y, de Lorgeril J, Goetz F (2008) Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 32:1099–1104. https://doi.org/10.1016/j.dci.2008.02.006 CrossRefGoogle Scholar
  413. Roch P, Yang Y, Toubiana M, Aumelas A (2008) NMR structure of mussel mytilin, and antiviral–antibacterial activities of derived synthetic peptides. Dev Comp Immunol 32:227–238. https://doi.org/10.1016/j.dci.2007.05.006 CrossRefGoogle Scholar
  414. Rocha TL, Gomes T, Sousa VS et al (2015) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88. https://doi.org/10.1016/j.marenvres.2015.06.013 CrossRefGoogle Scholar
  415. Rodríguez-Domínguez H, Soto-Búa M, Iglesias-Blanco R et al (2006) Preliminary study on the phagocytic ability of Octopus vulgaris Cuvier, 1797 (Mollusca: Cephalopoda) haemocytes in vitro. Aquaculture 254:563–570. https://doi.org/10.1016/j.aquaculture.2005.10.005 CrossRefGoogle Scholar
  416. Rögener W, Renwrantz L, Uhlenbruck G (1985) Isolation and characterization of a lectin from the hemolymph of the cephalopod Octopus vulgaris (Lam.) inhibited by alpha-D-lactose and N-acetyl-lactosamine. Dev Comp Immunol 9:605–616CrossRefGoogle Scholar
  417. Romero A, Dios S, Poisa-Beiro L et al (2011) Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates. Dev Comp Immunol 35:334–344. https://doi.org/10.1016/j.dci.2010.10.007 CrossRefGoogle Scholar
  418. Romero A, Novoa B, Figueras A (2015) The complexity of apoptotic cell death in mollusks: an update. Fish Shellfish Immunol 46:79–87. https://doi.org/10.1016/j.fsi.2015.03.038 CrossRefGoogle Scholar
  419. Romestand B, Corbier F, Roch P (2002) Protease inhibitors and haemagglutinins associated with resistance to the protozoan parasite, Perkinsus marinus, in the Pacific oyster, Crassostrea gigas. Parasitology 125:323–329. https://doi.org/10.1017/S0031182002002135 CrossRefGoogle Scholar
  420. Rosa RD, Santini A, Fievet J et al (2011) Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS One 6:e25594. https://doi.org/10.1371/journal.pone.0025594 CrossRefPubMedCentralPubMedGoogle Scholar
  421. Rosa RD, Alonso P, Santini A et al (2015) High polymorphism in big defensin gene expression reveals presence–absence gene variability (PAV) in the oyster Crassostrea gigas. Dev Comp Immunol 49:231–238. https://doi.org/10.1016/j.dci.2014.12.002 CrossRefGoogle Scholar
  422. Rosani U, Varotto L, Rossi A et al (2011) Massively parallel amplicon sequencing reveals isotype-specific variability of antimicrobial peptide transcripts in Mytilus galloprovincialis. PLoS One 6:e26680. https://doi.org/10.1371/journal.pone.0026680 CrossRefPubMedCentralPubMedGoogle Scholar
  423. Rosani U, Varotto L, Gerdol M et al (2015) IL-17 signaling components in bivalves: comparative sequence analysis and involvement in the immune responses. Dev Comp Immunol 52:255–268. https://doi.org/10.1016/j.dci.2015.05.001 CrossRefGoogle Scholar
  424. Rosani U, Pallavicini A, Venier P (2016) The miRNA biogenesis in marine bivalves. PeerJ 4:e1763. https://doi.org/10.7717/peerj.1763 CrossRefPubMedCentralPubMedGoogle Scholar
  425. Roumbedakis K, Mascaró M, Martins ML et al (2017) Health status of post-spawning Octopus maya (Cephalopoda: Octopodidae) females from Yucatan Peninsula. Mexico Hydrobiol:1–12. https://doi.org/10.1007/s10750-017-3340-y CrossRefGoogle Scholar
  426. Royet J, Dziarski R (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5:264–277. https://doi.org/10.1038/nrmicro1620 CrossRefGoogle Scholar
  427. Ruano F, Batista FM, Arcangeli G (2015) Perkinsosis in the clams Ruditapes decussatus and R. philippinarum in the Northeastern Atlantic and Mediterranean Sea: a review. J Invertebr Pathol 131:58–67. https://doi.org/10.1016/j.jip.2015.07.015 CrossRefGoogle Scholar
  428. Rubin E, Tanguy A, Pales Espinosa E, Allam B (2017) Differential gene expression in five isolates of the clam pathogen, quahog parasite unknown (QPX). J Eukaryot Microbiol 64:647–654. https://doi.org/10.1111/jeu.12400 CrossRefGoogle Scholar
  429. Ruby EG (1999) The Euprymna scolopes–Vibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J Mol Microbiol Biotechnol 1:13–21Google Scholar
  430. Ruby EG, Lee KH (1998) The Vibrio fischeri–Euprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64:805–812PubMedCentralPubMedGoogle Scholar
  431. Ruby EG, McFall-Ngai MJ (1992) A squid that glows in the night: development of an animal–bacterial mutualism. J Bacteriol 174:4865–4870CrossRefPubMedGoogle Scholar
  432. Ruppert E, Fox R, Barnes R (2004) Invertebrate zoology, 7th edn. Brooks/Cole, Pacific GroveGoogle Scholar
  433. Salazar KA, Joffe NR, Dinguirard N et al (2015) Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery. PLoS One 10:e0119949. https://doi.org/10.1371/journal.pone.0119949 CrossRefPubMedCentralPubMedGoogle Scholar
  434. Sales JBDL, Rodrigues-Filho LFDS, Ferreira YDS et al (2017) Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the western Atlantic Ocean is associated with the formation of the Caribbean Sea. Mol Phylogenet Evol 106:44–54. https://doi.org/10.1016/j.ympev.2016.09.014 CrossRefGoogle Scholar
  435. Samain JF, Dégremont L, Soletchnik P et al (2007) Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268:227–243. https://doi.org/10.1016/j.aquaculture.2007.04.044 CrossRefGoogle Scholar
  436. Sanchez J-F, Lescar J, Chazalet V et al (2006) Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold. J Biol Chem 281:20171–20180. https://doi.org/10.1074/jbc.M603452200 CrossRefGoogle Scholar
  437. Schleicher TR, VerBerkmoes NC, Shah M, Nyholm SV (2014) Colonization state influences the hemocyte proteome in a beneficial squid–Vibrio symbiosis. Mol Cell Proteomics MCP 13:2673–2686. https://doi.org/10.1074/mcp.M113.037259 CrossRefGoogle Scholar
  438. Schmidt RL, Trejo TR, Plummer TB et al (2008) Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila. FASEB J 22:918–929. https://doi.org/10.1096/fj.06-7907com CrossRefGoogle Scholar
  439. Schmitt P, Gueguen Y, Desmarais E et al (2010) Molecular diversity of antimicrobial effectors in the oyster Crassostrea gigas. BMC Evol Biol 10:23. https://doi.org/10.1186/1471-2148-10-23 CrossRefPubMedCentralPubMedGoogle Scholar
  440. Schmitt P, Rosa RD, Duperthuy M et al (2012) The antimicrobial defense of the Pacific oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microflora. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00160
  441. Schott EJ, Vasta GR (2003) The PmSOD1 gene of the protistan parasite Perkinsus marinus complements the sod2Delta mutant of Saccharomyces cerevisiae, and directs an iron superoxide dismutase to mitochondria. Mol Biochem Parasitol 126:81–92CrossRefGoogle Scholar
  442. Schott EJ, Pecher WT, Okafor F, Vasta GR (2003) The protistan parasite Perkinsus marinus is resistant to selected reactive oxygen species. Exp Parasitol 105:232–240. https://doi.org/10.1016/j.exppara.2003.12.012 CrossRefGoogle Scholar
  443. Schultz JH, Adema CM (2017) Comparative immunogenomics of molluscs. Dev Comp Immunol 75:3–15. https://doi.org/10.1016/j.dci.2017.03.013 CrossRefGoogle Scholar
  444. Segarra A, Baillon L, Faury N et al (2016) Detection and distribution of ostreid herpesvirus 1 in experimentally infected Pacific oyster spat. J Invertebr Pathol 133:59–65. https://doi.org/10.1016/j.jip.2015.11.013 CrossRefGoogle Scholar
  445. Sekine D, Ohishi K, Nakamura Y et al (2016) Monoclonal antibodies to hemocytes of the deep-sea symbiotic mussel, Bathymodiolus japonicus. JAMSTEC Rep Res Dev 23:27–33. https://doi.org/10.5918/jamstecr.23.27 CrossRefGoogle Scholar
  446. Seo J-K, Crawford JM, Stone KL, Noga EJ (2005) Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem Biophys Res Commun 338:1998–2004. https://doi.org/10.1016/j.bbrc.2005.11.013 CrossRefGoogle Scholar
  447. Seo J-K, Stephenson J, Noga EJ (2011) Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster. Comp Biochem Physiol B Biochem Mol Biol 158:223–229. https://doi.org/10.1016/j.cbpb.2010.11.011 CrossRefGoogle Scholar
  448. Seo J-K, Lee MJ, Nam B-H, Park NG (2013) cgMolluscidin, a novel dibasic residue repeat rich antimicrobial peptide, purified from the gill of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 35:480–488. https://doi.org/10.1016/j.fsi.2013.05.010 CrossRefGoogle Scholar
  449. Shaw TJ, Osborne M, Ponte G et al (2016) Mechanisms of wound closure following acute arm injury in Octopus vulgaris. Zool Lett 2:8. https://doi.org/10.1186/s40851-016-0044-5 CrossRefGoogle Scholar
  450. Shi X, Zhou Z, Wang L et al (2012) The immunomodulation of acetylcholinesterase in zhikong scallop Chlamys farreri. PLoS One 7:e30828. https://doi.org/10.1371/journal.pone.0030828 CrossRefPubMedCentralPubMedGoogle Scholar
  451. Shi X, Wang L, Zhou Z et al (2014) Acetylcholine modulates the immune response in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 38:204–210. https://doi.org/10.1016/j.fsi.2014.03.008 CrossRefGoogle Scholar
  452. Shi X, Zhou Z, Wang L et al (2015) The immunomodulation of nicotinic acetylcholine receptor subunits in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 47:611–622. https://doi.org/10.1016/j.fsi.2015.10.001 CrossRefGoogle Scholar
  453. Shumway SE, Parsons GJ (2006) Scallops: biology, ecology and aquaculture, vol 40, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  454. Sigwart JD, Lindberg DR (2015) Consensus and confusion in molluscan trees: evaluating morphological and molecular phylogenies. Syst Biol 64:384–395. https://doi.org/10.1093/sysbio/syu105 CrossRefGoogle Scholar
  455. Simakov O, Marletaz F, Cho S-J et al (2013) Insights into bilaterian evolution from three spiralian genomes. Nature 493:526–531. https://doi.org/10.1038/nature11696 CrossRefGoogle Scholar
  456. Skazina MA, Gorbushin AM (2016) Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes. Fish Shellfish Immunol 54:586–588. https://doi.org/10.1016/j.fsi.2016.05.017 CrossRefGoogle Scholar
  457. Smith LC, Azumi K, Nonaka M (1999) Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 42:107–120CrossRefPubMedGoogle Scholar
  458. Smith SA, Wilson NG, Goetz FE et al (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367. https://doi.org/10.1038/nature10526 CrossRefGoogle Scholar
  459. Sokolova IM (2009) Apoptosis in molluscan immune defense. Invertebr Surviv J 6:49–58Google Scholar
  460. Song X, Zhang H, Zhao J et al (2010) An immune responsive multidomain galectin from bay scallop Argopectens irradians. Fish Shellfish Immunol 28:326–332. https://doi.org/10.1016/j.fsi.2009.11.016 CrossRefGoogle Scholar
  461. Song X, Zhang H, Wang L et al (2011) A galectin with quadruple-domain from bay scallop Argopecten irradians is involved in innate immune response. Dev Comp Immunol 35:592–602. https://doi.org/10.1016/j.dci.2011.01.006 CrossRefGoogle Scholar
  462. Song L, Wang L, Zhang H, Wang M (2015) The immune system and its modulation mechanism in scallop. Fish Shellfish Immunol 46:65–78. https://doi.org/10.1016/j.fsi.2015.03.013 CrossRefGoogle Scholar
  463. Song X, Wang H, Chen H et al (2016) Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 51:180–188. https://doi.org/10.1016/j.fsi.2016.02.023 CrossRefGoogle Scholar
  464. Sonthi M, Toubiana M, Pallavicini A et al (2011) Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis. Mar Biotechnol 13:857–867. https://doi.org/10.1007/s10126-010-9345-4 CrossRefGoogle Scholar
  465. Soudant P, Chu FLE, Volety A (2013) Host–parasite interactions: marine bivalve molluscs and protozoan parasites, Perkinsus species. J Invertebr Pathol 114:196–216. https://doi.org/10.1016/j.jip.2013.06.001 CrossRefGoogle Scholar
  466. Springer SA, Moy GW, Friend DS et al (2008) Oyster sperm bindin is a combinatorial fucose lectin with remarkable intra-species diversity. Int J Dev Biol 52:759–768. https://doi.org/10.1387/ijdb.082581ss CrossRefGoogle Scholar
  467. Stabb E, Visick K (2013) Vibrio fisheri: squid symbiosis. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, BerlinGoogle Scholar
  468. Stentiford GD, Sritunyalucksana K, Flegel TW et al (2017) New paradigms to help solve the global aquaculture disease crisis. PLoS Pathog 13:e1006160. https://doi.org/10.1371/journal.ppat.1006160 CrossRefPubMedCentralPubMedGoogle Scholar
  469. Su J, Ni D, Song L et al (2007) Molecular cloning and characterization of a short type peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 23:646–656. https://doi.org/10.1016/j.fsi.2007.01.023 CrossRefGoogle Scholar
  470. Su J, Qiu L, Li L et al (2011) cDNA cloning and characterization of a new member of the tumor necrosis factor receptor family gene from scallop, Chlamys farreri. Mol Biol Rep 38:4483–4490. https://doi.org/10.1007/s11033-010-0578-0 CrossRefGoogle Scholar
  471. Sui Y, Hu M, Shang Y et al (2017) Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration. Ecotoxicol Environ Saf 137:94–102. https://doi.org/10.1016/j.ecoenv.2016.11.023 CrossRefGoogle Scholar
  472. Sun Y, Zhou Z, Wang L et al (2014) The immunomodulation of a novel tumor necrosis factor (CgTNF-1) in oyster Crassostrea gigas. Dev Comp Immunol 45:291–299. https://doi.org/10.1016/j.dci.2014.03.007 CrossRefGoogle Scholar
  473. Sun Y, Zhang L, Zhang M et al (2016) Characterization of three mitogen-activated protein kinases (MAPK) genes reveals involvement of ERK and JNK, not p38 in defense against bacterial infection in Yesso scallop Patinopecten yessoensis. Fish Shellfish Immunol 54:507–515. https://doi.org/10.1016/j.fsi.2016.04.139 CrossRefGoogle Scholar
  474. Sun J, Zhang Y, Xu T et al (2017) Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol 1:0121. https://doi.org/10.1038/s41559-017-0121 CrossRefGoogle Scholar
  475. Sunila I, LaBanca J (2003) Apoptosis in the pathogenesis of infectious diseases of the eastern oyster Crassostrea virginica. Dis Aquat Org 56:163–170. https://doi.org/10.3354/dao056163 CrossRefGoogle Scholar
  476. Sweeney M, Roper C (1998) Classification, type localities, and type repositories of recent Cephalopoda. Smithson Contrib Zool 586:561–599Google Scholar
  477. Tall BD, La Peyre JF, Bier JW et al (1999) Perkinsus marinus extracellular protease modulates survival of Vibrio vulnificus in Eastern oyster (Crassostrea virginica) hemocytes. Appl Environ Microbiol 65:4261–4263PubMedCentralPubMedGoogle Scholar
  478. Tame A, Yoshida T, Ohishi K, Maruyama T (2015) Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B. platifrons, and B. septemdierum. Fish Shellfish Immunol 45:146–156. https://doi.org/10.1016/j.fsi.2015.03.020 CrossRefGoogle Scholar
  479. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci signal 5:ra20. https://doi.org/10.1126/scisignal.2002521 CrossRefPubMedCentralPubMedGoogle Scholar
  480. Tang H (2009) Regulation and function of the melanization reaction in Drosophila. Fly (Austin) 3:105–111CrossRefGoogle Scholar
  481. Tang X, Huang B, Zhang L et al (2016) TANK-binding kinase-1 broadly affects oyster immune response to bacteria and viruses. Fish Shellfish Immunol 56:330–335. https://doi.org/10.1016/j.fsi.2016.07.011 CrossRefGoogle Scholar
  482. Tanguy A, Guo X, Ford SE (2004) Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338:121–131. https://doi.org/10.1016/j.gene.2004.05.019 CrossRefGoogle Scholar
  483. Tanguy M, McKenna P, Gauthier-Clerc S et al (2013) Sequence analysis of a normalized cDNA library of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain. Results Immunol 3:40–50. https://doi.org/10.1016/j.rinim.2013.04.001 CrossRefPubMedCentralPubMedGoogle Scholar
  484. Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol Baltim Md 1950 179:3086–3098Google Scholar
  485. Taylor ME, Drickamer K (2003) Binding of oligosaccharide ligands to the selectins requires additional interactions with the carbohydrate-recognition domain. In: Introduction of glycobiology. Oxford University Press, Oxford, p 207Google Scholar
  486. Terada D, Kawai F, Noguchi H et al (2016) Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types. Sci Rep 6:28344. https://doi.org/10.1038/srep28344 CrossRefPubMedCentralPubMedGoogle Scholar
  487. Terada D, Voet ARD, Noguchi H et al (2017) Computational design of a symmetrical β-trefoil lectin with cancer cell binding activity. Sci Rep 7:5943. https://doi.org/10.1038/s41598-017-06332-7 CrossRefPubMedCentralPubMedGoogle Scholar
  488. Thanasupawat T et al (2015) RXFP1 is targeted by complement C1q tumor necrosis factor-related factor 8 in brain cancer. Front Endocrinol 6:127CrossRefGoogle Scholar
  489. Tomarev SI, Zinovieva RD, Weis VM et al (1993) Abundant mRNAs in the squid light organ encode proteins with a high similarity to mammalian peroxidases. Gene 132:219–226CrossRefGoogle Scholar
  490. Toubiana M, Gerdol M, Rosani U et al (2013) Toll-like receptors and MyD88 adaptors in Mytilus: complete cds and gene expression levels. Dev Comp Immunol 40:158–166. https://doi.org/10.1016/j.dci.2013.02.006 CrossRefGoogle Scholar
  491. Toubiana M, Rosani U, Giambelluca S et al (2014) Toll signal transduction pathway in bivalves: complete cds of intermediate elements and related gene transcription levels in hemocytes of immune stimulated Mytilus galloprovincialis. Dev Comp Immunol 45:300–312. https://doi.org/10.1016/j.dci.2014.03.021 CrossRefGoogle Scholar
  492. Travers M-A, Boettcher Miller K, Roque A, Friedman CS (2015) Bacterial diseases in marine bivalves. J Invertebr Pathol 131:11–31. https://doi.org/10.1016/j.jip.2015.07.010 CrossRefGoogle Scholar
  493. Troll JV, Adin DM, Wier AM et al (2009) Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal–bacterial symbiosis. Cell Microbiol 11:1114–1127. https://doi.org/10.1111/j.1462-5822.2009.01315.x CrossRefPubMedCentralPubMedGoogle Scholar
  494. Troll JV, Bent EH, Pacquette N et al (2010) Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environ Microbiol 12:2190–2203. https://doi.org/10.1111/j.1462-2920.2009.02121.x CrossRefGoogle Scholar
  495. Troncone L, Lisa ED, Bertapelle C et al (2015) Morphofunctional characterization and antibacterial activity of haemocytes from Octopus vulgaris. J Nat Hist 49:1457–1475. https://doi.org/10.1080/00222933.2013.826830 CrossRefGoogle Scholar
  496. Troost K (2010) Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. J Sea Res 64:145–165. https://doi.org/10.1016/j.seares.2010.02.004 CrossRefGoogle Scholar
  497. Uhlenbruck G, Prokop O (1966) An agglutinin from Helix pomatia, which reacts with terminal N-acetyl-D-galactosamine. Vox Sang 11:519–520CrossRefPubMedGoogle Scholar
  498. Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438. https://doi.org/10.1038/nrmicro2146 CrossRefPubMedCentralPubMedGoogle Scholar
  499. Vasta GR, Ahmed H (2008) Animal lectins: a functional view. Taylor & Francis/CRC Press. Boca Raton, Florida, USAGoogle Scholar
  500. Vasta GR, Ahmed H, Tasumi S et al (2007) Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition. Adv Exp Med Biol 598:389–406. https://doi.org/10.1007/978-0-387-71767-8_27 CrossRefPubMedGoogle Scholar
  501. Vasta GR, Ahmed H, Bianchet MA et al (2012a) Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann N Y Acad Sci 1253:E14–E26. https://doi.org/10.1111/j.1749-6632.2012.06698.x CrossRefPubMedCentralPubMedGoogle Scholar
  502. Vasta GR, Ahmed H, Nita-Lazar M et al (2012b) Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 3. https://doi.org/10.3389/fimmu.2012.00199
  503. Vasta GR, Feng C, Bianchet MA et al (2015) Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: from a sweet tooth to the Trojan horse. Fish Shellfish Immunol 46:94–106. https://doi.org/10.1016/j.fsi.2015.05.012 CrossRefPubMedCentralPubMedGoogle Scholar
  504. Venier P, Pittà CD, Bernante F et al (2009) MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics 10:72. https://doi.org/10.1186/1471-2164-10-72 CrossRefPubMedCentralPubMedGoogle Scholar
  505. Vieira GC, da Silva PM, Barracco MA et al (2017) Morphological and functional characterization of the hemocytes from the pearl oyster Pteria hirundo and their immune responses against Vibrio infections. Fish Shellfish Immunol 70:750–758. https://doi.org/10.1016/j.fsi.2017.09.040 CrossRefGoogle Scholar
  506. Villamil L, Gómez-León J, Gómez-Chiarri M (2007) Role of nitric oxide in the defenses of Crassostrea virginica to experimental infection with the protozoan parasite Perkinsus marinus. Dev Comp Immunol 31:968–977CrossRefGoogle Scholar
  507. Visciano P, Schirone M, Berti M et al (2016) Marine biotoxins: occurrence, toxicity, regulatory limits and reference methods. Front Microbiol 7:1051. https://doi.org/10.3389/fmicb.2016.01051 CrossRefPubMedCentralPubMedGoogle Scholar
  508. Waite JH, Wilbur KM (1976) Phenoloxidase in the periostracum of the marine bivalve Modiolus demissus dillwyn. J Exp Zool 195:359–367. https://doi.org/10.1002/jez.1401950304 CrossRefGoogle Scholar
  509. Wang B, Zhao J, Song L et al (2008) Molecular cloning and expression of a novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop Chlamys farreri, and the inhibitory activity of its recombinant domain. Fish Shellfish Immunol 24:629–637. https://doi.org/10.1016/j.fsi.2008.01.017 CrossRefGoogle Scholar
  510. Wang A, Wang Y, Gu Z et al (2011a) Development of expressed sequence tags from the pearl oyster, Pinctada martensii Dunker. Mar Biotechnol N Y N 13:275–283. https://doi.org/10.1007/s10126-010-9296-9 CrossRefGoogle Scholar
  511. Wang M, Yang J, Zhou Z et al (2011b) A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farreri. Dev Comp Immunol 35:511–520. https://doi.org/10.1016/j.dci.2010.12.005 CrossRefGoogle Scholar
  512. Wang L, Wang L, Kong P et al (2012a) A novel C1qDC protein acting as pattern recognition receptor in scallop Argopecten irradians. Fish Shellfish Immunol 33:427–435. https://doi.org/10.1016/j.fsi.2012.05.032 CrossRefGoogle Scholar
  513. Wang L, Wang L, Zhang H et al (2012b) A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity. PLoS One 7:e43289. https://doi.org/10.1371/journal.pone.0043289 CrossRefPubMedCentralPubMedGoogle Scholar
  514. Wang Q, Bao Y, Huo L et al (2012c) A novel tissue inhibitor of metalloproteinase in blood clam Tegillarca granosa: molecular cloning, tissue distribution and expression analysis. Fish Shellfish Immunol 33:645–651. https://doi.org/10.1016/j.fsi.2012.06.021 CrossRefGoogle Scholar
  515. Wang G, Li X, Li J (2013a) Association between SNPs in interferon regulatory factor 2 (IRF-2) gene and resistance to Aeromonas hydrophila in freshwater mussel Hyriopsis cumingii. Fish Shellfish Immunol 34:1366–1371. https://doi.org/10.1016/j.fsi.2013.02.006 CrossRefGoogle Scholar
  516. Wang L, Qiu L, Zhou Z, Song L (2013b) Research progress on the mollusc immunity in China. Spec Issue Comp Immunol China 39:2–10. https://doi.org/10.1016/j.dci.2012.06.014 CrossRefGoogle Scholar
  517. Wang Q, Wang C, Mu C et al (2013c) A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS One 8:e67469. https://doi.org/10.1371/journal.pone.0067469 CrossRefPubMedCentralPubMedGoogle Scholar
  518. Wang G-L, Xia X-L, Li X-L et al (2014a) Molecular characterization and expression patterns of the big defensin gene in freshwater mussel (Hyriopsis cumingii). Genet Mol Res GMR 13:704–715. https://doi.org/10.4238/2014.January.29.1 CrossRefGoogle Scholar
  519. Wang X-W, Xu J-D, Zhao X-F et al (2014b) A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J Biol Chem 289:11779–11790. https://doi.org/10.1074/jbc.M114.552307 CrossRefPubMedCentralPubMedGoogle Scholar
  520. Wang JQ et al (2014c) Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol 5:367. https://doi.org/10.3389/fimmu.2014.00367 CrossRefPubMedCentralPubMedGoogle Scholar
  521. Wang L, Wang L, Zhang D et al (2015a) A novel multi-domain C1qDC protein from Zhikong scallop Chlamys farreri provides new insights into the function of invertebrate C1qDC proteins. Dev Comp Immunol 52:202–214. https://doi.org/10.1016/j.dci.2015.05.009 CrossRefGoogle Scholar
  522. Wang L, Yue F, Song X, Song L (2015b) Maternal immune transfer in mollusc. Dev Comp Immunol 48:354–359. https://doi.org/10.1016/j.dci.2014.05.010 CrossRefGoogle Scholar
  523. Wang Q, Zhang L, Yang D et al (2015c) Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum. Fish Shellfish Immunol 47:302–312. https://doi.org/10.1016/j.fsi.2015.09.008 CrossRefGoogle Scholar
  524. Wang W, Liu R, Zhang T et al (2015d) A novel phagocytic receptor (CgNimC) from Pacific oyster Crassostrea gigas with lipopolysaccharide and Gram-negative bacteria binding activity. Fish Shellfish Immunol 43:103–110. https://doi.org/10.1016/j.fsi.2014.12.019 CrossRefGoogle Scholar
  525. Wang K, del Castillo C, Corre E et al (2016a) Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics 17:146. https://doi.org/10.1186/s12864-016-2493-9 CrossRefPubMedCentralPubMedGoogle Scholar
  526. Wang K, Pales Espinosa E, Tanguy A, Allam B (2016b) Alterations of the immune transcriptome in resistant and susceptible hard clams (Mercenaria mercenaria) in response to quahog parasite unknown (QPX) and temperature. Fish Shellfish Immunol 49:163–176. https://doi.org/10.1016/j.fsi.2015.12.006 CrossRefGoogle Scholar
  527. Wang L, Song X, Song L (2017a) The oyster immunity. Dev Comp Immunol. https://doi.org/10.1016/j.dci.2017.05.025 CrossRefGoogle Scholar
  528. Wang L, Zhang H, Wang L et al (2017b) The RNA-seq analysis suggests a potential multi-component complement system in oyster Crassostrea gigas. Dev Comp Immunol 76:209–219. https://doi.org/10.1016/j.dci.2017.06.009 CrossRefGoogle Scholar
  529. Wang W, Li M, Wang L et al (2017c) The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas. Dev Comp Immunol 67:221–228. https://doi.org/10.1016/j.dci.2016.09.017 CrossRefGoogle Scholar
  530. Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130. https://doi.org/10.1016/j.jembe.2004.03.002 CrossRefGoogle Scholar
  531. Webb LMC, Datta P, Bell SE et al (2016) GIMAP1 is essential for the survival of naive and activated B cells in vivo. J Immunol 196:207–216. https://doi.org/10.4049/jimmunol.1501582 CrossRefGoogle Scholar
  532. Wei X, Yang J, Yang D et al (2012) Molecular cloning and mRNA expression of two peptidoglycan recognition protein (PGRP) genes from mollusk Solen grandis. Fish Shellfish Immunol 32:178–185. https://doi.org/10.1016/j.fsi.2011.11.009 CrossRefGoogle Scholar
  533. Weis VM, Small AL, McFall-Ngai MJ (1996) A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna–Vibrio mutualism. Proc Natl Acad Sci U S A 93:13683–13688CrossRefPubMedGoogle Scholar
  534. Weiss Y, Forêt S, Hayward DC et al (2013) The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants. BMC Genomics 14:400. https://doi.org/10.1186/1471-2164-14-400 CrossRefPubMedCentralPubMedGoogle Scholar
  535. Wells M (1983) Circulation in cephalopods. In: Wilbur KM (ed) The Mollusca—physiology, part 2. Academic Press, New York, pp 239–290Google Scholar
  536. Wells MJ, Smith PJS (1987) The performance of the octopus circulatory system: a triumph of engineering over design. Experientia 43:487–499. https://doi.org/10.1007/BF02143577 CrossRefGoogle Scholar
  537. Wier AM, Nyholm SV, Mandel MJ et al (2010) Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc Natl Acad Sci 107:2259–2264. https://doi.org/10.1073/pnas.0909712107 CrossRefGoogle Scholar
  538. Williamson R (1993) The statocysts of molluscs. Jpn J Physiol 43(Suppl 1):S259–S266Google Scholar
  539. Wollenberg MS, Ruby EG (2009) Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl Environ Microbiol 75:193–202. https://doi.org/10.1128/AEM.01792-08 CrossRefGoogle Scholar
  540. Wu S-Z, Huang X-D, Li Q, He M-X (2013) Interleukin-17 in pearl oyster (Pinctada fucata): molecular cloning and functional characterization. Fish Shellfish Immunol 34:1050–1056. https://doi.org/10.1016/j.fsi.2013.01.005 CrossRefGoogle Scholar
  541. Wu L, Zhang L, Zhao J et al (2015) Cloning and expression of a transcription factor activator protein-1 (AP-1) member identified from manila clam Venerupis philippinarum. Gene 557:106–111. https://doi.org/10.1016/j.gene.2014.12.027 CrossRefGoogle Scholar
  542. Wu J, Bao M, Ge D et al (2017) The expression of superoxide dismutase in Mytilus coruscus under various stressors. Fish Shellfish Immunol 70:361–371. https://doi.org/10.1016/j.fsi.2017.08.018 CrossRefGoogle Scholar
  543. Xiang Z, Qu F, Li J et al (2014a) Activator protein-1 (AP-1) and response to pathogen infection in the Hong Kong oyster (Crassostrea hongkongensis). Fish Shellfish Immunol 36:83–89. https://doi.org/10.1016/j.fsi.2013.10.005 CrossRefGoogle Scholar
  544. Xiang Z, Qu F, Wang F et al (2014b) Characteristic and functional analysis of a ficolin-like protein from the oyster Crassostrea hongkongensis. Fish Shellfish Immunol 40:514–523. https://doi.org/10.1016/j.fsi.2014.08.006 CrossRefGoogle Scholar
  545. Xiang Z, Xiao S, Wang F et al (2016) Cloning, characterization and comparative analysis of four death receptorTNFRs from the oyster Crassostrea hongkongensis. Fish Shellfish Immunol 59:288–297. https://doi.org/10.1016/j.fsi.2016.09.041 CrossRefGoogle Scholar
  546. Xin L, Zhang H, Zhang R et al (2015) CgIL17-5, an ancient inflammatory cytokine in Crassostrea gigas exhibiting the heterogeneity functions compared with vertebrate interleukin17 molecules. Dev Comp Immunol 53:339–348. https://doi.org/10.1016/j.dci.2015.08.002 CrossRefGoogle Scholar
  547. Xin L, Wang M, Zhang H et al (2016a) The categorization and mutual modulation of expanded MyD88s in Crassostrea gigas. Fish Shellfish Immunol 54:118–127. https://doi.org/10.1016/j.fsi.2016.04.014 CrossRefGoogle Scholar
  548. Xin L, Zhang H, Du X et al (2016b) The systematic regulation of oyster CgIL17-1 and CgIL17-5 in response to air exposure. Dev Comp Immunol 63:144–155. https://doi.org/10.1016/j.dci.2016.06.001 CrossRefGoogle Scholar
  549. Xing J, Jiang J, Zhan W (2012) Phenoloxidase in the scallop Chlamys farreri: purification and antibacterial activity of its reaction products generated in vitro. Fish Shellfish Immunol 32:89–93. https://doi.org/10.1016/j.fsi.2011.10.025 CrossRefGoogle Scholar
  550. Xing Q, Yu Q, Dou H et al (2016) Genome-wide identification, characterization and expression analyses of two TNFRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to bacterial infections and heat stress in bivalves. Fish Shellfish Immunol 52:44–56. https://doi.org/10.1016/j.fsi.2016.03.010 CrossRefGoogle Scholar
  551. Xing Q, Liao H, Xun X et al (2017) Genome-wide identification, characterization and expression analyses of TLRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to acidifying exposure in bivalves. Fish Shellfish Immunol 68:280–288. https://doi.org/10.1016/j.fsi.2017.07.020 CrossRefGoogle Scholar
  552. Xu W, Faisal M (2010) Defensin of the zebra mussel (Dreissena polymorpha): molecular structure, in vitro expression, antimicrobial activity, and potential functions. Mol Immunol 47:2138–2147. https://doi.org/10.1016/j.molimm.2010.01.025 CrossRefGoogle Scholar
  553. Xu T, Xie J, Li J et al (2012) Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Fish Shellfish Immunol 32:1106–1116. https://doi.org/10.1016/j.fsi.2012.03.012 CrossRefGoogle Scholar
  554. Xu F, Li J, Zhang Y et al (2015a) CgIκB3, the third novel inhibitor of NF-kappa B (IκB) protein, is involved in the immune defense of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 46:648–655. https://doi.org/10.1016/j.fsi.2015.08.002 CrossRefGoogle Scholar
  555. Xu F, Zhang Y, Li J et al (2015b) Expression and function analysis of two naturally truncated MyD88 variants in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 45:510–516. https://doi.org/10.1016/j.fsi.2015.04.034 CrossRefGoogle Scholar
  556. Xu F, Domazet-Lošo T, Fan D et al (2016a) High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans. Sci Rep 6:34664. https://doi.org/10.1038/srep34664 CrossRefPubMedCentralPubMedGoogle Scholar
  557. Xu J, Jiang S, Li Y et al (2016b) Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas. Dev Comp Immunol 61:1–12. https://doi.org/10.1016/j.dci.2016.03.015 CrossRefGoogle Scholar
  558. Xue Q, Renault T (2001) Monoclonal antibodies to European flat oyster Ostrea edulis hemocytes: characterization and tissue distribution of granulocytes in adult and developing animals. Dev Comp Immunol 25:187–194CrossRefGoogle Scholar
  559. Xue Q-G, Waldrop GL, Schey KL et al (2006) A novel slow-tight binding serine protease inhibitor from eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellular protease of the oyster protozoan parasite Perkinsus marinus. Comp Biochem Physiol B Biochem Mol Biol 145:16–26. https://doi.org/10.1016/j.cbpb.2006.05.010 CrossRefGoogle Scholar
  560. Xue Q, Itoh N, Schey KL et al (2009) Evidence indicating the existence of a novel family of serine protease inhibitors that may be involved in marine invertebrate immunity. Fish Shellfish Immunol 27:250–259. https://doi.org/10.1016/j.fsi.2009.05.006 CrossRefGoogle Scholar
  561. Xue Q, Beguel J-P, Gauthier J, La Peyre J (2017a) Identification of cvSI-3 and evidence for the wide distribution and active evolution of the I84 family of protease inhibitors in mollusks. Fish Shellfish Immunol 62:332–340. https://doi.org/10.1016/j.fsi.2017.01.040 CrossRefGoogle Scholar
  562. Xue Z, Wang L, Liu Z et al (2017b) The fragmentation mechanism and immune-protective effect of CfTEP in the scallop Chlamys farreri. Dev Comp Immunol 76:220–228. https://doi.org/10.1016/j.dci.2017.06.005 CrossRefGoogle Scholar
  563. Yamaura K, Takahashi KG, Suzuki T (2008) Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 149:168–175. https://doi.org/10.1016/j.cbpb.2007.09.004 CrossRefGoogle Scholar
  564. Yang S, Wu X (2010) Identification and functional characterization of a human sTRAIL homolog, CasTRAIL, in an invertebrate oyster Crassostrea ariakensis. Dev Comp Immunol 34:538–545. https://doi.org/10.1016/j.dci.2009.12.014 CrossRefGoogle Scholar
  565. Yang YS, Mitta G, Chavanieu A et al (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry (Mosc) 39:14436–14447CrossRefGoogle Scholar
  566. Yang HS, Hong HK, Donaghy L, Noh CH, Park HS, Kim DS, Choi KS (2015) Morphology and Immunerelated activities of hemocytes of the mussel Mytilus coruscus (Gould, 1861) from East Sea of Korea.Ocean Sci J 50:77-85. http://dx.doi.org/10.1007/s12601-015-0006-4 CrossRefGoogle Scholar
  567. Yang J, Qiu L, Wang L et al (2011a) A TRAF and TNF receptor-associated protein (TTRAP) in mollusk with endonuclease activity. Dev Comp Immunol 35:827–834. https://doi.org/10.1016/j.dci.2011.02.013 CrossRefGoogle Scholar
  568. Yang Q, Yang Z, Li H (2011b) Molecular characterization and expression analysis of an inhibitor of NF-κB (IκB) from Asiatic hard clam Meretrix meretrix. Fish Shellfish Immunol 31:485–490. https://doi.org/10.1016/j.fsi.2011.06.005 CrossRefGoogle Scholar
  569. Yang J, Wei X, Liu X et al (2012) Cloning and transcriptional analysis of two sialic acid–binding lectins (SABLs) from razor clam Solen grandis. Fish Shellfish Immunol 32:578–585. https://doi.org/10.1016/j.fsi.2012.01.012 CrossRefGoogle Scholar
  570. Yang D, Wei X, Yang J et al (2013a) Identification of a LPS-induced TNF-α factor (LITAF) from mollusk Solen grandis and its expression pattern towards PAMPs stimulation. Fish Shellfish Immunol 35:1325–1328. https://doi.org/10.1016/j.fsi.2013.07.034 CrossRefGoogle Scholar
  571. Yang S, Xu H, Mi Z et al (2013b) Identification and functional characterization of a sTRAIL gene in mussel Hyriopsis cumingii. Aquaculture 402:92–96. https://doi.org/10.1016/j.aquaculture.2013.03.021 CrossRefGoogle Scholar
  572. Yang Z, Li J, Li Y et al (2013c) Molecular cloning and functional characterization of a short peptidoglycan recognition protein (HcPGRPS1) from the freshwater mussel, Hyriopsis cumingi. Mol Immunol 56:729–738. https://doi.org/10.1016/j.molimm.2013.06.019 CrossRefGoogle Scholar
  573. Yang C, Wang L, Zhang H et al (2014) A new fibrinogen-related protein from Argopecten irradians (AiFREP-2) with broad recognition spectrum and bacteria agglutination activity. Fish Shellfish Immunol 38:221–229. https://doi.org/10.1016/j.fsi.2014.03.025 CrossRefGoogle Scholar
  574. Yang J, Huang M, Zhang H et al (2015) CfLec-3 from scallop: an entrance to non-self recognition mechanism of invertebrate C-type lectin. Sci Rep 5:10068. https://doi.org/10.1038/srep10068 CrossRefPubMedCentralPubMedGoogle Scholar
  575. Yang J, Luo J, Zheng H et al (2016) Cloning of a big defensin gene and its response to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis (Bivalve: Pectinidae). Fish Shellfish Immunol 56:445–449. https://doi.org/10.1016/j.fsi.2016.07.030 CrossRefGoogle Scholar
  576. Yazzie N, Salazar KA, Castillo MG (2015) Identification, molecular characterization, and gene expression analysis of a CD109 molecule in the Hawaiian bobtail squid Euprymna scolopes. Fish Shellfish Immunol 44:342–355. https://doi.org/10.1016/j.fsi.2015.02.036 CrossRefGoogle Scholar
  577. Yoneyama M, Fujita T (2007) Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282:15315–15318. https://doi.org/10.1074/jbc.R700007200 CrossRefGoogle Scholar
  578. Yoshino TP, Dinguirard N, Kunert J, Hokke CH (2008) Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene 411:46–58. https://doi.org/10.1016/j.gene.2008.01.003 CrossRefPubMedCentralPubMedGoogle Scholar
  579. Young T, Kesarcodi-Watson A, Alfaro AC et al (2017) Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. Dev Comp Immunol 73:229–245. https://doi.org/10.1016/j.dci.2017.03.025 CrossRefGoogle Scholar
  580. Yu Q, Yang D, Wang Q et al (2017) Molecular characterization, expression and functional analysis of two Kazal-type serine protease inhibitors from Venerupis philippinarum. Fish Shellfish Immunol 70:156–163. https://doi.org/10.1016/j.fsi.2017.09.018 CrossRefGoogle Scholar
  581. Yue X, Liu B, Xue Q (2011) An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity. Fish Shellfish Immunol 30:550–558. https://doi.org/10.1016/j.fsi.2010.11.022 CrossRefGoogle Scholar
  582. Yue Y, Meng Y, Ma H et al (2016) A large family of Dscam genes with tandemly arrayed 5′ cassettes in Chelicerata. Nat Commun 7:ncomms11252. https://doi.org/10.1038/ncomms11252 CrossRefGoogle Scholar
  583. Zannella C, Mosca F, Mariani F et al (2017) Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense. Mar Drugs 15:182. https://doi.org/10.3390/md15060182 CrossRefPubMedCentralPubMedGoogle Scholar
  584. Zavasnik-Bergant T, Turk B (2006) Cysteine cathepsins in the immune response. Tissue Antigens 67:349–355. https://doi.org/10.1111/j.1399-0039.2006.00585.x CrossRefGoogle Scholar
  585. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217. https://doi.org/10.1111/j.1742-4658.2005.05031.x CrossRefPubMedGoogle Scholar
  586. Zhang S-M, Loker ES (2004) Representation of an immune responsive gene family encoding fibrinogen-related proteins in the freshwater mollusc Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Gene 341:255–266. https://doi.org/10.1016/j.gene.2004.07.003 CrossRefPubMedCentralPubMedGoogle Scholar
  587. Zhang S-M, Adema CM, Kepler TB, Loker ES (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305:251–254. https://doi.org/10.1126/science.1088069 CrossRefGoogle Scholar
  588. Zhang D, Jiang S, Qiu L et al (2009a) Molecular characterization and expression analysis of the IκB gene from pearl oyster Pinctada fucata. Fish Shellfish Immunol 26:84–90. https://doi.org/10.1016/j.fsi.2008.10.009 CrossRefGoogle Scholar
  589. Zhang H, Wang L, Song L et al (2009b) A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol 26:56–64. https://doi.org/10.1016/j.fsi.2008.07.019 CrossRefGoogle Scholar
  590. Zhang H, Wang L, Song L et al (2009c) The genomic structure, alternative splicing and immune response of Chlamys farreri thioester-containing protein. Dev Comp Immunol 33:1070–1076. https://doi.org/10.1016/j.dci.2009.05.007 CrossRefGoogle Scholar
  591. Zhang D, Jiang S, Hu Y et al (2011a) A multidomain galectin involved in innate immune response of pearl oyster Pinctada fucata. Dev Comp Immunol 35:1–6. https://doi.org/10.1016/j.dci.2010.08.007 CrossRefGoogle Scholar
  592. Zhang G, Zhang L, Li L (2011b) Gene discovery, comparative analysis and expression profile reveal the complexity of the Crassostrea gigas apoptosis system. Dev Comp Immunol 35:603–610. https://doi.org/10.1016/j.dci.2011.01.005 CrossRefGoogle Scholar
  593. Zhang L, Li L, Zhang G (2011c) A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates. Fish Shellfish Immunol 30:653–660. https://doi.org/10.1016/j.fsi.2010.12.023 CrossRefGoogle Scholar
  594. Zhang Y, He X, Li X et al (2011d) The second bactericidal permeability increasing protein (BPI) and its revelation of the gene duplication in the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 30:954–963. https://doi.org/10.1016/j.fsi.2011.01.031 CrossRefGoogle Scholar
  595. Zhang Y, He X, Yu Z (2011e) Two homologues of inhibitor of NF-kappa B (IκB) are involved in the immune defense of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol 30:1354–1361. https://doi.org/10.1016/j.fsi.2011.03.008 CrossRefGoogle Scholar
  596. Zhang G, Fang X, Guo X et al (2012a) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54. https://doi.org/10.1038/nature11413 CrossRefPubMedGoogle Scholar
  597. Zhang L, Li L, Zhang G (2012b) Sequence variability of fibrinogen-related proteins (FREPs) in Crassostrea gigas. Chin Sci Bull 57:3312–3319. https://doi.org/10.1007/s11434-012-5155-6 CrossRefGoogle Scholar
  598. Zhang Y, He X, Yu F et al (2013a) Characteristic and functional analysis of Toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS One 8:e76464. https://doi.org/10.1371/journal.pone.0076464 CrossRefPubMedCentralPubMedGoogle Scholar
  599. Zhang Y, Li J, Yu F et al (2013b) Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol 34:1071–1077. https://doi.org/10.1016/j.fsi.2013.01.014 CrossRefPubMedCentralPubMedGoogle Scholar
  600. Zhang D, Ma J, Jiang S (2014a) Molecular characterization, expression and function analysis of a five-domain Kazal-type serine proteinase inhibitor from pearl oyster Pinctada fucata. Fish Shellfish Immunol 37:115–121. https://doi.org/10.1016/j.fsi.2013.12.011 CrossRefGoogle Scholar
  601. Zhang J, Qiu R, Hu Y-H (2014b) HdhCTL1 is a novel C-type lectin of abalone Haliotis discus hannai that agglutinates Gram-negative bacterial pathogens. Fish Shellfish Immunol 41:466–472. https://doi.org/10.1016/j.fsi.2014.09.032 CrossRefGoogle Scholar
  602. Zhang L, Li L, Zhu Y et al (2014c) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol N Y N 16:17–33. https://doi.org/10.1007/s10126-013-9526-z CrossRefGoogle Scholar
  603. Zhang T, Qiu L, Sun Z et al (2014d) The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus. Dev Comp Immunol 45:141–150. https://doi.org/10.1016/j.dci.2014.02.015 CrossRefPubMedGoogle Scholar
  604. Zhang Y, Yu F, Li J et al (2014e) The first invertebrate RIG-I-like receptor (RLR) homolog gene in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 40:466–471. https://doi.org/10.1016/j.fsi.2014.07.029 CrossRefGoogle Scholar
  605. Zhang L, Li L, Guo X et al (2015) Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5:srep08693. https://doi.org/10.1038/srep08693 CrossRefGoogle Scholar
  606. Zhang G, Li L, Meng J et al (2016a) Molecular basis for adaptation of oysters to stressful marine intertidal environments. Annu Rev Anim Biosci 4. https://doi.org/10.1146/annurev-animal-022114-110903 CrossRefGoogle Scholar
  607. Zhang R, Liu R, Xin L et al (2016b) A CgIFNLP receptor from Crassostrea gigas and its activation of the related genes in human JAK/STAT signaling pathway. Dev Comp Immunol 65:98–106. https://doi.org/10.1016/j.dci.2016.06.010 CrossRefGoogle Scholar
  608. Zhang H-W, Huang Y, Man X et al (2017) HcToll3 was involved in anti-Vibrio defense in freshwater pearl mussel, Hyriopsis cumingii. Fish Shellfish Immunol 63:189–195. https://doi.org/10.1016/j.fsi.2017.02.015 CrossRefGoogle Scholar
  609. Zhao J, Song L, Li C et al (2007) Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Mol Immunol 44:1198–1208. https://doi.org/10.1016/j.molimm.2006.06.008 CrossRefGoogle Scholar
  610. Zhao J, Li C, Chen A et al (2010) Molecular characterization of a novel big defensin from clam Venerupis philippinarum. PLoS One 5:e13480. https://doi.org/10.1371/journal.pone.0013480 CrossRefPubMedCentralPubMedGoogle Scholar
  611. Zhao B, Zhao L, Liao H et al (2015) Mapping Toll-like receptor signaling pathway genes of Zhikong scallop (Chlamys farreri) with FISH. J Ocean Univ China 14:1075–1081. https://doi.org/10.1007/s11802-015-2643-8 CrossRefGoogle Scholar
  612. Zhao L-L, Jin M, Li X-C et al (2016a) Four C1q domain–containing proteins involved in the innate immune response in Hyriopsis cumingii. Fish Shellfish Immunol 55:323–331. https://doi.org/10.1016/j.fsi.2016.06.003 CrossRefGoogle Scholar
  613. Zhao L-L, Wang Y-Q, Dai Y-J et al (2016b) A novel C-type lectin with four CRDs is involved in the regulation of antimicrobial peptide gene expression in Hyriopsis cumingii. Fish Shellfish Immunol 55:339–347. https://doi.org/10.1016/j.fsi.2016.06.007 CrossRefGoogle Scholar
  614. Zheng P, Wang H, Zhao J et al (2008) A lectin (CfLec-2) aggregating Staphylococcus haemolyticus from scallop Chlamys farreri. Fish Shellfish Immunol 24:286–293. https://doi.org/10.1016/j.fsi.2007.11.014 CrossRefGoogle Scholar
  615. Zhou Z, Ni D, Wang M et al (2012) The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish Shellfish Immunol 33:375–381. https://doi.org/10.1016/j.fsi.2012.05.022 CrossRefGoogle Scholar
  616. Zhu B, Wu X (2012) Identification and function of LPS induced tumor necrosis factor-alpha (LITAF) gene from Crassostrea ariakensis stimulated by Rickettsia-like organism. Afr J Microbiol Res 6:4169–4174. https://doi.org/10.5897/AJMR12.010 CrossRefGoogle Scholar
  617. Zhu L, Song L, Chang Y et al (2006) Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819). Fish Shellfish Immunol 20:320–331. https://doi.org/10.1016/j.fsi.2005.05.009 CrossRefGoogle Scholar
  618. Zhu L, Song L, Xu W, Qian P-Y (2008) Molecular cloning and immune responsive expression of a novel C-type lectin gene from bay scallop Argopecten irradians. Fish Shellfish Immunol 25:231–238. https://doi.org/10.1016/j.fsi.2008.05.004 CrossRefGoogle Scholar
  619. Zou L, Liu B (2016) The polymorphisms of a MIF gene and their association with Vibrio resistance in the clam Meretrix meretrix. Dev Comp Immunol 62:116–126. https://doi.org/10.1016/j.dci.2016.04.013 CrossRefGoogle Scholar
  620. Zou J, Chang M, Nie P, Secombes CJ (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9:85. https://doi.org/10.1186/1471-2148-9-85 CrossRefPubMedCentralPubMedGoogle Scholar
  621. Zou J, Wang R, Li R et al (2015) The genome-wide identification of mitogen-activated protein kinase kinase (MKK) genes in Yesso scallop Patinopecten yessoensis and their expression responses to bacteria challenges. Fish Shellfish Immunol 45:901–911. https://doi.org/10.1016/j.fsi.2015.06.006 CrossRefGoogle Scholar
  622. Zu Ermgassen PSE, Spalding MD, Blake B et al (2012) Historical ecology with real numbers: past and present extent and biomass of an imperilled estuarine habitat. Proc R Soc B Biol Sci 279:3393–3400. https://doi.org/10.1098/rspb.2012.0313 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Gerdol
    • 1
  • Marta Gomez-Chiarri
    • 3
  • Maria G. Castillo
    • 4
  • Antonio Figueras
    • 5
  • Graziano Fiorito
    • 6
  • Rebeca Moreira
    • 5
  • Beatriz Novoa
    • 5
  • Alberto Pallavicini
    • 1
    • 7
  • Giovanna Ponte
    • 6
  • Katina Roumbedakis
    • 8
    • 9
  • Paola Venier
    • 10
  • Gerardo R. Vasta
    • 2
  1. 1.University of Trieste, Department of Life SciencesTriesteItaly
  2. 2.University of Maryland School of Medicine, Department of Microbiology and Immunology, and Institute of Marine and Environmental TechnologyBaltimoreUSA
  3. 3.University of Rhode Island, Department of Fisheries, Animal and Veterinary ScienceKingstonUSA
  4. 4.New Mexico State University, Department of BiologyLas CrucesUSA
  5. 5.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  6. 6.Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine OrganismsNaplesItaly
  7. 7.University of Trieste, Department of Life SciencesTriesteItaly
  8. 8.Università degli Studi del Sannio, Dipartimento di Scienze e TecnologieBeneventoItaly
  9. 9.Association for Cephalopod Research ‘CephRes’NaplesItaly
  10. 10.University of Padova, Department of BiologyPaduaItaly

Personalised recommendations