Advertisement

Promising Biomolecules

  • Isabel Oliveira
  • Ana L. Carvalho
  • Hajer Radhouani
  • Cristiana Gonçalves
  • J. Miguel Oliveira
  • Rui L. Reis
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)

Abstract

The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.

Keywords

Synthetic biomolecules Natural biomolecules Bone repair Cartilage repair Osteochondral defects 

References

  1. 1.
    Mano J, Reis R (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273CrossRefPubMedGoogle Scholar
  2. 2.
    Mellor LF et al (2015) Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng A 21(17–18):2323–2333CrossRefGoogle Scholar
  3. 3.
    James HP et al (2014) Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharm Sin B 4(2):120–127CrossRefGoogle Scholar
  4. 4.
    Liechty WB et al (2010) Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 1:149–173CrossRefGoogle Scholar
  5. 5.
    Singh J (2016) Natural polymers based drug delivery systems. World J Pharm Pharm Sci 5(4):805–816Google Scholar
  6. 6.
    Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4):207–233CrossRefPubMedGoogle Scholar
  7. 7.
    Sokolsky-Papkov M et al (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4):187–206CrossRefPubMedGoogle Scholar
  8. 8.
    Rodriguez F et al (2014) Principles of polymer systems. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Martin I et al (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765CrossRefPubMedGoogle Scholar
  10. 10.
    Slotkin JR et al (2017) Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123:63–76CrossRefPubMedGoogle Scholar
  11. 11.
    Neto BA, Carvalho PH, Correa JR (2015) Benzothiadiazole derivatives as fluorescence imaging probes: beyond classical scaffolds. Acc Chem Res 48(6):1560–1569CrossRefPubMedGoogle Scholar
  12. 12.
    Francis R, Joy N, Sivadas A (2016) Relevance of natural degradable polymers in the biomedical field. In: Biomedical applications of polymeric materials and composites. Wiley-VCH Verlag GmbH & Co. KGaA, 303–360CrossRefGoogle Scholar
  13. 13.
    Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRefGoogle Scholar
  14. 14.
    Bonzani IC, George JH, Stevens MM (2006) Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 10(6):568–575CrossRefPubMedGoogle Scholar
  15. 15.
    Doulabi AH, Mequanint K, Mohammadi H (2014) Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 7:5327–5355CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vinatier C et al (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnstone B et al (2013) Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater 25:248–267CrossRefPubMedGoogle Scholar
  18. 18.
    Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1CrossRefGoogle Scholar
  19. 19.
    Lee EJ, Kasper FK, Mikos AG (2014) Biomaterials for tissue engineering. Ann Biomed Eng 42(2):323–337CrossRefPubMedGoogle Scholar
  20. 20.
    Chajra H et al (2008) Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng 18(1 Suppl):S33–S45PubMedGoogle Scholar
  21. 21.
    Koh L-D et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRefGoogle Scholar
  22. 22.
    Kambe Y et al (2016) Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor. J Biomed Mater Res A 104(1):82–93CrossRefPubMedGoogle Scholar
  23. 23.
    Liu H et al (2015) Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49:103–112CrossRefPubMedGoogle Scholar
  24. 24.
    Hashimoto T et al (2015) Changes in the properties and protein structure of silk fibroin molecules in autoclaved fabrics. Polym Degrad Stab 112:20–26CrossRefGoogle Scholar
  25. 25.
    Lai GJ et al (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297CrossRefPubMedGoogle Scholar
  26. 26.
    Kundu B et al (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRefPubMedGoogle Scholar
  27. 27.
    Lewis R (1996) Unraveling the weave of spider silkOne of nature's wondrous chemical structures is being dissected so that it can be used in human inventions. Bioscience 46(9):636–638CrossRefGoogle Scholar
  28. 28.
    Rockwood DN et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631CrossRefPubMedGoogle Scholar
  29. 29.
    Jin SH et al (2014) The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells. J Surg Res 192(2):e1–e9CrossRefPubMedGoogle Scholar
  30. 30.
    Foss C et al (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47CrossRefPubMedGoogle Scholar
  31. 31.
    Saha S et al (2013) Osteochondral tissue engineering in vivo A comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS One 8(11):e80004CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Miranda-Nieves D, Chaikof EL (2017) Collagen and elastin biomaterials for the fabrication of engineered living tissues. ACS Biomater Sci Eng 3(5):694–711CrossRefGoogle Scholar
  33. 33.
    Ong KL, Lovald S, Black J (2015) Orthopaedic biomaterials in research and practice, 2nd edn. CRC Press, Boca Raton, p 476Google Scholar
  34. 34.
    Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546CrossRefPubMedGoogle Scholar
  35. 35.
    Gaharwar AK et al (2013) Nanocomposite polymer: biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Gaharwar AK et al (eds) Nanomaterials in tissue engineering: fabrication and applications. Woodhead Publishing, Cambridge, p 468CrossRefGoogle Scholar
  36. 36.
    Lee JC, Volpicelli EJ (2017) Bioinspired collagen scaffolds in cranial bone regeneration: from bedside to bench. Adv Healthc Mater 6(17)CrossRefGoogle Scholar
  37. 37.
    Chaudhari AA et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12)CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Abedin MZ et al (2013) Isolation and characterization of pepsin-solubilized collagen from the integument of sea cucumber (Stichopus vastus). J Sci Food Agric 93(5):1083–1088CrossRefPubMedGoogle Scholar
  40. 40.
    Potaros T et al (2009) Characteristics of collagen from Nile Tilapia (oreochromis niloticus) skin isolated by two different methods. Kasetsart J 43:584–593Google Scholar
  41. 41.
    Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine. INTECH Open Access Publisher, Rijeka.Google Scholar
  42. 42.
    Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sionkowska A et al (2014) The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. J Photochem Photobiol B 140:301–305CrossRefPubMedGoogle Scholar
  44. 44.
    Bhardwaj N et al (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32(25):5773–5781CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Je JY, Kim SK (2012) Chitosan as potential marine nutraceutical. Adv Food Nutr Res 65:121–135CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang K et al (2013) Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater 9(7):7276–7288CrossRefPubMedGoogle Scholar
  47. 47.
    Bano I et al (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383CrossRefPubMedGoogle Scholar
  48. 48.
    Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85(2):325–333CrossRefGoogle Scholar
  49. 49.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  50. 50.
    Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Biopolymers online. Wiley Online LibrayGoogle Scholar
  51. 51.
    Fertah M et al (2015) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 8(1):1–142CrossRefGoogle Scholar
  52. 52.
    Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14(2)CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nalamothu N, Potluri A, Muppalla MB (2014) Review on marine alginates and its applications. Indo Am J Pharm Res 4(10):4006–4015Google Scholar
  54. 54.
    Silva TH et al (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 2012Google Scholar
  55. 55.
    Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465CrossRefPubMedGoogle Scholar
  56. 56.
    Li C et al (2009) Preparation and drug release of hydrophobically modified alginate. Chemistry 1:93–96Google Scholar
  57. 57.
    Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Polym 47(3):267–276CrossRefGoogle Scholar
  58. 58.
    Pluemsab W, Sakairi N, Furuike T (2005) Synthesis and inclusion property of alpha-cyclodextrin-linked alginate. Polymer 46(23):9778–9783CrossRefGoogle Scholar
  59. 59.
    Pelletier S et al (2001) Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 54(1):102–108CrossRefPubMedGoogle Scholar
  60. 60.
    Bu HT et al (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution - Calorimetric, rheological, and turbidity studies. Colloids Surf A Physicochem Eng Asp 278(1–3):166–174CrossRefGoogle Scholar
  61. 61.
    Yang J-S, Xie Y-J, He W (2010) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39CrossRefGoogle Scholar
  62. 62.
    Galant C et al (2006) Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of beta-cyclodextrin monomers. J Phys Chem B 110(1):190–195CrossRefPubMedGoogle Scholar
  63. 63.
    Suhas et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076CrossRefPubMedGoogle Scholar
  64. 64.
    Muller FA et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963CrossRefPubMedGoogle Scholar
  65. 65.
    Varoni E et al (2012) Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connect Tissue Res 53(6):548–554CrossRefPubMedGoogle Scholar
  66. 66.
    Yodmuang S et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36CrossRefPubMedGoogle Scholar
  67. 67.
    Khanarian NT et al (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zignego DL et al (2014) The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. J Biomech 47(9):2143–2148CrossRefPubMedGoogle Scholar
  69. 69.
    Rackwitz L et al (2014) Functional cartilage repair capacity of de-differentiated, chondrocyte-and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage 22(8):1148–1157CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering--a review. Carbohydr Polym 92(2):1262–1279CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhao F et al (2014) The application of polysaccharide biocomposites to repair cartilage defects. Int J Polym Sci 2014:9CrossRefGoogle Scholar
  72. 72.
    Murado MA et al (2012) Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 90(C3):491–498CrossRefGoogle Scholar
  73. 73.
    Liu L et al (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kang JY et al (2009) Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm 369(1–2):114–120CrossRefPubMedGoogle Scholar
  75. 75.
    Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34):8771–8782CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Unterman SA et al (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18(23–24):2497–2506CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Park YB et al (2017) Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage 25(4):570–580CrossRefPubMedGoogle Scholar
  78. 78.
    Prajapati VD et al (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678CrossRefPubMedGoogle Scholar
  79. 79.
    Osmalek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340CrossRefPubMedGoogle Scholar
  80. 80.
    da Silva RMP et al (2008) Poly(N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnol Bioeng 101(6):1321–1331CrossRefPubMedGoogle Scholar
  81. 81.
    da Silva LP et al (2014) Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater 10(11):4787–4797CrossRefPubMedGoogle Scholar
  82. 82.
    Kang D, Zhang F, Zhang H (2015) Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys 149-150:129–139CrossRefGoogle Scholar
  83. 83.
    Coutinho DF et al (2010) Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tang Y et al (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53CrossRefGoogle Scholar
  85. 85.
    Thalla PK et al (2014) Chondroitin sulfate coatings display low platelet but high endothelial cell adhesive properties favorable for vascular implants. Biomacromolecules 15(7):2512–2520CrossRefPubMedGoogle Scholar
  86. 86.
    Shi YG et al (2014) Chondroitin sulfate: extraction, purification, microbial and chemical synthesis. J Chem Technol Biotechnol 89(10):1445–1465CrossRefGoogle Scholar
  87. 87.
    Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially Omega-3 fatty acids. Int J Rheumatol 2011:17CrossRefGoogle Scholar
  88. 88.
    Lai JY et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fardellone P et al (2013) Comparative efficacy and safety study of two chondroitin sulfate preparations from different origin (avian and bovine) in symptomatic osteoarthritis of the knee. Open Rheumatol J 7:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Vazquez JA et al (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11(3):747–774CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Charbonneau C et al (2011) Stimulation of cell growth and resistance to apoptosis in vascular smooth muscle cells on a chondroitin sulfate/epidermal growth factor coating. Biomaterials 32(6):1591–1600CrossRefPubMedGoogle Scholar
  92. 92.
    Wei B et al (2015) Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. J Biomater Appl 30(2):160–170CrossRefPubMedGoogle Scholar
  93. 93.
    Place ES et al (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151CrossRefPubMedGoogle Scholar
  94. 94.
    Solchaga LA et al (2005) Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage 13(4):297–309CrossRefPubMedGoogle Scholar
  95. 95.
    Kang SW et al (2006) The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees. J Biomater Sci Polym Ed 17(8):925–939CrossRefPubMedGoogle Scholar
  96. 96.
    Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670CrossRefPubMedGoogle Scholar
  97. 97.
    Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  98. 98.
    Hui JH et al (2013) Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471(4):1174–1185CrossRefPubMedGoogle Scholar
  99. 99.
    Emami J et al (2015) Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol 20(7):791–800CrossRefGoogle Scholar
  100. 100.
    Harris JM (2013) Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Springer Science & Business MediaGoogle Scholar
  101. 101.
    D'Este M et al (2016) Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J Biomed Mater Res A 104(6):1469–1478CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Isabel Oliveira
    • 1
    • 2
  • Ana L. Carvalho
    • 1
    • 2
  • Hajer Radhouani
    • 1
    • 2
  • Cristiana Gonçalves
    • 1
    • 2
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
  • Rui L. Reis
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoBarco/GuimarãesPortugal

Personalised recommendations