Glanzmann Thrombasthenia

  • Akbar Dorgalaleh
  • Man-Chiu Poon
  • Yavar Shiravand


Glanzmann thrombasthenia (GT) is a rare severe inherited platelet function disorder caused by the deficiency or dysfunction of integrin αIIbβ3 [glycoprotein (GP) IIb/IIIa]. The disorder manifests with mucocutaneous bleeding early in life. Although purpura, epistaxis, gum bleeding, and menorrhagia are the most common clinical presentations, life-threatening hemorrhage can occur with fatal consequences. GT has a distinct laboratory feature with absence of platelet aggregation response to all physiological agonists but with normal response to ristocetin. In flow cytometric analysis, αIIbβ3 (GPIIb/IIIa) (CD41/CD61) is absent or decreased, but in variant forms of GT, nonfunctional αIIbβ3 is expressed in nearly normal amounts. Different therapeutic choices are available for the management of patients with GT. Local measures or antifibrinolytic agents can be used for management of mild bleeds, whereas for those with more severe hemorrhage, systemic hemostatic agents including platelet concentrates and recombinant human activated factor VII (rFVIIa) are used. Currently, platelet transfusion is the standard treatment, but repeated transfusion can result in allo-immunization and refractoriness to further platelet transfusion. To minimize the risk of HLA-allo-immunization against platelets, preferably patients should receive HLA-matched leukocyte-reduced platelet concentrates, particularly from single donors. rFVII can be used for the management of patients with GT with antibodies against platelets and platelet refractoriness. Timely diagnosis and appropriate management of the disorder can significantly improve the quality of life of patients with GT.


Glanzmann thrombasthenia Inherited platelet function disorder Recombinant human activated factor VII (rFVIIa) Platelets Bleeding 


  1. 1.
    Poon MC, Di Minno G, d’Oiron R, Zotz R. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev. 2016;30(2):92–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Nurden AT, Pillois X, Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: implications for treatment. Expert Rev Hematol. 2012;5(5):487–503.CrossRefPubMedGoogle Scholar
  3. 3.
    Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011;118(23):5996–6005.CrossRefPubMedGoogle Scholar
  4. 4.
    Srivastava A, Usher S, Nelson EJ, Jayandharan G, Shaji RV, Chandy M, et al. Prenatal diagnosis of Glanzmann thrombasthenia. Natl Med J India. 2003;16(4):207–8.PubMedGoogle Scholar
  5. 5.
    Wang ZY, Ruan CG. Current state and prospect in treatment of Glanzmann’s thrombasthenia. Zhonghua Xue Ye Xue Za Zhi. 2016;37(5):430–1.PubMedGoogle Scholar
  6. 6.
    Fang J, Hodivala-Dilke K, Johnson BD, Du LM, Hynes RO, White GC 2nd, et al. Therapeutic expression of the platelet-specific integrin, alphaIIbbeta3, in a murine model for Glanzmann thrombasthenia. Blood. 2005;106(8):2671–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seligsohn U. Glanzmann thrombasthenia: a model disease which paved the way to powerful therapeutic agents. Pathophysiol Haemost Thromb. 2002;32(5–6):216.CrossRefPubMedGoogle Scholar
  8. 8.
    Kato A. The biologic and clinical spectrum of Glanzmann’s thrombasthenia: implications of integrin alpha IIb beta 3 for its pathogenesis. Crit Rev Oncol Hematol. 1997;26(1):1–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest. 2005;115(12):3363–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Calvete JJ. Platelet integrin GPIIb/IIIa: structure–function correlations. An update and lessons from other integrins. Proc Soc Exp Biol Med. 1999;222(1):29–38.CrossRefPubMedGoogle Scholar
  11. 11.
    Suzuki H. Structure and function of platelet alpha IIb beta 3 integrin. Rinsho Byori. 1997;104(Suppl):60–72.PubMedGoogle Scholar
  12. 12.
    Cierniewski CS. Structure and function of integrin receptors based on platelet receptor for fibrinogen. Postepy Biochem. 1994;40(1):45–54.PubMedGoogle Scholar
  13. 13.
    Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda). 2017;32(2):162–77.Google Scholar
  14. 14.
    Liu J, Das M, Yang J, Ithychanda SS, Yakubenko VP, Plow EF, et al. Structural mechanism of integrin inactivation by filamin. Nat Struct Mol Biol. 2015;22(5):383–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J Thromb Haemost. 2009;7((suppl 1):206–9.CrossRefGoogle Scholar
  16. 16.
    Ma YQ, Qin J, Plow EF. Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost. 2007;5(7):1345–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu Z, Chen X, Zhi H, Gao J, Bialkowska K, Byzova TV, et al. Direct interaction of kindlin-3 with integrin alphaIIbbeta3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler Thromb Vasc Biol. 2014;34(9):1961–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mandava P, Thiagarajan P, Kent TA. Glycoprotein IIb/IIIa antagonists in acute ischaemic stroke: current status and future directions. Drugs. 2008;68(8):1019–28.CrossRefPubMedGoogle Scholar
  19. 19.
    Goto S, Tamura N, Ishida H. Ability of anti-glycoprotein IIb/IIIa agents to dissolve platelet thrombi formed on a collagen surface under blood flow conditions. J Am Coll Cardiol. 2004;44(2):316–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Fiore M, Firah N, Pillois X, Nurden P, Heilig R, Nurden AT. Natural history of platelet antibody formation against alphaIIbbeta3 in a French cohort of Glanzmann thrombasthenia patients. Haemophilia. 2012;18(3):e201–E209.CrossRefPubMedGoogle Scholar
  21. 21.
    Kashiwagi H, Kunishima S, Kiyomizu K, Amano Y, Shimada H, Morishita M, et al. Demonstration of novel gain-of-function mutations of alphaIIbbeta3: association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype. Mol Genet Genomic Med. 2013;1(2):77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Toogeh G, Sharifian R, Lak M, Safaee R, Artoni A, Peyvandi F. Presentation and pattern of symptoms in 382 patients with Glanzmann thrombasthenia in Iran. Am J Hematol. 2004;77(2):198–9.CrossRefPubMedGoogle Scholar
  23. 23.
    George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood. 1990;75(7):1383–95.PubMedGoogle Scholar
  24. 24.
    Borhany M, Fatima H, Naz A, Patel H, Shamsi T. Pattern of bleeding and response to therapy in Glanzmann thrombasthenia. Haemophilia. 2012;18(6):e423–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Simou M, Kouskouni E, Vitoratos N, Economou E, Creatsas G. Polymorphisms of platelet glycoprotein receptors and cell adhesion molecules in fetuses with fetal growth restriction and their mothers as detected with pyrosequencing. In Vivo. 2017;31(2):243–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. Semin Thromb Hemost. 2013;39(6):642–55.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Franchini M, Favaloro EJ, Lippi G. Glanzmann thrombasthenia: an update. Clin Chim Acta. 2010;411(1-2):1–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenberg N, Hauschner H, Peretz H, Mor-Cohen R, Landau M, Shenkman B, et al. A 13-bp deletion in alpha(IIb) gene is a founder mutation that predominates in Palestinian-Arab patients with Glanzmann thrombasthenia. J Thromb Haemost. 2005;3(12):2764–72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci U S A. 1991;88(8):3160–4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Albanyan A, Al-Musa A, Al Nounou R, Al Zahrani H, Nasr R, AlJefri A, et al. Diagnosis of Glanzmann thrombasthenia by whole blood impedance analyzer (MEA) vs. light transmission aggregometry. Int J Lab Hematol. 2015;37(4):503–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Fiore M, Nurden AT, Vinciguerra C, Nurden P, Pillois X. Rapid diagnosis of the French gypsy mutation in Glanzmann thrombasthenia using high-resolution melting analysis. Thromb Haemost. 2010;104(5):1076–7.CrossRefPubMedGoogle Scholar
  32. 32.
    French DL, Coller BS, Usher S, Berkowitz R, Eng C, Seligsohn U, et al. Prenatal diagnosis of Glanzmann thrombasthenia using the polymorphic markers BRCA1 and THRA1 on chromosome 17. Br J Haematol. 1998;102(2):582–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Awidi A, Maqablah A, Dweik M, Bsoul N, Abu-Khader A. Comparison of platelet aggregation using light transmission and multiple electrode aggregometry in Glanzmann thrombasthenia. Platelets. 2009;20(5):297–301.CrossRefPubMedGoogle Scholar
  34. 34.
    McGlasson DL, Fritsma GA. Whole blood platelet aggregometry and platelet function testing. Semin Thromb Hemost. 2009;35(2):168–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Nagy B Jr, Debreceni IB, Kappelmayer J. Flow cytometric investigation of classical and alternative platelet activation markers. eJIFCC. 2013;23(4):124–34.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yazici ZM, Celik M, Yegin Y, Gunes S, Kayhan FT. Glanzmann’s thrombasthenia: a rare case of spontaneous bilateral hemotympanum. Braz J Otorhinolaryngol. 2015;81(2):224–55.CrossRefPubMedGoogle Scholar
  37. 37.
    Solh T, Botsford A, Solh M. Glanzmann’s thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J Blood Med. 2015;6:219–27.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Srivastava A, Brewer AK, Mauser-Bunschoten EP, Key NS, Kitchen S, Llinas A, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19(1):e1–e47.CrossRefPubMedGoogle Scholar
  39. 39.
    Poon M-C, Di Minno G, Zotz R, d’Oiron R. Glanzmann’s thrombasthenia: strategies for identification and management. Expert Opin Orphan Drugs. 2017;5(8):641–53.CrossRefGoogle Scholar
  40. 40.
    Al-Battat S, Rand ML, Bouskill V, Lau W, Blanchette VS, Kahr WHA, et al. Glanzmann thrombasthenia platelets compete with transfused platelets, reducing the haemostatic impact of platelet transfusions. Br J Haematol. 2018;181(3):410-3.CrossRefPubMedGoogle Scholar
  41. 41.
    Jennings LK, Wang WC, Jackson CW, Fox CF, Bell A. Hemostasis in Glanzmann’s thrombasthenia (GT): GT platelets interfere with the aggregation of normal platelets. Am J Pediatr Hematol Oncol. 1991;13(1):84–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Chitlur M, Rajpurkar M, Recht M, Tarantino MD, Yee DL, Cooper DL, et al. Recognition and management of platelet-refractory bleeding in patients with Glanzmann’s thrombasthenia and other severe platelet function disorders. Int J Gen Med. 2017;10:95–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rajpurkar M, Chitlur M, Recht M, Cooper DL. Use of recombinant activated factor VII in patients with Glanzmann’s thrombasthenia: a review of the literature. Haemophilia. 2014;20(4):464–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Franchini M. The use of recombinant activated factor VII in platelet disorders: a critical review of the literature. Blood Transfus. 2009;7(1):24–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Poon MC, Zotz R, Di Minno G, Abrams ZS, Knudsen JB, Laurian Y. Glanzmann’s thrombasthenia treatment: a prospective observational registry on the use of recombinant human activated factor VII and other hemostatic agents. Semin Hematol. 2006;43(1 suppl 1):S33–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Allen GA, Hoffman M, Roberts HR, Monroe DM 3rd. Recombinant activated factor VII: its mechanism of action and role in the control of hemorrhage. Can J Anaesth. 2002;49(10):S7–S14.PubMedGoogle Scholar
  47. 47.
    Gopalakrishnan A, Veeraraghavan R, Panicker P. Hematological and surgical management in Glanzmann’s thrombasthenia: a case report. J Indian Soc Pedod Prev Dent. 2014;32(2):181–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Bellucci S, Devergie A, Gluckman E, Tobelem G, Lethielleux P, Benbunan M, et al. Complete correction of Glanzmann’s thrombasthenia by allogeneic bone-marrow transplantation. Br J Haematol. 1985;59(4):635–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Ramzi M, Dehghani M, Haghighat S, Nejad HH. Stem cell transplant in severe Glanzmann thrombasthenia in an adult patient. Exp Clin Transplant. 2016;14(6):688–90.PubMedGoogle Scholar
  50. 50.
    Wiegering V, Winkler B, Langhammer F, Wolfl M, Wirbelauer J, Sauer K, et al. Allogeneic hematopoietic stem cell transplantation in Glanzmann thrombasthenia complicated by platelet alloimmunization. Klin Padiatr. 2011;223(3):173–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Fang J, Jensen ES, Boudreaux MK, Du LM, Hawkins TB, Koukouritaki SB, et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A. 2011;108(23):9583–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wilcox DA, White GC 2nd. Gene therapy for platelet disorders: studies with Glanzmann’s thrombasthenia. J Thromb Haemost. 2003;1(2311):2300–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Akbar Dorgalaleh
    • 1
  • Man-Chiu Poon
    • 2
    • 3
    • 4
    • 5
  • Yavar Shiravand
    • 1
  1. 1.Department of Hematology and Blood TransfusionSchool of Allied Medicine, Iran University of Medical SciencesTehranIran
  2. 2.Department of MedicineUniversity of Calgary Cumming School of MedicineCalgaryCanada
  3. 3.Department of PediatricsUniversity of Calgary Cumming School of MedicineCalgaryCanada
  4. 4.Department of OncologyUniversity of Calgary Cumming School of MedicineCalgaryCanada
  5. 5.Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health ServicesCalgaryCanada

Personalised recommendations