Advertisement

Synthetic Materials for Osteochondral Tissue Engineering

  • Antoniac Iulian
  • Laptoiu Dan
  • Tecu Camelia
  • Milea Claudia
  • Gradinaru Sebastian
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1058)

Abstract

The objective of an articular cartilage repair treatment is to repair the affected surface of an articular joint’s hyaline cartilage. Currently, both biological and tissue engineering research is concerned with discovering the clues needed to stimulate cells to regenerate tissues and organs totally or partially. The latest findings on nanotechnology advances along with the processability of synthetic biomaterials have succeeded in creating a new range of materials to develop into the desired biological responses to the cellular level. 3D printing has a great ability to establish functional tissues or organs to cure or replace abnormal and necrotic tissue, providing a promising solution for serious tissue/organ failure. The 4D print process has the potential to continually revolutionize the current tissue and organ manufacturing platforms. A new active research area is the development of intelligent materials with high biocompatibility to suit 4D printing technology. As various researchers and tissue engineers have demonstrated, the role of growth factors in tissue engineering for repairing osteochondral and cartilage defects is a very important one. Following animal testing, cell-assisted and growth-factor scaffolds produced much better results, while growth-free scaffolds showed a much lower rate of healing.

Keywords

Biomaterial Cartilage Scaffold 4D printing Meniscal lesion 

References

  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRefGoogle Scholar
  2. 2.
    Vinatier C, Guicheux J (2016) Cartilage tissue engineering: from biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med 59:139–144CrossRefGoogle Scholar
  3. 3.
    Vinatier C, Bouffi C, Merceron C et al (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4:318–329CrossRefGoogle Scholar
  4. 4.
    Vinatier C et al (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16:S107–S113PubMedGoogle Scholar
  5. 5.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337CrossRefGoogle Scholar
  6. 6.
    Vinatier C, Gauthier O, Fatimi A et al (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–1267CrossRefGoogle Scholar
  7. 7.
    Filardo G, Kon E, Perdisa F et al (2013) Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee 20(6):570CrossRefGoogle Scholar
  8. 8.
    Brix MO et al (2013) Cartilage repair of the knee with Hyalograft C1: magnetic resonance imaging assessment of the glycosaminoglycan content at midterm. Int Orthop 37:39–43CrossRefGoogle Scholar
  9. 9.
    Nehrer S et al (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57:3–8CrossRefGoogle Scholar
  10. 10.
    Steinwachs MR, Waibl B, Mumme M (2014) Arthroscopic treatment of cartilage lesions with microfracture and BST-CarGel. Arthrosc Tech 3:399–402CrossRefGoogle Scholar
  11. 11.
    Ossendorf C et al (2007) Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res Ther 9:R41CrossRefGoogle Scholar
  12. 12.
    Seo S-J, Mahapatra C, Singh RK, Knowles JC, Kim H-W (2014) Strategies for osteo-chondral repair: focus on scaffolds. J Tissue Eng 5:204173141454185CrossRefGoogle Scholar
  13. 13.
    Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y et al (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional polylactic- glycolic acid (PLGA) scaffold. Biomaterials 26(20):4273–4279CrossRefGoogle Scholar
  14. 14.
    Jazayeri HE et al (2017) A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C 70:913–929CrossRefGoogle Scholar
  15. 15.
    Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L et al (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA–gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27(26):4573–4580CrossRefGoogle Scholar
  16. 16.
    Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457CrossRefGoogle Scholar
  17. 17.
    Tadavarthy SM, Moller JH, Amplatz K (1975) Polyvinyl alcohol (Ivalon)—a new embolic material. Am J Roentgenol 125(3):609–616CrossRefGoogle Scholar
  18. 18.
    Bray JC, Merrill EW (1973) Poly (vinyl alcohol) hydrogels for synthetic articular cartilage material. J Biomed Mater Res 7(5):431–443CrossRefGoogle Scholar
  19. 19.
    Kobayashi M, Chang Y-S, Oka M (2005) A two year in vivo study of polyvinyl alcoholhydrogel (PVA-H) artificial meniscus. Biomaterials 26(16):3243–3248CrossRefGoogle Scholar
  20. 20.
    Kobayashi M, Toguchida J, Oka M (2003) Preliminary study of polyvinyl alcoholhydrogel (PVA-H) artificial meniscus. Biomaterials 24(4):639–647CrossRefGoogle Scholar
  21. 21.
    Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK (2009) Poly (vinyl alcohol)–acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30(4):589–596CrossRefGoogle Scholar
  22. 22.
    Stammen JA, Williams S, Ku DN, Guldberg RE (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22(8):799–806CrossRefGoogle Scholar
  23. 23.
    Holloway JL et al (2011) Analysis of the in vitro swelling behavior of poly (vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Acta Biomater 7(6):2477–2482CrossRefGoogle Scholar
  24. 24.
    Shokrgozar MA, Bonakdar S, Dehghan MM, Emami SH, Montazeri L, Azari S et al (2013) Biological evaluation of polyvinyl alcohol hydrogel crosslinked by polyurethane chain for cartilage tissue engineering in rabbit model. J Mater Sci Mater Med 24(10):2449–2460CrossRefGoogle Scholar
  25. 25.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706–721CrossRefGoogle Scholar
  26. 26.
    Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C et al (1998) Articular cartilage lesions of the knee. Am J Sports Med 26:853CrossRefGoogle Scholar
  27. 27.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432CrossRefGoogle Scholar
  28. 28.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917CrossRefGoogle Scholar
  29. 29.
    Du Y et al (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37CrossRefGoogle Scholar
  30. 30.
    Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Jt Surg Br. 2005; 87.Google Scholar
  31. 31.
    Marcacci M et al (2007) Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 35:2014e2021CrossRefGoogle Scholar
  32. 32.
    Salzmann GM et al (2011) The dependence of autologous chondrocyte transplantation on varying cellular passage, yield and culture duration. Biomaterials 32:5810CrossRefGoogle Scholar
  33. 33.
    Filardo G et al (2013) Matrix-assisted autologous chondrocyte transplantation for cartilage regeneration in osteoarthritic knees: results and failures at midterm follow-up. Am J Sports Med 41:95CrossRefGoogle Scholar
  34. 34.
    Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42:2741e2750CrossRefGoogle Scholar
  35. 35.
    Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22:1986e1996CrossRefGoogle Scholar
  36. 36.
    Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25CrossRefGoogle Scholar
  37. 37.
    Gantar A et al (2014) Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater Sci Eng C Mater Biol Appl 43:27–36CrossRefGoogle Scholar
  38. 38.
    Xavier JR et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118CrossRefGoogle Scholar
  39. 39.
    Johnson K et al (2012) A stem cell-based approach to cartilage repair. Science 336(6082):717–721CrossRefGoogle Scholar
  40. 40.
    Benoit DS, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7(10):816–823CrossRefGoogle Scholar
  41. 41.
    Mano JF, Reis RL (2007) Osteochondral effects: present situation and tissue engineering approaches. J Tissue Eng Regenerative Med 1:281–287CrossRefGoogle Scholar
  42. 42.
    Chen Q, Roether JA, Boccaccini AR. Tissue engineering scaffolds from bioactive glass and composite materials. 2008; 4, chapter 6.Google Scholar
  43. 43.
    Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20:646–655CrossRefGoogle Scholar
  44. 44.
    Karageorgiou V, Meinel L, Hofmann S et al (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 71:528–537CrossRefGoogle Scholar
  45. 45.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148CrossRefGoogle Scholar
  46. 46.
    Ghosh K, Ingber DE (2007) Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 59(13):1306–1318CrossRefGoogle Scholar
  47. 47.
    Getgood MJ, Simon JK, Brooks R, Aberman H, Simon T, Lynn AK, Rushton N (2012) Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen–glycosaminoglycan biopolymer in a caprine model. Knee 19:422–430CrossRefGoogle Scholar
  48. 48.
    Moseley JB et al (2010) Long-term durability of autologous chondrocyte implantation a multicenter, observational study in US patients. Am J Sports Med 38:238–246CrossRefGoogle Scholar
  49. 49.
    Niemeyer P et al (2014) Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 42:150–157CrossRefGoogle Scholar
  50. 50.
    Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903CrossRefGoogle Scholar
  51. 51.
    Prowse ABJ, Chong F, Gray PP, Munro TP (2011) Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res 6:1–12CrossRefGoogle Scholar
  52. 52.
    Camarero-Espinosaa S, Whitea JC (2017) Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 523:476–489CrossRefGoogle Scholar
  53. 53.
    Harley BA, Lynn AK et al. Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res 2010; 92A(3):1078–93Google Scholar
  54. 54.
    Yannas IV, Tzeranis DS, Harley BA (2010) Biologically active collagen-based scaffolds: advances in processing and characterization. Philos Trans Royal Society A Mathemat Phys Eng Sci 368(1917):2123–2139CrossRefGoogle Scholar
  55. 55.
    Harley BA, Lynn AK, et al. Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen glycosaminoglycan scaffold. J Biomed Mater Res 2010; 92A(3):1066–77Google Scholar
  56. 56.
    Khan WS, Johnson DS, MR, et al. Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 2009; 25(7):810–4Google Scholar
  57. 57.
    Kerker JT, Leo AJ, Sgaglione NA (2008) Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes. Sports Med Arthrosc 16(4):208–216CrossRefGoogle Scholar
  58. 58.
    Khan WS, Johnson DS, Hardingham TE (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee 17(6):369–374CrossRefGoogle Scholar
  59. 59.
    Yannas IV, Lee E, Orgil DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. PNAS 86(3):933–937CrossRefGoogle Scholar
  60. 60.
    Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M (1998) Collagen–GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 154(2):315–329CrossRefGoogle Scholar
  61. 61.
    Yannas IV (2001) Tissue and organ regeneration in adults. Springer, New YorkGoogle Scholar
  62. 62.
    Cui H, et al. Adv Healthc Mater 2016;6Google Scholar
  63. 63.
    Murphy SV et al (2014) Nat Biotechnol 32(8):773CrossRefGoogle Scholar
  64. 64.
    Holmes B et al (2016) Nanotechnology 27(6):064001CrossRefGoogle Scholar
  65. 65.
    Guo T et al (2016) Tissue Eng. B: RevGoogle Scholar
  66. 66.
    Miao S, Castrol N, Nowicki M, et al., 4D printing of polymeric materials for tissue and organ regeneration, Materials Today 2017; 00(00).Google Scholar
  67. 67.
    Miao S, et al. Sci Rep 2016;6.Google Scholar
  68. 68.
    Codorean IB, Tanase S, et al. Current strategies and advanced materials for the treatment of injured meniscus.Google Scholar
  69. 69.
    Celeste S, Hirschmann MT, Antinnolfi P, Martin I, Peretti GM (2013) Meniscus repair and regeneration: review on current methods and research potential. Eur Cells Mater 26:150–170CrossRefGoogle Scholar
  70. 70.
    Codorean IB, Tănase S, Diaconu F, et al. The treatment of articular cartilage lesions using two polymer scaffolds.Google Scholar
  71. 71.
    Makris EA, Hadidi P, Athannasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques and prospects for regeneration. Biomaterials 32(30):7411–7431CrossRefGoogle Scholar
  72. 72.
    Kawamura S, Lotito K, Rodeo SA (2003) Biomechanics and healing response of the meniscus. Oper Tech Sports Med 11:68–76CrossRefGoogle Scholar
  73. 73.
    Schoenfeld AJ, Landis WJ, Kay DB (2007) Tissue- engineered meniscal constructs. Am J Orthop 36:614–620PubMedGoogle Scholar
  74. 74.
    Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36:19–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antoniac Iulian
    • 1
  • Laptoiu Dan
    • 2
  • Tecu Camelia
    • 1
  • Milea Claudia
    • 1
  • Gradinaru Sebastian
    • 2
  1. 1.University Politehnica of BucharestBucharestRomania
  2. 2.University of Medicine and Pharmacy C.Davila BucharestBucharestRomania

Personalised recommendations