Arthropoda: Pattern Recognition Proteins in Crustacean Immunity

  • Lage CereniusEmail author
  • Kenneth Söderhäll


Crustaceans in general are able to mount a robust defense to microorganisms and parasites. They are equipped with pattern recognition proteins (PRPs) capable of binding microbial molecular patterns such as β-1,3-glucans and different bacterial cell wall components. A variety of different reactions are triggered such as prophenoloxidase activation, opsonin formation, phagocytosis, and encapsulation. The crustacean PRPs constitute a large group of proteins consisting of evolutionary highly conserved proteins with a wide presence in several phyla that act side by side with other PRPs that are possibly unique to crustaceans or even groups of crustaceans.


β-1,3-Glucan Lipopolysaccharide Peptidoglycan Pattern recognition β-1,3-Glucan-binding protein Lectin Masquerade Glucanase Prophenoloxidase Serine protease homolog Ficolin Crayfish Shrimp 


  1. Alenton RR, Koiwai K, Miyaguchi K et al (2017) Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif. Sci Rep.
  2. Amparyup P, Sutthangkul J, Charoensapsri W et al (2012) Pattern recognition protein binds to lipopolysaccharide and β-1,3-glucan and activates shrimp prophenoloxidase system. J Biol Chem 287:10060–10069CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angthong P, Watthanasurorot A, Klinbunga S et al (2010) Cloning and characterization of a melanisation inhibition protein (PmMIP) of the black tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 29:464–468CrossRefGoogle Scholar
  4. Aspán A, Hall M, Söderhäll K (1990) The effect of endogeneous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase from crayfish haemocytes. Insect Biochem 20:485–492CrossRefGoogle Scholar
  5. Barracco MA, Duvic B, Söderhäll K (1991) The β-1,3-glucan-binding protein from the crayfish Pacifastacus leniusculus, when reacted with a β-1,3-glucan, induces spreading and degranulation of crayfish granular cells. Cell Tissue Res 266:491–497CrossRefGoogle Scholar
  6. Bi WJ, Li DX, Xu YH et al (2015) Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides. Dev Comp Immunol 51:10–21CrossRefGoogle Scholar
  7. Brown GD, Gordon S (2001) Immune recognition: a new receptor for beta-glucans. Nature 413:36–37CrossRefPubMedPubMedCentralGoogle Scholar
  8. Canton J, Neculai D, Grinstein S et al (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634CrossRefGoogle Scholar
  9. Cerenius L, Liang Z, Duvic B et al (1994) Structure and biological activity of a 1,3-beta-D-glucan-binding protein in crustacean blood. J Biol Chem 269:29462–29467Google Scholar
  10. Cerenius L, Luel BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chai YM, Zhu Q, Yu SS et al (2012) A novel protein with a fibrinogen-like domain involved in the innate immune response of Marsupenaeus japonicus. Fish Shellfish Immunol 32:307–315CrossRefGoogle Scholar
  12. Chaosomboon A, Phupet B, Rattanaporn O et al (2017) Lipopolysaccharide- and β-1,3-glucan-binding protein from Fenneropenaeus merguiensis functions as a pattern recognition receptor with a broad specificity for diverse pathogens in the defense against microorganisms. Dev Comp Immunol 67:434–444CrossRefGoogle Scholar
  13. Cheng WT, Liu CH, Tsai CH et al (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18:297–310CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coelho JR, Bareto C, Silvera AS et al (2016) A hemocyte-expressed fibrinogen-related protein gene (LvFrep) from the shrimp Litopenaeus vannamei: expression analysis after microbial infection and during larval development. Fish Shellfish Immunol 56:123–126CrossRefGoogle Scholar
  15. Dimopoulos G, Richman A, Müller HM et al (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94:11508–11513CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunne DW, Resnick D, Grenberg J et al (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A 91:1863–1867CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duvic B, Söderhäll K (1990) Purification and characterization of a beta-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. J Biol Chem 265:9327–9332Google Scholar
  18. Duvic B, Söderhäll K (1992) Purification and partial characterization of a beta-1,3-glucan-binding-protein membrane receptor from blood cells of the crayfish Pacifastacus leniusculus. Eur J Biochem 207:223–228CrossRefGoogle Scholar
  19. Feng J, Huang J, Jin M et al (2016) A C-type lectin (MrLec) with high expression in intestine is involved in innate immune response of Macrobrachium rosenbergii. Fish Shellfish Immunol 59:345–350CrossRefGoogle Scholar
  20. Gollas-Galvan T, Sotelo-Mundo RR, Yepiz-Plascencia G et al (2003) Purification and characterization of alpha 2-macroglobulin from the white shrimp (Penaeus vannamei). Comp Biochem Physiol C 134:431–438Google Scholar
  21. Goncalves P, Vernal J, Rosa RD et al (2012) Evidence for a novel biological role for the multifunctional β-1,3-glucan binding protein in shrimp. Mol Immunol 51:363–367CrossRefPubMedGoogle Scholar
  22. Häll L, Söderhäll K (1984) Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish hemocyte lysate. Biochim Biophys Acta 797:99–104CrossRefGoogle Scholar
  23. Hall M, Söderhäll K (1994) Crayfish α-macroglobulin as a substrate for transglutaminases. Comp Biochem Physiol B 108:65–72CrossRefGoogle Scholar
  24. Hall M, Vanheusden MC, Söderhäll K (1995) Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem Biophys Res Commun 216:939–946CrossRefGoogle Scholar
  25. Ho PY, Cheng CH, Cheng W (2009) Identification and cloning of the alpha2-macroglobulin of giant freshwater prawn Macrobrachium rosenbergii and its expression in relation with the molt stage and bacteria injection. Fish Shellfish Immunol 26:459–466CrossRefGoogle Scholar
  26. Hou F, Liu T, Wang Q et al (2017) Identification and characterization of two Croquemort homologues in penaeid shrimp Litopenaeus vannamei. Fish Shellfish Immunol 60:1–5CrossRefGoogle Scholar
  27. Huang TS, Wang H, Lee SY et al (2000) A cell adhesion protein from the crayfish Pacifastacus leniusculus, a serine proteinase homologue similar to Drosophila masquerade. J Biol Chem 275:9996–10001CrossRefGoogle Scholar
  28. Huang X, Feng JL, Jin M et al (2016) C-type lectin (MrCTL) from the giant freshwater prawn Macrobrachium rosenbergii participates in innate immunity. Fish Shellfish Immunol 58:136–144CrossRefGoogle Scholar
  29. Jearaphunt M, Noonin C, Jiravanichpaisal P et al (2014) Caspase-1-like regulation of the proPO-system and role of ppA and caspase-1-like cleaved peptides from proPO in innate immunity. Plos Pathog. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jearaphunt M, Amparyup P, Sangsuriya P et al (2015) Shrimp serine proteinase homologues PmMasSPH-1 and -2 play a role in the activation of the prophenoloxidase system. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jitvaropas R, Amparyup P, Gross PS et al (2009) Functional characterization of a masquerade-like serine proteinase homologue from the black tiger shrimp Penaeus monodon. Comp Biochem Physiol B 153:236–243CrossRefGoogle Scholar
  32. Kao D, Lai AG, Stamataki E et al (2016) The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. elife 5:1. CrossRefGoogle Scholar
  33. Lai AG, Aboobaker AA (2017) Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 18:389. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee SY, Söderhäll K (2001) Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. J Immunol 166:7319–7326CrossRefGoogle Scholar
  35. Lee WJ, Lee JD, Kravchenko VV et al (1996) Purification and cloning of an inducible Gram-negative bacteria-binding protein from the silk-worm Bombyx mori. Proc Natl Acad Sci U S A 93:7888–7893CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee SY, Wang RG, Söderhäll K (2000) A lipopolysaccharide- and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. J Biol Chem 275:1337–1343CrossRefGoogle Scholar
  37. Levashina EA, Moita LF, Blandin S et al (2001) Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104:709–718CrossRefGoogle Scholar
  38. Li M, Li C, Ma C et al (2014) Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei. Dev Comp Immunol 46:231–240CrossRefGoogle Scholar
  39. Li CZ, Li HY, Xiao B et al (2017) Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-kappa B and JNK pathways and its broad protective roles against multiple pathogens. Dev Comp Immunol 70:45–58CrossRefGoogle Scholar
  40. Liu H, Wu C, Matsuda Y et al (2011) Peptidoglycan activation of the proPO-system without a peptidoglycan receptor protein (PGRP)? Dev Comp Immunol 35:51–61CrossRefGoogle Scholar
  41. Loker ES, Adema CM, Zhang SM et al (2004) Invertebrate immune systems – not homogenous, not simple, not well understood. Immunol Rev 198:10–24CrossRefPubMedPubMedCentralGoogle Scholar
  42. Luo T, Yang H, Li F et al (2006) Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon. Dev Comp Immunol 30:607–617CrossRefGoogle Scholar
  43. Ma HM, Wang B, Zhang JQ et al (2010) Multiple forms of alpha-2 macroglobulin in shrimp Fenneropenaeus chinesis and their transcriptional response to WSSV or Vibrio pathogen infection. Dev Comp Immunol 34:677–684CrossRefGoogle Scholar
  44. McTaggart SJ, Conlon C, Colbourne JK et al (2009) The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genomics 10:175. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mekata T, Okugawa S, Inada M et al (2011) Class B scavenger receptor, Croquemort from kuruma shrimp Marsupenaeus japonicus: molecular cloning and characterization. Mol Cell Probes 25:94–100CrossRefGoogle Scholar
  46. Pees B, Yang W, Zarate-Poles A et al (2016) High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. J Innate Immun 8:129–142CrossRefPubMedPubMedCentralGoogle Scholar
  47. Perazzolo LM, Bachere E, Rosa RD et al (2011) Alpha2-macroglobulin from an Atlantic shrimp: biochemical characterization, sub-cellular localization and gene expression upon fungal challenge. Fish Shellfish Immunol 31:938–943CrossRefGoogle Scholar
  48. Ponprateep S, Vatanavicharn T, Lo CF et al (2017) Alpha-2-macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp Litopenaeus vannamai. Fish Shellfish Immunol 62:68–74CrossRefGoogle Scholar
  49. Rattanachai A, Hirono I, Ohira T et al (2004) Molecular cloning and expression analysis of alpha 2-macroglobulin in the kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 16:599–611CrossRefGoogle Scholar
  50. Roux MM, Pain A, Klimpel KR et al (2002) The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J Virol 76:7140–7149CrossRefPubMedPubMedCentralGoogle Scholar
  51. Söderhäll K (1981) Fungal cell wall beta-1,3-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish hemocyte lysate. Dev Comp Immunol 5:565–573CrossRefGoogle Scholar
  52. Söderhäll K, Unestam T (1979) Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can J Microbiol 25:406–414CrossRefGoogle Scholar
  53. Sritunyalucksana K, Lee SY, Söderhäll K (2002) A beta-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev Comp Immunol 26:237–245CrossRefGoogle Scholar
  54. Stroschein-Stevenson SL, Foley E, O’Farrell PH et al (2006) Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sun JJ, Lan JF, Shi XZ et al (2014) A fibrinogen-related protein (FREP) is involved in the antibacterial immunity of Marsupenaeus japonicas. Fish Shellfish Immunol 39:296–304CrossRefGoogle Scholar
  56. Thörnqvist PO, Johansson MW, Söderhäll K (1994) Opsonic activity of cell adhesion proteins and beta-1,3-glucan binding proteins from two crustaceans. Dev Comp Immunol 18:3–12CrossRefGoogle Scholar
  57. Udompetcharaporn A, Kingkamon J, Senapin S et al (2014) Identification and characterization of a QM protein as a possible peptidoglycan recognition protein (PGRP) from the giant tiger shrimp Penaeus monodon. Dev Comp Immunol 46:146–154CrossRefGoogle Scholar
  58. Unestam T, Söderhäll K (1977) Soluble fragments from fungal cell walls elicit defence reactions in crayfish. Nature 267:45–46CrossRefGoogle Scholar
  59. Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34:981–989CrossRefGoogle Scholar
  60. Wang S, Chen AJ, Shi LJ et al (2012) TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One:e30057. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang XW, Zhao XF, Wang JX (2014a) C-type lectin binds to beta-integrin to promote hemocytic phagocytosis in an invertebrate. J Biol Chem 289:2405–2414CrossRefPubMedGoogle Scholar
  62. Wang XW, Xu JD, Zhao XF et al (2014b) A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. J Biol Chem 289:11779–11790CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang M, Wang L, Huang M et al (2016) A galectin from Eriocheir sinensis functions as pattern recognition receptor enhancing microbe agglutination and haemocytes encapsulation. Fish Shellfish Immunol 55:10–20CrossRefPubMedGoogle Scholar
  64. Wu C, Söderhäll K, Söderhäll I (2011) Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 11:2249–2264CrossRefPubMedGoogle Scholar
  65. Wu C, Noonin C, Söderhäll I et al (2012) An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense. Insect Biochem Mol Biol 42:71–80CrossRefPubMedGoogle Scholar
  66. Xu S, Wang L, Wang XW et al (2014) L-type lectin from the kuruma shrimp Marsupenaeus japonicus promotes hemocyte phagocytosis. Dev Comp Immunol 44:397–405CrossRefPubMedGoogle Scholar
  67. Yang MC, Shi XZ, Yang HT et al (2016) Scavenger receptor C mediates phagocytosis of white spot syndrome virus and restricts virus proliferation in shrimp. Plos Pathog:e1006127. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yepiz-Plascencia G, Vargas-Albores F, Jimenez-Vega F et al (1998) Shrimp plasma HDL and β-glucan binding protein (BGBP): comparison of biochemical characteristics. Comp Biochem Biophys B 121:309–314CrossRefGoogle Scholar
  69. Yu XQ, Jiang H, Wang Y et al (2003) Nonproteolytic serine proteinase homologs involved in phenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 33:197–208CrossRefGoogle Scholar
  70. Zhang XW, Wang XW, Sun C et al (2011) C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response. Arch Insect Biochem Physiol 76:168–184CrossRefGoogle Scholar
  71. Zhang QX, Liu HP, Chen RY et al (2013a) Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain. PLoS One:e63787.
  72. Zhang XW, Liu YY, Mu Y et al (2013b) Overexpression of a C-type lectin enhances bacterial resistance in red swamp crayfish Procambarus clarkii. Fish Shellfish Immunol 34:1112–1118CrossRefGoogle Scholar
  73. Zhang Q, Wang XQ, Jiang HS et al (2014a) Calnexin functions in antibacterial immunity of Marsupenaeus japonicas. Dev Comp Immunol 46:356–363CrossRefGoogle Scholar
  74. Zhang XW, Wang XW, Huang Y et al (2014b) Cloning and characterization of two different ficolins from the giant prawn Macrobrachium rosenbergii. Dev Comp Immunol 44:359–369CrossRefGoogle Scholar
  75. Zhang XW, Wang Y, Wang XW et al (2016) A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii. Sci Rep 6:2994. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organismal BiologyUppsala UniversityUppsalaSweden

Personalised recommendations